“自行车里的数学”教学设计[最终定稿]

时间:2019-05-12 16:32:35下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《“自行车里的数学”教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《“自行车里的数学”教学设计》。

第一篇:“自行车里的数学”教学设计

数学备课大师 www.eywedu.net 目录式免费主题备课平台!

“自行车里的数学”教学设计

教学内容:人教版六年级下册综合应用p66-67页的内容 教学目标:

1、运用所学的圆、比例、排列与组合等知识解决问题;了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。

2、通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力

3、经历解决问题的基本过程,了解数学与生活的密切关系。

教学重点:让学生在活动中感受数学与生活的紧密联系,会运用所学知识为生活服务,解决生活中的一些问题。

教学难点: 构建数学模型

教学过程:

一、揭示课题

1、同学们喜欢骑自行车吗?那可是我的最爱。以前我只觉得骑自行车是一种很好的运动、休闲,放松心情方式。请说一说你了解到的普通自行车和变速自行车的知识。

2、自行车里有数学问题吗?

二、研究自行车的速度与内在结构的关系

1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。

2、分析问题

(1)学生讨论如何解决问题。

方案一:直接测量,但是误差较大。

方案二:测量直径(周长):

周长×转数

讨论前要让学生弄清楚自行车的行进原理,即是:蹬一圈踏板,前齿轮转动一圈,后齿轮转动几圈,后齿轮和后车轮是同心圆,于是后齿轮转动多少圈后车轮就转动几圈,后车轮的转动推动前车轮的转动,自行车向前进。

(2)讨论:前齿轮转一圈,后齿轮转几圈?

观察发现在行进过程中前齿轮和后齿轮走过的总齿数是相同的,从而推出齿轮的齿数与它的转数成反比例:

前齿轮转的圈数× 前齿轮的齿数=后齿轮转的圈数× 后齿轮的齿数,那么,转数=前齿轮齿数:后齿轮的齿数

3、建立数学模型,收集数据并求解。

(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数 :后齿轮的齿数)

(2)分组收集所需要的数据,带入上述模式,求出答案。

4、汇报结果。各小组展示并解释本组的研究过程和结果,再比较结果。

数学备课大师 www.eywedu.net 今日用大师 明日做大师!数学备课大师 www.eywedu.net 目录式免费主题备课平台!

三、研究变速自行车能组合出多少种速度?

1、提出问题:变速自行车能组合出多少种速度?

(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)

(2)根据这个结构,可以组合出多少种速度?

6×2-1=11(种)

2、分析问题,求解,汇报。

3、蹬同样的圈数,哪种组合使自行车走得最远?

通过讨论得出:同一辆自行车,蹬同样的圈数,前齿轮最多,后齿轮最少的组合, 能使自行车走得最远。

四、解决问题:

一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?蹬5圈呢?

一辆自行车前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。

如果举行自行车速度比赛,给你一辆有3个前齿轮(48、36、24),4个后齿轮(36、24、16、12)的变速自行车,你准备选择哪种组合的速度?

五、课堂小结

自行车里的学问可真大,你还能提出一些数学问题并解决吗?

数学备课大师 www.eywedu.net 今日用大师 明日做大师!

第二篇:《自行车里的数学》教学设计

《自行车里的数学》教学设计

教学目标:

1、通过解决生活中常见的有关自行车里的问题,了解数学与生活的广泛联系。

2、经历“提出问题——分析问题——建立数学模型——实际应用”的解决实际问题的过程,获得运用数学解决实际问题的思考方法。

3、通过观察自行车的结构、分析其行进原理,帮助建立数学模型。

4、鼓励学生创新,同时培养学生正确合理的设计观念。教学重难点:

重点:自行车的速度与其内在结构的联系,建立解决问题的数学模型。

难点:齿轮组对自行车前进的影响,数学模型的形成过程。教学过程

 揭示课题

1、师:咱们班的同学有多少人会骑自行车啊?哪些同学有自己的自行车的?你们的对自行车有哪些了解?(展示自行车实物)请学生介绍自行车结构及自行车的行进原理。

2、师:这节课我们就一起来探究自行车里的数学问题。(板书课题)

二、研究普通自行车的速度与内在结构的关系

1、出示:小红骑着一辆轮胎外直径为60dm的自行车从家去学校,车轮刚好转动了100周,小红家到学校有多少米?

