第一篇:7.2.1 定义与命题(第1课时) 教学设计
第七章平行线的证明 2.定义与命题(第1课时)
教学目标:
1.了解定义与命题的含义和结构,掌握区分命题的条件和结论.2.经历感受定义的含义,能叙述一些简单的数学概念的定义,体验区分命题的条件和结论,会把一个命题写成“如果„那么„”的形式.3.在探索问题的过程中,感悟数学术语的科学性和严密性.教学重点:理解命题的概念,找出命题的条件和结论.教学难点:对条件和结论不十分明显的命题,改写成“如果„那么„”的形式.教学方法:启发式法 教学过程:
一、创设情景,引入新课
一张纸条:
亲爱的妈妈:“童鞋都有围脖,我也想要一个。放心,我不会成为
一个围脖控的!如果没有,我就是奥特曼了!
请问同学们:你们知道划线的几个词语的意思吗?
二、师生交流,探究新知(一)、定义的含义:
1、童鞋:即同学
围脖:即微博
围脖控:指的是对微博极度喜爱.奥特曼:指的是比较落伍、赶不上潮流.像这样的,能清楚地规定某一名称或术语的意义的句子叫做该名称或术语的定义。
2、请说出下列名词的定义:(1)无理数:
(2)直角三角形:
(二)、命题的含义:
1、下面的语句中,哪些语句对事情作出了判断,哪些没有?
(1)鸟是动物.(2)动物是鸟.(3)画一个角等于已知角.(4)两直线平行,同位角相等.(5)△ABC是等边三角形吗?(6)若某数的平方是4,求该数.(7)对顶角相等.2、一般地,对某一件事情作出正确或不正确的判断的句子叫做命题。如果一个句子没有对某一件事情作出任何判断,那么他就不是命题。3、1中的的语句中,哪些是命题?哪些不是命题?
(三)、命题的条件和结论:
1、一般地,每个命题都由条件和结论两部分组成。条件是已知事项,结论是由已知事项推断出的事项。命题通常可以写成:“如果„..,那么„.”的形式,其中“如果”后的语句是“条件”,“那么”后的语句是“结论”。
2、指出下列命题的条件和结论
(1)如果两条直线相交,那么它们只有一个交点(2)如果∠1=∠2,∠2=∠3,那么∠1=∠3;
(四)、命题的改写:
指出下列命题的条件和结论,并改写成“如果„„那么„„”的形式: ⑴三条边对应相等的两个三角形全等; ⑵对顶角相等。
(五)、真命题和假命题的认识
1、正确的命题称为真命题,不正确的命题称为假命题。
要说明一个命题是假命题,常常可以举出一个例子,使它具备命题的条件,而不具有命题的结论,这种例子称为反例
2、下列句子中,哪些是命题?如果是命题,那么它是真命题还是假命题? ⑴对顶角相等; ⑵画一个角等于已知角; ⑶两直线平行,同位角相等; ⑷a、b两条直线平行吗? ⑸可爱的李明明; ⑹玫瑰花是动物;
⑺若a2=4,求a的值; ⑻若a2= b2,则a=b; ⑼若a=b,则a2=b2。
三、总结交流,畅谈收获
四、作业布置:习题7.2第2、3题
第二篇:2.1 定义与命题(第1课时) 教学设计
第七章平行线的证明
2.定义与命题(第1课时)
总体说明
在了解推理的重要性以后,从本节课开始的连续两节课将向学生简单介绍定义、命题、真命题、假命题、公理、定理等一些术语和名词,为后面的学习打好基础,作好铺垫.
一、学生知识状况分析
学生技能基础:学生在以前的学习中接触了不少的几何知识,对很多名词、概念有了很深刻的认识,本节课将对学生传授定义与命题的基本含义,学生对此已经有比较多的经验和基础.
活动经验基础:在前面的学习中,学生对本节课将要采取的讨论、举例说明等学习方式有了比较深刻的认识,为今天的学习作了必要的铺垫.
二、教学任务分析
在几何中,有许许多多的定义、定理、公理等概念,还有一些真真假假的命题需要学生去辨别、去认识,本节课安排《定义与证明》旨在让学生对定义、定理、公理等概念有一个清楚的认识和了解,为此,本节课的教学目标是:
1.了解定义与命题的含义,会区分某些语句是不是命题.
2.用比较数学化的观点来审视生活中或数学学习中遇到的语句特征.
3.通过对某些语句特征的判断学会严谨的思考习惯.
