数学广角(集合图)学案设计(xiexiebang推荐)

时间:2019-05-12 17:15:31下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《数学广角(集合图)学案设计(xiexiebang推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《数学广角(集合图)学案设计(xiexiebang推荐)》。

第一篇:数学广角(集合图)学案设计(xiexiebang推荐)

《数学广角:集合问题》教学设计

教学内容:人教版小学数学三年级下册《数学广角:集合》,教材第108页及练习二十四第1、2题。

教学目标:

1、理解集合圈里各部分的意义。会读集合圈中的信息,会按条件填写集合圈。

2、使学生感知集合图的产生过程,初步培养学生的建模意识和能力。使学生会借助直观图,韦恩图,表示重叠现象的方法,利用集合的思想方法解决简单的实际问题。并能用数学语言表述。

3、渗透多种方法解决问题的意识,培养学生初步养成善于观察、善于思考的学习习惯。

教学重点:会读集合圈中的信息,会按条件填写集合圈。教学难点:使学生会借助直观图,利用集合的思想方法解决简单的实际问题。

教学准备:多媒体课件、动物卡、片呼啦圈等。教学诊断:

“集合问题”是人教版三年级下册第九单元“数学广角”的第一课时,是小学阶段集合思想教学。集合思想对于三年级学生来说并不陌生,在以往的题型中有过接触,只是无意识形成一些简单解决问题的方法。而本节课所要学的是含有

重复部分的集合图,学生是第一次接触。教材中的例1通过统计表的方式列出参加踢毽子比赛和跳绳比赛的学生名单,而总人数并不是这两项参赛的人数之和,从而引发学生的认知冲突。教材中是利用集合图(韦恩图)把这两项比赛人数的关系直观地表示出来,从而帮助学生找到解决问题的办法。教材要求只是让学生通过生活中容易理解的题材去初步体会集合思想,能够用自己的方法解决问题,为后继学习打下必要的基础。对于教师应根据学生特点,适度让学生亲历集合图的形成过程,不必拔高要求,引导学生理解集合图各部分的意义,培养学生应用集合思想解决实际问题的能力,初步感受集合思想的奇妙与作用。

教学过程:

一、问题导入

师:同学们,上课之前老师想考考大家,请看题:摆两个这样的三角形需要几根小棒?(出示幻灯片1)说一说你的想法和算式。

生1:需要六根,因为一个三角形是三个,两个三角形就需要两个三根,2×3等于6或者3+3等于6。

师:还有不同的答案吗? 生2:„„

师:那如果是这样摆呢(图片出示有重复情况的2个三

角形。)还是六根吗?(五根)让我们一起来数一数。这一根还需要再数一遍吗?(指着红色的线)为什么不数?

教师引导学生说出:因为中间那条边既是左边三角形的一条边,又是右边三角形的一条边。板书(“既…又…”)这种情况又应该怎样列算式呢? 生:3+3-1=5(根)师:为什么要减一?

生:因为重复数了中间那一根小棒。所以要1。师:三角形中有1根小棒是公共边,重复使用了,既是左边三角形的一条边,又是右边三角形的一条边。生活中向这样的事情还有很多,这些现象在数学里叫做重复。让我们一起走进数学广角集合,来研究与重复有关的数学问题。【师出示课题】

【教师引导学生突出:(1)“重叠”或“重复”一词;(2)列式中“减1”的意义;(3)能用表达逻辑关系的语言“既…又…”和“或”说出这两个关于重复现象的问题;(4)师生小结,得出:三角形中有1根小棒是公共边,重复使用了,既是左边三角形的一条边,又是右边三角形的一条边。】

二、启思生疑

1、认识动物

师: 同学们表现真不错,那么这些小动物吗你们认识吗?(课件)告诉老师它的名字,会飞还是会游?

2、提问:看来大家都认识他们,老师根据大家说的对它们进行了分类,那发现会飞的动物一共就有七种,会游的动物一共有六种,你能根据这两个两条数学信息提出数学问题吗?

老师也提出了一个数学问题:会飞的小动物和会游的小动物一共有多少种呢?

3、尝试解答

会有这么多种动物吗?你觉得是什么原因呢?出现两次的动物说明什么?

师:看来要解决这个数学问题,我们首先要知道,有几只小动物既会飞又会游。怎样表示能清楚的看出有几只小动物既会飞又会游呢?

生1: 可以在既会飞又会游的动物下面做标记。生2: 可以把相同的动物连起来。

三、导探释疑

1、师生合作,探究方法

(1)师:同学们的方法可真多,老师这里也有一个好办法,而且从老师的表示方法中能清楚地看出会飞的小动物有哪些?会游的小动物有哪些?既会飞又会游的小动物又有哪些?会飞的动物和会游的动物一共有多少种?你们想知道是什么方法吗?