师:说说你是怎么想的。小结:所行路程=车轮周长×转动圈数

2、师:如果想知道自己的自行车蹬一圈到底能走多远?怎么办? 预设1:可以直接测量。

师:课前我请同学们对同一辆自行车蹬一圈所行的路程进行了测量,请他们来汇报一下测量结果。

小结说明:测量方法不太准确,误差很大。有没有准确一些的方法呢?

预设2:计算方法。

师:怎么算?(看看蹬一圈,车轮转几圈,再用车轮转的圈数乘车轮的周长。)师:那么蹬一圈自行车是不是就往前走一圈?(不是)(眼见为实,演示)

观察时,想一想:蹬一圈是谁转动了一圈?车轮转动的圈数实际是谁的圈数?

师:我就奇怪 了,怎么前齿轮转动了一圈,后齿轮却转动好几圈呢?

师:照这样分析,解决问题的关键是什么?(前齿轮转一圈,后齿轮转几圈.)

师:同一链条连上的两个齿轮,就好象互相咬合的齿轮。前齿轮转动一个齿,链条怎么动?后齿轮怎么动?(师慢慢转动前齿轮,生观察)

师:如果前齿轮转动2个齿,后齿轮怎么动?如果前齿轮转动5个齿呢?10个齿呢?同学们有没有发现什么规律?(前齿轮的齿数×它的圈数=后齿轮的齿数×圈数)齿轮的齿数和转动的圈数什么关系?(反比例关系)

3、师:如果一辆自行车前齿轮48齿,后齿轮28个齿,当前齿轮转动1圈,后齿轮转动多少圈?

你们是怎么算的?师:前齿轮转一圈时,后齿轮转的圈数怎样算? 生说师板书:后齿轮转的圈数=前齿轮的齿数∶后齿轮的齿数 后齿轮转动的圈数也就是谁的圈数?所以要求车轮转动的圈数该怎么算?那自行车蹬一圈走的路程又该怎么算?蹬一圈走的路程=车轮的周长×(前齿轮的齿数∶后齿轮的齿数)

如果这些自行车的轮胎外直径都是50分米,请分组算一算蹬一圈所行路程。

4、师:哪一辆自行车蹬一圈走得最远?仔细观察前后齿轮的齿数,你有没有什么发现?

归纳:前后齿轮数相差越大,蹬一圈走得最远。

三、研究变速自行车的问题

1、师;刚才我们研究的是普通自行车里数学。变速自行车和普通自行车有什么不同?你知道它怎么变速吗?

2、出示变速自行车的主要结构图:有2个前齿轮,6个后齿轮。分组探究(1)能变化出多少种速度?

(2)如果想速度最快,你会选哪种组合?

2、汇报。(12种速度,比值越大的走得最远)

四、思维拓展 师:其实自行车里不但有数学问题,还有我们初中、高中要学习的力学问题。出示各种组合费力图。

讨论:一位自行车运动员在比赛时要经过各种路段,你觉得应怎样搭配前后齿轮才合适?

五、巩固练习:

1、一辆自行车前齿轮齿数为26个,后齿轮齿数为16个,车轮半径为33cm。你能算出蹬一圈,它能走多远吗?小明家距离学校大约500米,从家到学校至少要蹬多少圈?

2、一辆自行车前齿轮有28个齿,后齿轮有14个齿,蹬一圈前进5米。求自行车车轮的直径。(得数保留两位小数)

分享到:

 上一篇:研修学员必看,教你如何完成研修

第三篇:自行车里的数学教学设计

自行车了的数学教学设计

人教版小学数学六年级下册

横现河镇中心小学董晓梅

自行车里的数学

横现河镇中心小学

董晓梅

教学目标

知识与技能:巩固比例知识,了解普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。

过程与方法:经历“提出问题—分析问题—建立数学模型—求解—解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法。

情感态度与价值观:加深学生对所学知识及其相互关系的理解。培养学生学以致用,做事认真,用数学眼光光透视周围事物,增强数学意识。

教学重难点:

引导学生理解变速自行车能变速的原理。

教学过程

一、揭示课题

1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。

2、自行车里会有数学问题吗?想一想。

二、研究普通自行车的速度与内在结构的关系

1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。

2、分析问题

(1)学生讨论如何解决问题。

方案一:直接测量,但是误差较大。

方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。

(2)讨论:前齿轮转一圈,后齿轮转几圈?