三、教学过程分析
本节课的设计思路为:情景引入——命题含义(情景引入)——课堂 1 练习——课堂小结——课后练习
第一环节:情景引入(由学生表演)
活动内容:
小亮和小刚正在津津有味地阅读《我们爱科学》.小亮说:„„
小刚说:“是的,现在因特网广泛运用于我们的生活中,给我们带来了方便,但„„”
小亮说:“„„” 小刚说:“„„”
小亮说:“哈!,这个黑客终于被逮住了.”„„
坐在旁边的两个人一边听着他们的谈话,一边也在悄悄议论着: 一人说:“这黑客是个小偷吧?”
另一人说:“可能是喜欢穿黑衣服的贼.”„„ 一人说:“那因特网肯定是一张很大的网.”
另一人说:“估计可能是英国造的特殊的网.”„„(表演结束)教师提出问题:在这个小品中,你得到什么启示?
(人与人之间的交流必须在对某些名称和术语有共同认识的情况下才能进行.为此,我们需要给出它们的定义.)
① 关于“黑客”对话的片断来引入生活中交流时必须对某些名称和术语有共同的认识才能进行;
② 对定义含义的解释;
③ 举例说明生活中和数学学习中所熟知的定义(学生举例,看哪个小组的举例又多又好); 活动目的:
让学生通过对一个学生比较感兴趣的名词:“黑客”、“因特网”的不同理解,从而使学生了解定义的含义. 教学效果:
很多学生对黑客的概念是很熟悉的,而小品中出现的黑客的定义与自己所熟知的黑客的概念完全不同,由此产生了对定义的兴趣.
第二环节:命题含义(情景引入)活动内容:
①
师:如果B处水流受到污染,那么____处水流便受到污染;如果C处水流受到污染,那么____处水流便受到污染;
如果D处水流受到污染,那么____处水流便受到污染;
② 学生自编自练:如果____处水流受到污染,那么____处水流便受到污染.
([生甲]如果B处工厂排放污水,那么A、B、C、D处便会受到污染.[生乙]如果B处工厂排放污水,那么E、F、G处也会受到污染的.[生丙]如果C处受到污染,那么A、B、C处便受到污染.[生丁]如果C处受到污染,那么D处也会受到污染的.[生戊]如果E处受到污染,那么A、B处便会受到污染.[生己]如果H处受到污染,我认为是A处的那个工厂或B处的那个工厂排放了污水.因为A处工厂的水向下游排放,B处工厂的污水也向下游排放.3 „„
老师归纳:同学们在假设的前提条件下,对某一处受到污染作出了判断.像这样,对事情作出判断的句子,就叫做命题.即:命题是判断一件事情的句子.如:
熊猫没有翅膀.对顶角相等.大家能举出这样的例子吗? [生甲]两直线平行,内错角相等.[生乙]无论n为任意的自然数,式子n2-n+11的值都是质数.[生丙]内错角相等.[生丁]任意一个三角形都有一个直角.[生戊]如果两条直线都和第三条直线平行,那么这两条直线也互相平行.[生己]全等三角形的对应角相等.„„
[师]很好.大家举出许多例子,说明命题就是肯定一个事物是什么或者不是什么,不能同时既否定又肯定,如:
你喜欢数学吗? 作线段AB=a.平行用符号“∥”表示.这些句子没有对某一件事情作出任何判断,那么它们就不是命题.一般情况下:疑问句不是命题.图形的作法不是命题.)活动目的:
通过对水流的污染问题引入命题的概念,使学生了解命题的含义,会判断某些语句是不是命题. 教学效果:
命题的判断只有两种形式,要么肯定,要么否定。作判断时,必须泾渭 分明,不能模棱两可;二是命题的句子只能是完整的句子,对一件事情的前因后果应叙述完整。从语法上讲,它应是陈述句,不能是祈使句、疑问句或感叹句.
第三环节:反馈练习活动内容:
1.你能列举出一些命题吗?
答案:能.举例略.2.举出一些不是命题的语句.答案:如:①画线段AB=3 cm.②两条直线相交,有几个交点? ③等于同一个角的两个角相等吗? ④在射线OA上,任取两点B、C.等等.活动目的:
训练与反馈 教学效果:
一般都能正确解答。
第四环节:课堂小结 活动内容:
① 定义的含义:对名称和术语的含义加以描述,作出明确的规定,就是它们的定义;
② 命题的含义:判断一件事情的句子,叫做命题,如果一个句子没有对某一件事情作出任何判断,那么它就不是命题. 活动目的:
通过课后的总结,使学生对定义、命题等概念有更清楚的认识,让学生在头脑中对本节课进行系统的归纳与整理.
教学效果:
学生在有了前面对定义、特别是命题概念的学习后,能了解命题的结构,以及哪些是命题,使学生对命题的学习有了清楚的认识。
第五环节
课后练习
学习小组搜集八年级数学课本中的新学的部分定义、命题,看谁找得多.