(2)老师需要请几位同学上台来扮演这些小动物,帮助老师表示出这个好的方法?谁愿意来?

(3)请会游泳的小动物在这个圈里集合,像这样用一个圈把会游泳的小动物圈起来,这样的表示方法我们把它叫做集合。请会飞的小动物,在这个圈里集合,我们来清点一下人数?哎,为什么这边少了两个人?是谁快过来?这边又少了谁,快过来?其他小朋友快想想怎么办呢?难道就让他们两个人在中间跑来跑去吗?那现在可以了吗?请你们把这两个圈立起来给大家看看,老师来把它画在黑板上。

(4)请学生解释图中各部分的含义:

师:左边的圈表示什么?右边的圈表示什么? 生:左边圈里表示会飞的小动物,右边圈里表示会游的小动物。

师:这两只小动物都会飞,我可以把他们两个交换一下位置吗?为什么呢?

生:

师:也就是说,左边的月牙表示只会飞的小动物,右边的

月牙表示只会游的小动物,中间表示既会飞又会游的小动物。(板书:只„)

师:会飞的小动物有几只?只会飞的小动物有几只呢? 师:看来会飞的小动物和只会飞的小动物两个意思是不一样的。

(5)介绍集合图及数学家韦恩。

在数学中,经常用平面上封闭曲线的内部代表集合,以及用以表示集合之间关系。这种图称为维恩图(也叫文氏图),是由英国数学家维恩发明创造的,维恩图常用来研究表示数学中的“集合问题”,也叫集合图。(板书:集合图)

2、用集合图计算总人数。

(1)你能看图列式计算会飞的小动物和会游的小动物一共有多少种吗?

生:6+5-2=9(种)师:为什么要减2? 生:因为重复算了两种小动物,所以要减2。师:为了不重复地计数,应从两个计数部的和中减去重叠部分;同桌之间说一说算式,每部分表示的含义。

师:还有不同的算式吗? 生:4+3+2=9(种)

师:原来题目中没有四和三,他很会思考建筑,看图列

出了算式。谁能说一说算式各部分表示的含义? 生:6-2+5=9(种)

师:我们也可以先用其中一部分减去重叠部分,再加上另一部分。

师生反馈交流时,重点是引导学生借助集合图来理解各种计算方法的意义。

3、小结:韦恩图(集合图)中间交叉的地方表示重叠部分,在计算时只能计算一次。当两个计数部分有重叠包含时,为了不重复地计数,应从他们的和中减去重叠部分;也可以先用其中一部分减去重叠部分,再加上另一部分。

四、应用反思

让我们运用刚才学到的本领来解释、解决生活中的一些问题吧!(课件)

1、三年级某班学生饮食调查(出示幻灯片)师:请你回忆刚才的小结内容,你能直接通过看图列算式来解决这道题吗? 生:36+34-30+6=46(人)师:为什么要加6?

生:

师:为什么要减30?

2、水果店两天进的水果种类图

师:接下来让我们一起走进水果店,看看水果店中的数学问题。

3、根据学校要求,每班要选拔9人参加跳绳,8人参加踢毽子比赛,你觉得三(3)班可能会选拔多少人?

观察参加两项比赛的人和参加比赛的总人数,你有什么发现?

4、脑筋急转弯

看医生:两对母女去看医生,但医生只见到了三个人,为什么呢?

五、反思小结:

今天这节课我们一起学习了什么内容?今天你有什么收获?

这节课,老师和同学们一起学习和研究了生活中带有重复现象的数学问题,希望通过这节课的学习,能够解决你生活中遇到的类似的问题。

第二篇:数学广角---集合教学设计

第九单元 数学广角——集合

教学内容:

三年级数学上册第九单元《数学广角》 教学目标:

1.知识目标:使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言表述。

2.能力目标:使学生感知集合图的产生过程,初步培养学生的建模意识和能力,渗透多种方法解决问题的意识。

3.情感目标:培养学生初步养成善于观察、善于思考的学习习惯。教学重难点:

使学生借助直观图,利用集合的思想方法解决简单的重叠问题,并能用数学语言进行描述。教具学具准备:

课件 教学流程:

一、创设情境 生成问题

1、我想试试同学们反映快不快,请大家猜个脑筋急转弯。两个妈妈和两个女儿去看电影,每人买一张票,却只买了三张票就顺利进入了电影院,为什么? 【姥姥、妈妈、女儿】

2、两个妈妈【板书:2】,两个女儿【板书:2】,却只买了3张票【板书:3】。这2+2怎么会等于3?这里谁的身份最特殊?为什么?【妈妈的身份最特殊,有两个身份,既是姥姥的女儿又是女儿的妈妈。】【妈妈有两个身份,重复算了一次,板书:2+2-1=3】

3、今天,我们要研究的就是与这有关的一类问题。【板书:数学广角】窍门满街跑,看你找不找。这节课看谁找的窍门最多?谁表现 1 得最好?