前齿轮转的圈数× 前齿轮的齿数=后齿轮转的圈数× 后齿轮的齿数

3、建立数学模型,收集数据并求解。

(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数 :后齿轮的齿数)

(2)分组收集所需要的数据,带入上述模式,求出答案。

4、汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。

三、研究变速自行车能组合出多少种速度

1、提出问题:变速自行车能组合出多少种速度?

(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)

(2)根据这个结构,可以组合出多少种速度?

2、分析问题,求解,汇报。

3、蹬同样的圈数,哪种组合使自行车走得最远?

四、当堂训练

﹙一﹚、判断题。(对的打“√”,错的打“×”)

(1)自行车蹬一圈走多远,关键看后轮转几圈。()

(2)变速自行车有2个前齿轮和10个后齿轮,这部自行车能变化出12种速度。()

(3)自行车前齿轮齿数×前齿轮转动的圈数=后齿轮齿数×后齿轮转动的圈数。()

﹙二﹚、填空

1、一种变速自行车有3个前齿轮,6个后齿轮,能变化出()种速度。

2、知道前齿轮比后齿轮=1:3,直径是60厘米,求车子蹬一圈前进()。

3、一种变速自行车,有3个前齿轮,5个后齿轮,可以变出()种速度。

(三)、动手操作 有一种变速自行车有2个前齿轮,齿数分别是48个和40个齿,6个后齿轮,齿数分别是:28、24、20、18、16、14个齿,这部自行车能变化出多少种速度?请画出示意图。蹬同样的圈数,那种组合自行车走得最远?

(四)实际应用:

1、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?

2、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米,球自行车的车轮直径。(保留两位小数)

3、一辆自行车车轮直径60厘米,如果这 种自行车飞轮有14齿,链轮有42齿,要达到每小时12千米的车速,骑车人每分钟应踏多少圈?

五、课堂小结

自行车里的学问可真大,你还能提出一些数学问题并解决吗?

1、踏板蹬一圈,是不是车轮也走一圈?

2、踏板蹬一圈,所走的路程与什么有关

六、作业

1、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?

2、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米,求自行车的车轮直径。(保留两位小数)

板书设计:

自行车里的数学

蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数 :后齿轮的齿数)

第四篇:《自行车里的数学》教学设计

《自行车里的数学》教学设计

一、教学内容

教学内容第66——67页。

二、教学目标:

1、运用所学的圆、比例等知识解决问题;了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。

2、通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力。

3、经历解决问题的基本过程,了解数学与生活的密切关系。

三、教学重点难点:

运用所学知识解决实际问题。

四、教学过程:

(一)揭示课题

1、说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。

2、自行车里会有数学问题吗?想一想。

(二)、研究普通自行车的速度与内在结构的关系

1、提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。

2、分析问题

(1)学生讨论如何解决问题。方案一:直接测量,但是误差较大。

方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。

(2)讨论:前齿轮转一圈,后齿轮转几圈?

前齿轮转的圈数× 前齿轮的齿数=后齿轮转的圈数× 后齿轮的齿数 建立数学模型,收集数据并求解。

(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数 :后齿轮的齿数)(2)分组收集所需要的数据,带入上述模式,求出答案。

4、汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。

(三)、研究变速自行车能组合出多少种速度?

1、提出问题:变速自行车能组合出多少种速度?

(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)(2)根据这个结构,可以组合出多少种速度?

2、分析问题,求解,汇报。

3、蹬同样的圈数,哪种组合使自行车走得最远?

(四)、课堂作业

1、一辆自行车的车轮直径是0.7米,前齿轮有48个齿,后齿轮有16个齿,蹬一圈自行车前进多少米?