四、教学反思
本节课的设计具有如下特点:
(1)采用了“小品表演”的形式引入新课,意在激起学生对数学的兴趣,让学生知道,数学不是枯燥无味的。并能从表演中不同的人对“黑客”这个名词的不同理解更好地悟出“定义”的含义。
(2)在教学设计中,充分展示学生的语言表达能力,力图通过学生的自主学习来体现学生的主体地位,教师则通过对学生的启发、调整、激励来实现自己的主导地位。
(3)“什么是定义?什么是命题?”,关于这方面的教学更象是文科的教学,但我们注重的不是让学生去死记硬背这些名词的解释,而应侧重于对这些名词的理解。
第三篇:定义与命题教学设计
定义与命题 教学设计
(二)教学目标
(一)教学知识点1命题的概念 1.命题的组成:条件和结论.2.命题的真假.(二)能力训练要求1能够判断什么是命题.1.能够分清命题的题设和结论.会把命题改写成“如果„„,那么„„”的形式;能判断命题的真假.2.通过举例判定一个命题是假命题,使学生学会反面思考问题的方法.(三)情感与价值观要求
1.通过举反例的方法来判断一个命题是假命题,说明任何事物都是正反两方面的对立统一体.2.通过了解数学知识,拓展学生的视野,从而激发学生学习的兴趣.学情分析:本节课针对的是八年级上学期的学生,他们在数学学习上已经有了一定的积累,但从数学知识的产生和发展的角度来学习和理解数学中最基本的概念,对学生来说是第一次,在设计教学上要考虑学生对知识的可接受程度。
教学重点
找出命题的条件(题设)和结论.教学难点
找出命题的条件和结论.教学方法 讲练相结合法.教具准备 投影片七张
第一张:想一想(记作投影片§7.2.2 A)第二张:做一做(记作投影片§7.2.2 B)第三张:想一想(记作投影片§7.2.2 C)第四张:做一做(记作投影片§7.2.2 D)第五张:想一想(记作投影片§7.2.2 E)第六张:做一做(记作投影片§7.2.2 F)第七张:想一想(记作投影片§7.2.2 G)教学过程
Ⅰ.巧设情境,引入课题
[师]寻找下面唐诗中的命题。说说命题的定义。[生]判断一件事情的句子,叫做命题.[师]好.下面大家来想一想,下列说法哪些是命题,并说明理由.1.你.2.小苹果.3.你吃苹果.4.你是小苹果.根据学生的回答,明确判断命题的要点:1.句子。2.表示判断。结合第4小题的回答引出真命题与假命题的概念。
Ⅱ.讲授新课
一、1.新知学习.显然,第4小题有同学认为是一个错误的命题。那么与之相对就有正确的命题。给出真命题与假命题的概念。
2.新知应用。下面句子中,那些是命题,那些不是命题。并指出真命题。
(1).对顶角相等。
(2).画一个角等于已知角。
(3).两直线平行,同位角相等。
(4).a,b两直线平行吗?
(5).玫瑰花是动物。
(6).若a的平方等于4,求a的值。
(7).若a=b,则a=b.根据学生的回答,明确判断命题真假与一个句子是不是命题是两种不同的问题。同时以问题的形式引导学生探究判断命题真假的方法与步骤。
二.新知探究
1.做一做:判断下面的命题的真假,并说明理由。
(1).如果两个角相等,那么它们是对顶角。
(2).内错角相等。(3).大于90度的角是平角.(4).如果a>b,b>c,那么a>c.22引导学生分析所给命题的结构,引出命题的题设与结论的概念。并板书。探究题设与结论之间的联系与命题真假之间的关系。并解答上述小题。
Ⅲ.课堂练习做一做:
指出下列命题的题设与结论并改写成“如果...那么...”的形式。1.等边三角形式锐角三角形。2.同角的余角相等。3.直角都相等。
Ⅳ.课时小结
本节课我们主要研究了命题的组成及真假.知道任何一个命题都是由条件和结论两部分组成.命题分为真命题和假命题.在辨别真假命题时.注意:假命题只需举一个反例即可.而真命题除公理和性质外,必须通过推理得证.大家要会灵活运用本节课谈到的公理来证明一些题.Ⅴ.课后作业
(一)课本P199习题7.2.第2,3题
(二)课外拓展:见投影片。
板书设计
§7.2.2 定义与命题二 一·命题的定义。
二、命题的组成
一般地:命题常写成: “如果„„,那么„„”
三、做一做 真命题
四、命题的真假
假命题
五、课时小结
六、课后作业
第四篇:2.1平面直角坐标系(第1课时)教学设计
第三章 位置与坐标平面直角坐标系(第1课时)
教学目标: 知识目标:
1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念; 2.认识并能画出平面直角坐标系;
3.能在给定的直角坐标系中,由点的位置写出它的坐标。能力目标:
1.通过画坐标系、由点找坐标等过程,发展学生的数形结合意识、合作交流意识; 2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识和能力。情感目标:
由平面直角坐标系的有关内容,以及由点找坐标,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心。教学重点:
1.理解平面直角坐标系的有关知识;
2.在给定的平面直角坐标系中,会根据点的位置写出它的坐标;
3.由观察点的坐标、纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,说明坐标轴上点的坐标有什么特点。教学难点:
1.横(或纵)坐标相同的点的连线与坐标轴的关系的探究; 2.坐标轴上点的坐标有什么特点的总结。
教学过程
第一环节 感受生活中的情境,导入新课
同学们,你们喜欢旅游吗? 假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(图5-6),回答以下问题:
(1)你是怎样确定各个景点位置的?