二、探索交流 解决问题

为迎接我校2014年校园科技艺术节的召开,学校将相继举行科技小制作和科技绘画比赛。要求每班5名同学参加科技小制作、6名同学参加科技绘画比赛。

这是三(1)班参加科技小制作和绘画比赛的学生名单。

你能从统计表中获得怎样的数学信息? 你能提出怎样的数学问题? 参加这两项比赛的共有多少人呢?谁来说一说? 生:小制作的有5人,绘画的有6人,一共有11人。师:大家还有不同意见的吗?

请大家拿出纸和笔,在纸上写一写、画一画,看怎样方便我们数人数?然后小组交流。

用实物投影汇报或典型做法的同学去黑板板演。(连线、画图法)师:你更喜欢哪种方法?为什么?

生:集合图能使别人一看就知道参加小制作比赛的有哪些同学,参加绘画比赛的有哪些同学,两项比赛都参加的有哪些同学。在数学上,我们把参加小制作比赛的学生看作一个整体,叫做一个集合。(板书:集合)把参加绘画比赛的学生看作一个整体,也是一个集合。在100多年前的英国,有一个名叫韦恩的逻辑学家,就用一个集合图很方便的解决了我们今天遇到的这个问题。(课件出示)因为是韦恩最早发明的,所以就以他的名字命名这种图,叫韦恩图。老师发现不少同学的想法和韦恩的一样,看来如果我们生的比他早,那就是用你的名字来命名了。我们一起来分析一下。

左边的圈表示的是什么?(参加小制作比赛的有5人。)右边的圈表示的是什么?(参加绘画比赛的有6人。)中间两个圈相交的部 2 分呢?【既参加小制作比赛,又参加绘画比赛的有2人。】去掉相交部分的左边的圈表示什么?(只参加小制作比赛的有3人。)去掉相交部分的右边的圈表示什么?(只参加绘画比赛的有4人。)

9、现在我们知道了可以用韦恩图,既能表示重复的部分,又能方便统计总数。三(1)班参加小制作的和参加绘画的到底一共有多少人?该怎样列式计算呢?(也可以只强化第一种方法)①算法1:5+6-2=9(人)

你是怎么想的?【先把参加制作比赛的和参加绘画比赛的加起来。算式是5+6=11,然后再用11减去2个重复的,11-2=9】 ②算法2:3+4+2=9(人)

请你解释一下。【3是只参加小制作比赛的,4是只参加绘画比赛的,2是两项比赛都参加的,即重复的】

③算法3:5+4=9(人)【参加小制作比赛的5人,加上只参加绘画比赛的4人】

④算法4:6+3=9(人)【参加绘画比赛的6人,加上只参加小制作比赛的3人】

刚才同学们想了很多算法,你觉得哪种比较容易理解。把你比较容易理解的那种算法,说给你的同桌听一下,是什么意思?

三、巩固应用 内化提高

1、同学们累了吧,我们轻松一下,老师带领大家去动物世界看看吧,它们是谁呀?在这些动物当中有会飞的,会游泳的。找找哪些是会飞的,哪些是会游泳的,你能把它们的序号填到图中合适的位置上吗?

只会飞的有哪些?【②④⑧⑩】 只会游泳的有哪些?【①⑤⑥⑨】

③天鹅、大雁放哪儿?【放中间】为什么放中间?【它既会飞又 3 会游泳】同意吗?

如果又来了一只小狗,应该把它放在哪呢? 【因为它既不会飞也不会游泳】

所以不能放在圈里,只能把它放在哪里?【圈外】 同学们真了不起,没有被这样的问题迷惑住!

2、每班5名同学参加科技小制作、6名同学参加科技绘画比赛,其他班级可能会有多少人参加呢?

3、三年级有20个同学参加兴趣小组,其中参加数学小组的有15人,参加语文小组的有13人。

(1)既参加数学小组又参加语文小组的有几人?

(2)只参加数学小组的有几人?

(3)只参加语文小组的有几人?

四、回顾整理 反思提升

通过这节课的学习,你有什么收获?

第三篇:《数学广角—集合》教学设计

《数学广角——集合》教学设计

一、教学目标:

1、理解集合圈里各部分的意义。

2、会读集合圈中的信息,会按条件填写集合圈。

3、使学生会借助直观图,利用集合的思想方法解决简单的实际问题。

二、教学重点:会读集合圈中的信息,会按条件填写集合圈。

三、教学难点:使学生会借助直观图,利用集合的思想方法解决简单的实际问题。

教学流程

一、脑筋急转弯导入:

1、两个爸爸和两个儿子去照相,可是照片上只有3个人。这是为什么呢?

