请结合你的教学实践,谈谈你是如何在课堂教学中有效渗透数学思想方法的?[定稿]

时间:2019-05-12 17:39:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《请结合你的教学实践,谈谈你是如何在课堂教学中有效渗透数学思想方法的?[定稿]》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《请结合你的教学实践,谈谈你是如何在课堂教学中有效渗透数学思想方法的?[定稿]》。

第一篇:请结合你的教学实践,谈谈你是如何在课堂教学中有效渗透数学思想方法的?[定稿]

请结合你的教学实践,谈谈你是如何在课堂教学中有效渗透数学思想方法的?

许多一线教师在教学中只重视讲授表层知识,而不注重渗透数学思想、方法的教学,学生所学的数学知识往往是孤立、零散的东西,不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高,加重了学生的学习负担;数学思想方法是数学的精髓,在学生学习数学知识的同时渗透数学思想和方法的教学,让学生在掌握表层知识的同时,领悟到深层知识,学习层次实现质的飞跃,学生所学的知识成为一个相互联系的,组织得很好的知识结构,这样学生才能摆脱题海之苦,焕发其生命力和创造力。在小学数学教学中我认为应该在以下几个方面渗透数学思想方法:

一、在小学数学教学中渗透数学思想方法之备课

如果课前教师对教材内容的教学适合渗透哪些思想方法一无所知,那么课堂教学就不可能有的放矢。受篇幅的限制,教材内容较多显示的是数学结论,对数学结论里面所隐含的数学思想方法以及数学思维活动的过程,并没有在教材里明显地体现。因此教师在备课时,不应只见直接写在教材上的数学基础知识与技能,而是要进一步钻研教材,创造性地使用教材,挖掘隐含在教材中的数学思想方法,并在教学目标中明确写出渗透哪些数学思想方法,并设计数学活动落实在教学预设的各个环节中,实现数学思想方法有机地融合在数学知识的形成过程中,使教材呈现的知识技能这条明线与隐含的思想方法的暗线同时延展。为此,教师在研读教材时,要多问自己几个为什么,将教材的编排思想内化为自己的教学思想!

二、在小学数学教学中渗透数学思想方法之上课

数学是知识与思想方法的有机结合,没有不包含数学思想方法的数学知识,也没有游离于数学知识之外的数学思想方法。这就要求教师在课堂教学中,在揭示数学知识的形成过程中渗透数学思想方法,在教给学生数学知识的同时,也获得数学思想方法上的点化。教师积极地在课堂中渗透数学思想方法,体现了教师在教学中的大智慧,也为学生的学习开辟了一个广阔的新天地。不同的教学内容,不同的课型,可据其不同特点,恰当地渗透数学思想方法。

三、在小学数学教学中渗透数学思想方法之作业

精心设计作业也是渗透数学思想方法的一条途径。把作业设计好,设计一些蕴含数学思想方法的题目,采取有效的练习方式,既巩固了知识技能,又有机地渗透了数学思想方法,一举两得。为此教师布置作业要有讲究,在学生作业后,要不失时机地恰当地点评,让学生不仅巩固所学知识、习得解题技能,更重要的是能悟出其中的数学规律、数学思想方法。在作业讲评中,教师不仅要给出答案,更重要的是启发学生思考:你是怎样算的?是怎么想的?其中运用了什么思想方法? 结合上图引导学生概括出其中的思想与方法:类比思想、数学建模思想、极限的思想、数形结合的思想。