2、一辆前齿轮有28个齿,后齿轮有14个齿,蹬一圈自行车前进5米。求自行车的车轮直径。(保留两为小数)

(五)、课堂小结

自行车里的学问可真大,你还能提出一些数学问题并解决吗?

第五篇:自行车里的数学教学设计

自行车里的数学教学设计4篇

作为一名为他人授业解惑的教育工作者,通常需要准备好一份教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编为大家收集的自行车里的数学教学设计,仅供参考,大家一起来看看吧。

自行车里的数学教学设计1

综合应用自行车里的数学是在第三单元比例之后安排的。旨在让学生运用所学的圆、排列组合、比例等知识解决实际问题。通过解决生活中常见的有关自行车里的问题,了解数学与生活的广泛联系,经历提出问题分析问题建立数学模型求解解释与应用的解决问题的基本过程,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。

自行车里的数学主要研究两个问题:普通自行车的速度与其内在结构的关系;变速自行车能变化出多少种速度。

一、研究普通自行车的速度与内在结构的关系

这一部分由以下4个环节组成。

1.提出问题。教材通过呈现学生的熟悉两种不同型号自行车的图片,直接提问蹬一圈,能走多远,引出学生对自行车里的数学问题的研究。

2.分析问题。教材分两步呈现。首先,呈现了学生探讨如何解决问题的场面,提出了两种方案。一,通过直接测量来解决问题,但误差较大。二,通过车轮的周长乘上后齿轮转的圈数来计算蹬一圈车子走的距离。接下来,呈现了学生探讨如何解决第二个方案中的关键问题前齿轮转一圈,后齿轮转几圈的过程。学生想到如果只凭观察是数不清的,要通过更精确的方法找出答案。学生根据链条间的孔与前后两个齿轮的每个齿对应,前齿轮转过一个齿,后齿轮也一定转过一个齿,判断出:前齿轮转的圈数前齿轮的齿数=后齿轮转的圈数后齿轮的齿数,解决了这个关键问题,从而理清了解决问题的思路。

3.建立数学模型、收集数据并求解。首先,学生根据分析问题得到解题思路,建立数学模型:蹬一圈自行车走的距离=车轮的周长(前齿轮的齿数∶后齿轮的齿数)。接下来,学生分组收集所需要的数据,再代入数学模型,求出答案。

4.汇报交流。各小组展示并解释各自的研究过程和结果,再对各组的结果进行比较。

二、研究变速自行车能变化出多少种速度

在学生研究清楚了普通自行车行驶速度与其内部结构的关系之后,进一步让学生探讨变速自行车中的`数学问题──可以组合出多少种速度。教材先介绍了一种变速自行车的主要结构:有2个前齿轮,6个后齿轮。接着提出问题能变化出多少种速度,再呈现学生收集数据建立数学模型代入数据、求解解决问题的过程。最后通过一个问题蹬同样的圈数,哪种组合使自行车走的最远,引导学生对各种速度的产生进行深入的解释。教学建议

1.这个活动可用1课时进行。

2.正式活动前,教师应充分准备课上需要用到的数据和图片。如,不同品牌、不同型号的普通自行车和变速自行车的车轮直径、前、后齿轮的个数及齿数;普通自行车和变速自行车链条、前齿轮和后齿轮三者组合关系的图片。教师也可以要求学生做一些准备。如,请学生观察自行车,了解自行车的结构和行进的基本道理;收集一些自行车的相关数据等等。

3.正式教学时,应注意以下几点。

(1)在研究两个问题之前,教师可以先让学生说一说自己了解到的关于这两种自行车的知识,再提出问题。这样可以帮助学生更好地理解和分析所要解决的问题。如果学生理解有困难,尤其是变速自行车的变速原理,教师可借助课前准备好的图片进行说明。

(2)可以让学生以小组为单位,讨论、研究解决问题的方案,使学生充分经历分析问题建立数学模型求解的解决问题的基本过程。教材上呈现了学生在解决问题过程中可能出现的方案,教学时教师要注意本班同学的不同思路,并适当加以引导,帮助学生建立相应的数学模型。