(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?
(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看做一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?
在上一节课,我们已经学习了许多确定位置的方法,这个问题中,大家看用哪种方法比较合适?
第二环节 分类讨论,探索新知
1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分。学生自学课本,理解上述概念。2.例题讲解
(出示投影)例1 例1 写出图中的多边形ABCDEF各顶点的坐标。
y EF O1DxA
BCyFEAB1CDx
3.想一想
在例1中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段CE位置有什么特点?
(3)坐标轴上点的坐标有什么特点? 由B(0,-3),C(3,-3)可以看出它们的纵坐标相同,即B,C两点到X轴的距离相等,所以线段BC平行于横轴(x轴),垂直于纵轴(y轴)。
第三环节 学有所用.补充:1.在下图中,确定A,B,C,D,E,F,G的坐标。
yFExyCAGB1CDEF(题)
第1题
AD1Bx)(第22.如右图,求出A,B,C,D,E,F的坐标。
第四环节 感悟与收获
1.认识并能画出平面直角坐标系。
2.在给定的直角坐标系中,由点的位置写出它的坐标。
3.能适当建立直角坐标系,写出直角坐标系中有关点的坐标。
4.横(纵)坐标相同的点的直线平行于y轴,垂直于x轴;连接纵坐标相同的点的直线平行于x轴,垂直于y轴。
5.坐标轴上点的纵坐标为0;纵坐标轴上点的坐标为0。
6.各个象限内的点的坐标特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。
第五环节 布置作业(略)。
第五篇:定义与命题
《定义与命题》的教学反思
根据大纲的要求和本节课的目标定位,以及知识的重难点分布,考虑到学生的可接受范围,本节课教学处理好“四个关系”
一、定义与命题的关系
定义和命题之间存在一定的逻辑关系,考虑到学生的理解、接受能力,教学上我们进行了适当的处理.从定义和命题所共有的判断功能,切入命题的教学,自然在命题的定义的生成过程中,让学生尝试自主定义,强化命题的特征,体现了定义的价值.使定义和命题的学习相辅相成.二、题设与结论的关系
在题设和结论的学习之前,教学上进行了铺垫,即对命题的相应位置进行置换,使学生初步感受到命题是有“固定结构”的,形成命题是由“条件”“结论”两部分构成的“心理印象”.有了这样的铺垫,对于某些命题的改写,让学生从命题的结构特征方面来思考,能有效地帮助突破命题的改写难点.三、学生和老师的关系
本节课是一节概念课,从内容分析,学生不易领悟.在课堂教学组织上,更多的注意到了老师和学生的心理距离问题和情感基础问题.通过老师的情感投入、积极的鼓励、激情的调动.激励学生主动地参与,以期在学生为主体的讨论和学习中,使学生能轻松学习,愉快交流.并在此情感基础上提高课堂教学的有效性.四、定义、命题与数学知识体系的关系
定义是数学思维的细胞和思维的基本形式,从定义出发思考问题的解决是数学的基本方式.而命题作为数学推理的基础,是最基本的思维形式.两者都是建立数学体系的基础.在教学中主要抓住定义的必要性、命题的形成过程以及它们的推理价值,来突出和强化这种关系.本课以黑洞数的数学游戏为载体,使学生经历“实验操作----观察发现-----科学定义----大胆猜想----执着论证”的过程,体验数学知识的发现过程、感受数学知识的研究方法,渗透数学的科学态度和科学精神.总之,在整个教学过程中,我努力做到给学生留出充足的探索空间,让学生自主地进行探索与交流,从而掌握本节课的知识。