四、在小学数学教学中渗透数学思想方法之课外

学校开展数学课外活动是课内教学的重要补充。根据学生的学习水平在年段里开设有关数学思想方法内容的讲座,如果平时教学中的数学思想方法的点滴渗透是美味点心的话,那么专题讲座对学生来说就是“丰盛大餐”了,学生比较系统地了解了常见的数学思想方法以及应用,拓展学生的眼界;数学思想方法的渗透和数学课外实践活动相结合可以使二者相得益彰,定期开展数学实践活动可以发展学生的动手实践能力和创新意识,发展学生应用数学思想方法解决问题的能力;定期开展数学智力竞赛,不但激发优生学习数学的积极性,也考察学生掌握数学思想方法的情况;学生编数学小报、出板报等活动,可以增长学生见识,了解较多相关知识。形式多样的数学课外活动,使数学思想方法潜移默化,引导学生在学与用中提升了对数学思想方法的认识。

第二篇:谈谈你是如何在课堂教学中有效渗透数学思想方法的

谈谈你是如何在课堂教学中有效渗透数学思想方法的? 数学思想是对数学知识内容和所使用方法的本质认识。数学方法是解决数学问题的策略。小学数学内容比较简单,以基础知识为主,这其中隐藏的思想和方法很难决然分开,通常把数学思想和方法看成一个整体概念,即小学数学思想方法。

这就要求我们教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入数学目标之中,在课堂教学的各环节中有效渗透一些基本的数学思想方法。

一、在引入新知的过程中渗透 例如:老师在教学分数的基本性质时,有分数的基本性质的学习迁移到比的基本性质的学习。

教学中教师应抓住新旧知识之间的联结点,创设情境,让学生初步感悟数学的思想方法,为学生搭建有意建构的桥梁,让学生运用转化类比的数学思想方法进行合理的正迁移。如教学京版数学教材第十二册圆柱的认识一课时,我是这样进行导入环节的:

如在教学“圆柱的认识”时,教师提出如下问题:“同学们,你们知道孙悟空之所以神通广大不仅仅是他有七十二般变化,更是因为他有一件降妖除魔的法宝,同学们知道它是什么吗?”学生异口同声的回答:“如意金箍棒。”“同学们知道它是什么形状的吗?”“是圆柱形的”“同学们你们知道它和我们平常见到的如粉笔、电线杆等柱体有什么不同吗?”这时学生的学习兴趣就浓了,踊跃发言。老师这时可以趁势打铁:“我们这一节课要学习的圆柱和粉笔、电线杆不一样。哪我们所学习的圆柱又是什么形状的呢?圆柱圆柱,两头是圆,中间是柱。两头是什么样的两个圆?中间是柱,中间又是什么样的柱子?”这时老师可以要求学生分组讨论交流,课堂气氛一下子就活跃了。有同学们熟悉而又感兴趣的话题迁移到教学中来,教学效果可想而知。

二、在知识的建构过程中渗透

1、渗透对应的思想方法。对应是人的思维对两个集合间问题联系的把握,是现代数学的一个最基本的概念。小学数学教学中主要利用虚线、实线、箭头、计数器等图形将元素与元素、实物与实物、数与算式、量与量联系起来,渗透对应思想。

在小学数学中,有很多方面运用了对应的数学思想方法,如教材六年级教材中的数对,和根据方向和距离来确定物体的位置,无不融进了一一对应的数学思想。

2、渗透分类的思想方法。“分类”就是把具有相同属性的事物归纳在一起,它的本质是把一个复杂的问题分解成若干个较为简单的问题。如老师在教学统计与初步这一小节内容时,要学生统计出一小时内经过该路口的各种车辆各有多少时,通过学生们的分类整理,能有效纠正学生的无序性甚至盲目拼凑的毛病,有利于培养学生的逻辑思维能力。

3、渗透集合的思想方法。集合的数学思想方法是从某一角度看所研究的对象,使之成为合乎一定抽象要求的元素。在小学数学教学中,通常采用直观手段,利用画集合图的办法来渗透集合思想。