(3)如果学生课前没有收集到解决问题所需要的数据,教师应及时为学生提供。

(4)在各小组成功地解决了每一个问题之后,教师应请每一个小组解释、说明本组研究的思路和结果。并组织全班同学对各组的研究方法和结果进行比较,以使学生获得运用数学解决实际问题的思考方法。

(5)除了教材上提出的这两个问题以外,教师还可以提出一些其他问题,引发学生的深入思考。如,让学生按由远到近(蹬同样的圈数,使车走的距离)的顺序,将各种组合排序;如何使这辆变速自行车能变化出12种不同的速度等等。教师也可以让学生自己提出一些自行车里的数学问题并解决它。这样不仅可以使学生了解数学与生活的广泛联系,还可以培养学生从不同的角度发现实际问题中所包含的数学信息的能力。

自行车里的数学教学设计2

教学内容:

人教版教材六年级下册第67页及相关内容。

教学目标:

1.综合知识解决生活中常见的有关自行车里的数学问题。

2.经历“提出问题——分析问题——建立数学模型——求解——解释与运用”的问题解决的基本过程。

3.感受数学知识与日常生活的密切联系,体会学数学、用数学的乐趣,激发学习知识的热情。

教学重点:通过实践活动,研究普通自行车的速度与其内在结构的关系,研究变速自行车能变化出多少种速度的组合数

教学难点:研究普通自行车的前、后齿轮数与它们的转数的关系。

教学准备:多媒体课件

教学过程:

一、揭示课题

今天我们来探究自行车里的数学。

二、研究普通自行车的速度与内在结构的关系

提出问题

自行车蹬一圈,走多远?

分析问题

方法一:直接测量(误差大)

方法二:计算法

解决问题

自行车行进原理

探究车轮转动的圈数与什么有关?

探究前齿轮转一圈,后齿轮转几圈

合作探究

前齿轮转动一个齿,后齿轮转动几个齿?前齿轮走过2个齿呢?5个齿呢?

你发现了什么规律?

汇报交流

前后齿轮转动的什么数是相等的?

结论:前齿轮齿数×前齿轮转数=后齿轮齿数×后齿轮转数

后齿轮转数=前齿轮齿数/后齿轮齿数

建立数学模型

自行车蹬一圈走的距离=前齿轮齿数/后齿轮齿数×车轮周长

运用知识

自行车车轮直径是0.8米,前轮是48个齿,后轮是16个齿,蹬一圈自行车跑多少米?(三、研究变速自行车能变出多少种速度

观察变速自行车

变速自行车一般有多个前齿轮多个后齿轮,例如这款变速自行车有2个前齿轮,6个后齿轮。

合作探究

出示书上表格,小组合作交流,并完成表格填写

思考:蹬同样的圈数,前、后齿数比是()的组合使自行车走得最远,为

什么?

汇报交流

自行车蹬一圈走的距离= 齿数比 ×车轮的周长,当车轮周长一定时,前齿轮数齿数:后齿轮数齿数的比值最大时,自行车走的最远。

四、课堂小结师:同学们,通过今天的实践活动,你又有哪些新的收获呢?

自行车里的数学教学设计3

教材分析:

综合应用《自行车里的数学》是小学数学六年级下下册中在第三单元“比例”之后安排的。旨在让学生运用所学的圆、排列组合、比例等知识解决实际问题。通过解决生活中常见的有关自行车里的问题,了解数学与生活的广泛联系,经历“提出问题—分析问题—建立数学模型—求解—解释与应用”的解决问题的基本过程,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。

《自行车里的数学》主要研究两个问题:普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。

教学理念:

数学是对客观世界数量关系和空间关系的一种抽象。可以说生活中处处有数学。《数学课程标准》中指出:“数学教学是数学活动,教师要紧密联系学生的生活环境,从学生的经验和已有的知识出发,创设生动的数学情境……。” 在新一轮课程改革的实施过程中,“数学生活化”问题受到越来越多的教育工作者的关注和肯定。《数学课程标准》明确要求“使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学过程。”在生活中,数学无处不在,小到日常购物,大到航空航天工程等数据的处理。学生学习数学是“运用所学的数学知识和方法解决一些简单的实际问题的,必要的日常生活的工具。”引导学生把所学知识联系,运用于生活实际,可以促进学生的探索意识和创新意识的形成,培养学生初步的实践能力。