例如教学长方体、正方体之后,使学生明确正方体是长、宽、高分别相等的长方体,即正方体是一种特殊的长方体,用圆圈图表示更形象。让他们感知大圈内的物体具有某种共同的属性,可以看作一个整体,这个整体就是一个集合——长方体集合,小圈内的物体也具有某种共同的属性,可以看作一个小整体,这个小整体就是一个小集合——正方体集合,如长方体集合包含正方体集合。集合的数学思想方法在小学各年级段都有所渗透,如数的整除中就渗透了子集和交集等数学思想。

4、渗透符号化思想。渗透符号化思想主要是指人们有意识地、普遍地运用符号去表达研究的对象,恰当的符号可以清晰、准确、简洁地数学思想、概念、方法和逻辑关系。符号化思想在小学数学内容中随处可见,教师要有意识地进行渗透。例如:在教学加法结合律时,我首先让学生通过试题计算明确:三个数相加,可以先把前面两个数相加,再和第三个数相加;也可以先把后两个数相加,再和第一个数相加,结果不变。把它变成符号化的语言就是:a+b+c=a+(b+c)在这里,一定要让学生明确每个符号的意义,知道这样表示更一般化、抽象化,也更简洁,更能表示一般规律,进而再引导学生用符号化语言表达两个数的差与一个数相乘的规律,加深理解符号的含义,建立符号化思想。当然像我们所学过的一些计算公式等,无不渗透了数学思想在里面。

5、渗透数形结合的思想。数形结合思想方法是指将数与式的代数信息和点与形的几何信息互相转换,把数量关系的精确深刻与几何图形的形象直观有机地结合起来,用代数方法去解决几何问题或用几何方法去解决代数问题,从而易于将已知条件和解题目标联系起来,使问题得到解决。

例如:老师在教学应用题时,常常要借助于线段图来帮助学生理解,使教学起到事半功倍的效果。如“修路队前三天修了全长的30%,照这样计算,修完全程一共需要多少天?”通过画图来进行教学,学生易于理解,老师讲课也轻松。这样做,帮助学生借助数形结合理解了退位减法笔算算理,利于学生掌握笔算方法。

三、在巩固与练习中渗透 练习是数学教学的重要环节,习题的设计和选择不仅要体现基础性、层次性和可选择性,而且要具有实践性、应用性、探索性和开放性,做到基础性练习与发展性练习协调互补,使数学练习适应不同学生发展的需要。教师应精心设计练习,在巩固练习中运用数学思想方法。

例如:在学习了分数、百分数应用题之后,我为学生出示了这样一道练习题:一条路全长1200米,修路队前三天就修了它的30%,照这样计算,修完这条路一共需要多少天? 老师在教学中引导学生可以借助于单位“1”来进行计算。老师可以把“12——00米”这一条件盖起来,让同学们自由解答。

师:这样做,简化了解题思路,同学们想不想找规律?(想)刚才这道题我们运用了“转化”的思想方法:“把已知数量看作单位“1”,有“前三天就完成它的30%,不难算出这个修路队每天修全长的10%,那么修完这条路需要多少天就简单了。再者有”前三天修了它的30%,不难看出没有修的占70%,则还需要7天。师边说边显示这一简化思路的基本方法,并让学生再议一议上述运用“转化”思想方法的解题关键。

上述练习环节中,我在新旧方法的联结点上巧妙设问,激发了学生探索新方法的兴趣和情感,在探索新方法的过程中渗透了转化的思想方法,并在教师小结和学生议一议的过程中巩固了这种思想方法,与此同时,发展了学生的思维能力。

四、在知识的复习中渗透

复习课应遵循数学新课程标准的要求,紧扣教材的知识结构,及时渗透相关的数学思想和方法。例如:渗透函数思想。函数概念以变化为前提,利用变化的过程,才能使学生感受到函数思想。于“变”中把握“不变”,是函数思想的集中体现。

例如:由商不变性质的复习,联系分数的基本性质,和比的基本性质,一方面强化了他们三者之间联系,另一方面让同学们不难看出这三个性质是相通的。在梳理、沟通商不变的性质与其它知识间的内在联系,使之形成知识网络的同时,既加深对商不变性质的理解,又感受到了“变”与“不变”的函数思想。

在实际教学中,我们要深入钻研教材,努力挖掘教材中可以进行数学思想方法渗透的各种因素,把握好课堂教学中进行数学思想方法渗透的契机,根据儿童的心理特征、接受能力,采用相应的教学手段,使学生逐步掌握现代数学思想方法,从而发展学生的思维能力和创新能力

第三篇:请结合你的教学实践谈谈什么是研究性学习

请结合你的教学实践谈谈什么是研究性学习

本人是一所农村高中学校的一名政治教师,参加工作已进入11个年头,在长期的教育教学实践中,深入开展研究性学习,无论是教学目标的实现,亦或是提升学生学习兴趣都有不可估量的作用。下面,我通过自己这些年教学实践谈谈什么是研究性学习:

一,研究性学习的含义:

研究性学习主要与传统的接受性学习相对。一般来讲,凡是学生通过自己亲身参与的实践活动(如观察、调查、访谈、试验、设计、制作、评估等)来获取知识、得出结论、形成产品,而不是由教师将现成的知识、结论通过传递式教学直接教给学生的学习方式,都属于研究性学习。

二,研究性学习的本质:

研究性学习的本质在于,让学生亲历知识产生与形成的过程;使学生学会独立运用脑力劳动;追求“知识”发现、“方法”获得与“态度”形成的有机结合与高度统一。这是研究性学习的本质之所在,也是研究性学习所要达到和追求的教育目标。根据这一理解,如果学生只能遵照教师制订的方案,按照教师规定的步骤与路线,探究教师提出的问题,生成教师想要的答案或结论,那么,这种“探究学习”其实并不是真正的探究性学习,因为它丢掉了研究性学习的实质与灵魂——知识的自主建构。所以,如果教师在课前就已经预设了所谓的正确答案或标准答案,然后在教学中总是有意无意地把学生的反应往预设的方向上引,不鼓励学生反应的多样性与异质性,不允许学生失败,这样的探究多半是有名无实的伪探究、假探究。

三,研究性学习的意义所在:

尽管听讲式学习和研究性学习各有长短,我们不能简单地说听讲式学习就是落后的、研究性学习就是先进的,但不能不承认,研究性学习确有其独特的好处与必要性。国内有学者对开展研究性学习的理由进行了概括与总结,认为探究是一种人的本能,儿童天生就是探究者;探究是人的生存之本,是人类的一种生存方式;探究是学生了解和认识世界的重要途径;通过亲身探究获得知识是学生自己主动建构起来的,是学生真正理解、真正相信是真正属于学生的知识;探究对学生的思维构成了挑战,有利于思维能力的培养;探究过程要求综合运用已有的知识经验,有利于学生将所学知识加以整合,也有利于学生学以致用;研究性学生有利于保护学生的好奇心,对于兴趣和个性的培养至关重要;探究有利于培养学生实事求是的科学精神、科学态度;探究有利于促进学生学会合作、学会交流、学会倾听、学会批判和反思,从而为民主品格的形成打下坚实的基础;在亲历探究过程中,学生经历挫折与失败、曲折与迂回、成功与兴奋,这种学习经验是他们理解科学的本质与精神的基础;研究性学习引导学生自主获得知识或信息,对于学生学会学习、终身学习和可持续发展具有重要意义。