新课程标准数学教材突出了数学与实际生活的联系,许多教学内容都建立了形象的生活情境,以帮助学生更好地学习数学,应用数学。《自行车里的数学》就是让学生运用所学的圆、排列组合、比例等知识来解决生活中常见的有关自行车里的实际问题。在传授数学知识和训练数学能力的过程中,教师要自然而然地注入生活内容,引导学生学会运用所学知识为自己生活服务。这样的设计,不仅贴近学生的生活水平,符合学生的需要心理,而且也给学生留有一些瑕想和期盼,使他们将数学知识和实际生活联系得更紧密。让数学教学充满生活气息和时代色彩,真正调动起学生学习数学的积极性,培养他们的自主创新能力和解决问题的能力。

教学目标:

1、让学生运用所学的圆、排列组合、比例等知识解决实际问题。

2、让让学生了解数学与生活的广泛联系,获得运用数学解决实际问题的思考方法,并加深对所学知识及其相互关系的理解。

教学重难点:

1、普通自行车的速度与其内在结构关系的数学模型;

2、变速自行车的能变化出多少种速度。

教学过程

一、新课导入:

师:同学们,我们学数学用数学,生活中处处有数学,你看我们这自行车里就有许多数学知识。今天我们就一起研究自行车里的数学

二、新课教学:

1、了解自行车的结构和行进原野

(课前在讲台上摆放3辆自行车,一辆普通自行车,一辆变速自行车,一辆儿童自行车。)

师:同学们,谁知道自行车是怎么行进的?(教师边说边推动一辆自行车,请学生仔细观察、讨论、回答。)

生:靠车把推动的。

生:靠车轮流动的。

生:靠脚踏推动齿轮转动,齿轮带动车轮前进的。

师:齿轮是怎样带动车轮的?请同学们仔细观察。(教师转动脚踏,让学生仔细观察。)

通过学生观察回答,教师总结提出结论:

①脚趾蹬一圈,前齿轮转一圈,②链条跟着前齿轮转动,后齿轮跟着链条转动,后轮跟着后齿轮转动。链条间的孔与前后两个齿轮的每个齿对应,前齿轮转过一个齿,后齿轮也一定转过一个齿。前齿轮转多少齿,后齿轮也转多少齿。

③后齿轮转一圈,车轮转一圈。

[教学时,密切联系学生的生活实际,从学生的生活经验和已有知识出发,引导学生开展观察、操作、推理等活动,获得基本的数学知识和技能。]

2、研究普通自行车的速度与内在结构的关系

①提出问题

师:我们刚才了解了自行车行进的原理,哪么谁知道脚踏噔一圈,自行车能走多远呢?

②分析问题

让学生以小组为单位,讨论研究解决问题的立案。

自行车里的数学教学设计4

学习内容:

人教版小学数学教材六年级下册第67页。

学习目标:

1.运用所学的圆、比例等知识解决问题。

2.了解普通自行车和变速自行车的速度与其内在结构的关系,知道变速自行车能变化出多少种速度。

3.通过解决生活中常见的有关自行车的问题,培养学生解决实际问题的能力。

4.经历解决问题的基本过程,了解数学与生活的密切关系。

学习重点:

运用所学的比例或与其相关的知识解决自行车中的数学问题。

学习难点:

运用所学的比例或与其相关的知识解决自行车中的数学问题。

学习准备:

课件等。

学习过程:

环节预设 教师活动 学生活动 设计意图

一、情境导入“你知道哪些自行车的种类?”

出示各种自行车的图片学生积极思考、回答问题。先给出学生一个熟悉的生活场景,便于学生理解。

二、新知讲授

(一)揭示课题

1.说一说你了解到的有关这两种自行车(普通自行车和变速自行车)的知识。

2.自行车里会有数学问题吗?想一想。

(二)研究普通自行车的速度与内在结构的关系

1.提出问题:两种自行车,各蹬一圈。能走多远?引出学生对自行车里的数学的研究。

2.分析问题

(1)学生讨论如何解决问题。

方案一:直接测量,但是误差较大。

方案二:根据车轮的周长乘以后车轮转的圈数,来计算蹬一圈车子走的距离。

(2)讨论:前齿轮转一圈,后齿轮转几圈?