继续教育学员:颜复勇

第四篇:浅谈如何在课堂教学中有效渗透数学思想方法

浅谈如何在课堂教学中有效渗透数学思想方法

数学概念、法则、公式、性质等知识都明显地写在教材中,是有“形”的;而数学思想方法却隐含在数学知识体系里,是无“形”的,并且不成体系地散见于教材各章节中,教师讲不讲、讲多讲少,随意性较大,常常因教学时间紧而将它作为一个“软任务”挤掉,对于学生的要求是能领会多少算多少。因此,作为教师首先要更新观念,从思想上不断提高对渗透数学思想方法重要性的认识,把掌握数学知识和渗透数学思想方法同时纳入教学目的,把数学思想方法教学的要求融入备课环节。在小学阶段,数学思想方法主要有符号化思想、数形结合思想、化归思想、推理思想、变换(转化)思想、分类思想、集合思想、极限思想、方程函数思想、模型思想、对应思想、统计与概率思想等。小学数学教学内容,贯穿着两条主线,第一条是数学基础知识,第二条是数学思想方法,数学基础知识是明线,用文字的形式写在教材里了,反映了知识之间的纵向联系。数学思想方法是暗线,反映知识之间的横向联系,需要老师在教材中加以分析。数学史本身就蕴涵一些重要的数学思想和方法。例如:向学生介绍十进制计数法的由来,介绍祖冲之关于圆周率的探索史等让学生了解数学知识产生的背景和发展的过程,知道来龙去脉,也就把握了知识本源和数学思想方法。一 通过挖掘教材体验数学思想方法。

小学教材中数学思想方法呈现隐蔽形式,教师要认真分析和研究教材,理清教材的体系和脉络,统揽教材全局,高屋建瓴,建立各类概念、知识点之间的联系,归纳和揭示其蕴含在数学知识中的数学思想方法。极限思想在教材中有许多地方渗透,如在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,初步体会“极限”思想。在循环小数这一部分内容,在教学l÷3=0.333……是一循环小数,它的小数点后面的数字是写不完的,是无限的。在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。再如,在“圆的面积”这节中圆面积的求法:先把圆分成相等的两部分,再把两个半圆分成若干等分,然后把它剪开,再拼成近似于长方形的图形。如果把圆等分的份数越多,拼成的图形越接近于长方形。这时长方形的面积就越接近圆的面积了。这部分内容应让学生体会到这是一种用“无限逼近”的方法来求得圆面积的,也就是验极限思想的运用。

二、通过教学过程渗透数学思想方法。

如果在学生获得知识和解决问题的过程中能有效地引导学生经历知识形成的过程,让学生在观察、实验、分析、抽象、概括的过程中看到知识负载的方法、蕴涵的思想,那么,学生所掌握的知识就是鲜活的,可迁移的,学生的数学素质才能得到质的飞跃。如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块大小必须统一”的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。

三、通过解决实际问题应用数学思想方法。

在教学中,要鼓励学生应用数学知识去分析和解决生活中的实际问题,引导学生抽象、概括,建立数学模型,探求问题解决的方法,使学生进一步体验数学思想方法。例:生活中“付整找零”的生活原型是学生熟悉的事例。教学中创设情景:小明的爸爸原来有325 元钱,这个月又可以领到298元奖金,让学生扮演爸爸和发奖人,发奖人给爸爸3张100元的,爸爸要找回2元。把这样的生活原型提炼为数学模型,编成应用题,学生在计算325+298时,用325+298=325+300-2,从而明白“多加要减”的算理。象这样从学生熟悉的“常识”上升为“数理”就是一个建模的过程。再如教学“三角形”时,教师创设小明上学的情境,出示图例:小明家和学校、商店、邮局形成两个三角形,让学生在情境中初步感知小明走中间这条路上学是最近的,使学生产生探究其原因的欲望。接着让学生在教师提供的4根小棒(4cm、5cm、6cm、10cm)中任选三根摆三角形。学生通过操作发现,能摆成三角形的是:5cm、6cm、10cm和4cm、5cm、6cm,不能摆成三角形的是:4cm、5cm、10cm和4cm、6cm、10cm。让学生通过观察、猜测、验证,从而归纳出“三角形任意两边之和大于第三边”的结论。

四、通过归纳总结提炼数学思想方法。

在课堂教学小结、单元复习时,适时对某种数学思想方法进行概括和强化,不仅可以使学生从数学思想方法的高度把握知识的本质和内在的规律,而且可使学生逐步体会数学思想方法的精神实质。现行小学数学教材内容,许多知识都可以用化归思想方法思考。如:几何教学中运用变换思想,将原图形通过割补、分割、平移、翻折等途径加以“变形”,把未知的面积计算问题转化成已知图形的面积计算问题,可使题目变难为易,求解也水到渠成。小学课本中,除了长方形的面积计算公式之外,其他平面图形的面积计算公式都是通过变换原来的图形而得到的。例如,平行四边形通过割补、平移转化成长方形,三角形和梯形也都可以转化成平行四边形来求出面积。圆也可以通过分割转化成长方形。利用这些图形变换,从而概括出结论。小这里的归纳,不仅使每个学生明确了不同图形面积计算的相应方法,而且领悟到了还有比计算公式更重要的东西。那就是:把新知转化为旧知,再利用旧知解决新知的化归思想方法。

总之,在我们日常教学中,只要认真发掘教材内容中隐含的数学思想方法,把它渗透到自己的备课中,渗透到学生思维过程中,渗透到知识形成的过程中,渗透到课堂小结中,渗透到学生作业中,使学生在探究学习中渗透数学思想方法,在操作中亲身经历、感受、理解、掌握和领悟数学思想方法,才能真正地让数学思想方法在与知识能力形成的过程中共同生成。

第五篇:结合教学实践,谈谈在课堂教学中如何有效实施互评范文

结合教学实践,谈谈在课堂教学中如何有效实施互评?

学生之间的相互评价是一种十分有效的评价方式、在平时的评价中,教师应该合理运用这种评价方式,使其更好的发挥作用。

第一、注意语言艺术。、学生的评价语言要规范,客观、真实,尽量做到意见少一些,建议多一点。

“建议”是建立在商量、讨论的基础上善意的提醒,利于学生之间真诚交流,利于良好学习氛围的新城,便利于学生学习素养的提高。

学生的评价语言还有适当、合理、明确、有针对性,而不要过于系统,在这一点上,需要教师耐心的指导,逐步培养学生的是非判断能力和评价水平,而不能急于求成,要求学生一步到位,如给学生分组。

在评价过程中,学生之间出现了不同的观点,这时,教师针对一些问题,进行必要的引导,从而使得学生分清了哪些是意见,那些是建议通过适当的引导,学生就很容易找到就意见或建议的应对措施。可见,教师和学生评价的语言艺术的运用收到了很好的评价效果。

第二、乐于虚心倾听

由于受年龄的限制,学生普遍存在着喜欢别人听自己说,而不喜欢自己听别人说的问题。因此,为了使学生养成善于倾听的好习惯,教师可以教给学生一些方法。只要经过一段时间的训练,学生在评价同学的批评嘲讽就会不见了,提尔呆滞的将是客观有理的评价。

第三、学会自我反思

学会自我反思是一个重要的环节。学生之间的评价的目的就是要让他们能够从同学的发言中得到启发,学会触类旁通,举一反三。学习从他人的言语中获取有用的信息,并且加以分析、综合、改进,使之能为己用。

学生是学习的主体,学生间的相互评价不仅能提高学生思考问题,分析问题,理解问题和判断问题的能力。而且能培养学生的自信、勇敢的品质,增强学生的学习动力。

实践证明,同学间的相互评价,能激活学生思维,让学生对某个问题的认识更加深刻,这样的评价才真正体现了学生是学习主体,关注了每个孩子的个体差异,爱护了每个孩子的好奇心、求知欲。

下载请结合你的教学实践,谈谈你是如何在课堂教学中有效渗透数学思想方法的?[定稿]word格式文档
下载请结合你的教学实践,谈谈你是如何在课堂教学中有效渗透数学思想方法的?[定稿].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