前齿轮转的圈数×前齿轮的齿数=后齿轮转的圈数×后齿轮的齿数

3.建立数学模型,收集数据并求解。

(1)蹬一圈车子走的距离=车轮的周长×(前齿轮的齿数:后齿轮的齿数)

(2)分组收集所需要的数据,带入上述模式,求出答案。

4.汇报结果。各小组展示并解释本组的研究过程和结果,在比较结果。

(三)研究变速自行车能组合出多少种速度

1.提出问题:变速自行车能组合出多少种速度?

(1)了解变速自行车的结构。(有2个前齿轮,6个后齿轮。)

(2)根据这个结构,可以组合出多少种速度?

2.分析问题,求解,汇报。

3.蹬同样的圈数,哪种组合使自行车走得最远?学生讨论交流并回答问题。

学生通过观察、思考、讨论、合作、解决问题等一系列学习过程,逐步培养自己的合作探索精神,更加善于在生活中进行学习。

动手操作的过程中,学生会逐渐融入到知识形成的整个过程当中去,培养学生解决实际问题的能力,了解数学与生活的密切关系。

三、巩固应用

1、已知:前齿轮齿数为:26,后齿轮齿数为:16,车轮直径为:66cm。问:①你能算出蹬一圈,它能走多远?②小红家距离学校大约500米,从家到学校至少要蹬多少圈?

共两题学生进行思考、解答。通过习题的演练,让学生将知识点进一步应用到实际解决问题当中。

四、课堂小结

你有什么收获?学生思考并回答让学生体验成功的喜悦,进一步拓展学生的思维和创造能力。

下载“自行车里的数学”教学设计[最终定稿]word格式文档
下载“自行车里的数学”教学设计[最终定稿].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《自行车里的数学》教学设计5篇

    《自行车里的数学》教学设计 教学内容: 数学人教版义务教育课程标准试验教科书第66至67页“自行车里的数学” 教学目标: 理解并掌握自行车“蹬一圈走多远”的计算方法,探索变速......

    自行车里的数学-教学设计-教案

    《自行车里的数学》教学设计 王绍琴 教学准备 1、教学目标 (1)、 知识与技能目标 巩固比例知识,了解普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。......

    自行车里的数学__教学设计(精选五篇)

    《自行车里的数学》教学设计 学习内容:人教版小学数学教材六年级下册第67页。 课标要求: 使学生感受数学与生活的密切联系,从学生已有的生活经验出发,让学生亲历数学 过程。 学......

    《自行车里的数学》教学反思[合集]

    《自行车里的数学》教学反思作为一名人民教师,我们要有一流的课堂教学能力,借助教学反思可以快速提升我们的教学能力,教学反思我们应该怎么写呢?以下是小编帮大家整理的《自行车......

    《自行车里的数学》教学反思

    《自行车里的数学》教学反思 《自行车里的数学》教学反思 1 刘彦斌自行车里的数学是六年级下册安排的一节综合实践活动课。本节课的教学目标是通过活动,探索自行车里蕴含的......

    自行车里的数学教学反思

    自行车里的数学教学反思 自行车里的数学教学反思1 活动目标1、尝试运用直、横、斜线的连接画自行车。2、运用紧密排列绘画体会线描的美感。3、让幼儿体验自主、独立、创造的......

    《自行车里的数学》教学设计[五篇范例]

    《自行车里的数学》教学设计1教学内容:人教版教材六年级下册第67页及相关内容。教学目标:1.综合知识解决生活中常见的有关自行车里的数学问题。2.经历“提出问题——分析问题......

    自行车里的数学 教学设计 教案(五篇范文)

    教学准备 1. 教学目标 1. 知识与技能目标 巩固比例知识,了解普通自行车的速度与其内在结构的关系;变速自行车的能变化出多少种速度。 2. 过程与方法目标 经历“提出问题—分......