2、学生各抒己见。

3、设置悬念:同学们的猜测都有各自的道理,但答案到底是什么呢?老师暂时还不想告诉你们,我相信通过下面的两个游戏,大家一定会自己找到答案的。

二、游戏体验,构建新知

1、开心转盘

请6名同学参加比赛。

介绍游戏规则:每人转动一次转盘,转盘停止后指针会停在相应的分数上,分数高者即获胜。参赛结束后把带有自己姓名的纸条贴在黑板上。游戏结束后奖励获胜的同学。

2、夹球

请5名同学参加比赛。

介绍比赛规则:学生面对面站立,一面三人,另一面两人,用小腿夹住球跑到对面交给另一名同学,依次这样做,球不落地即获胜。参赛结束后也把带有姓名的纸条贴到黑板上。

3、游戏结束了,统计:参加这两项游戏的共有多少人?

4、下面请参加这两项游戏的同学到前面来,我们来检验一下是否有11人。

请参加开心转盘的同学站到这个圈里。请参加夹球的同学站到另一个圈里。

故作吃惊状:咦,参加夹球的还差2个人,在哪呢?赶快到前面来。

5、组织同学们想办法:他们俩站在哪比较合适呢?

6、结合学生的方法,指着开心转盘这个圈问学生:你能说说这个圈里表示什么吗?那另一边呢?中间表是什么?那你数一数到底有多少名同学参加了游戏?怎样列式?

7、揭示集合:在数学上,我们把参加“开心转盘”的同学看作一个整体,叫做一个集合;把参加“夹球”的同学看做一个整体,也是一个集合。

8、板书课题。

9、介绍维恩图。

10、介绍维恩。

三、分层练习,拓展提高

1、教材105页做一做的第1题

2、教材105页做一做的第2题

3、揭晓课前脑筋急转弯答案。

四、课堂小结,延伸铺垫

这节课你有哪些收获?

第四篇:数学广角集合

《数学广角——集合》教学设计

数学学科 成艳娇

教学目标:

1、在具体情境中,使学生感受集合的思想,感知集合圈的产生过程。

2、能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。

3、渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。

教学重点: 让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。

教学难点: 对重叠部分的理解。教具准备: 课件。教学过程:

一、创设情景,激趣导入。

师:同学们,你们喜欢脑筋急转弯吗?下面我们来猜一猜,有信心吗? PPT:两位妈妈和两位女儿一同去看电影(每人都得买一张票),可是她们只买了3张票,便顺利地进了电影院。这是为什么?

学生活动:学生猜测各种可能性,你一言我一语地发表自己的高见。师:大家的猜测都有自己的道理,其中一个人重复了两个角色,是哪个?

师:分析得不错,因为有一个人重复了,这里的妈妈既是外婆的女儿,又是小女孩的妈妈,所以只有3人。

这就是我们生活中经常遇到的集合问题。这节课,我们就来探讨数学广角的集合问题。(揭示课题)(老师在本节课还要收集积极举手和坐姿优美的同学名单,希望我们每一位同学都能拿出最棒的自己来。)

二、探究体验,经历过程。

1、教学例1.1过程一。师:学校准备从每个班中选几名热爱运动的学生参加体育训练,为下学期的校运动会做准备。下面是三(1)班参加跳绳、踢毽比赛的学生名单。(出示第104页表格)

师:数一数,参加跳绳的有几位同学?参加踢毽的有几位同学? 生:参加跳绳的有9人,参加踢毽的有8人。

师:那么,参加这两项比赛的一共有几位同学?你会计算吗? 学生可能回答;

一共有17人,9+8=17(人)。

可是,参加这两项比赛的没有17人呀。我发现有的人两项比赛都参加了。

应该是一共有14人参加了,算式是9+8=14(人)。„„

师:到底怎么回事呢?为什么有人说一共是14人呢?为什么要减去3呢? 生:因为有3个人重复了。

生:因为这3个人既参加了跳绳,又参加了踢毽。

生:因为跳绳的9人里面有这3个人,踢毽的8人里面也有这3个人,所以计算 的时候就不能是9+8=17(人),还应该减去3人,所以是9+8-3=14(人)。生:因为9+8就把这3个人重复算了,也就是多算了一遍,所以要减掉3人。师:同学们的发言真是精彩,报名参加这两项比赛的一共有多少名同学呢? 生:14人。

2、过程二。

师:为了能使同学们更方便的看清楚,我们把一项活动演示一遍,请班里的14名同学分别对应的替代其中一人,自己选一个替代的对象吧。班内的14名学生分别选定自己要替代的人。师:请报名参加跳绳的同学站到讲台的左边,报名参加踢毽的同学站到讲台的右边。

“参与报名”的学生活动,站到相应的位置。师:杨明、刘红、李芳你们怎么还不站好呀?

生:不知道站哪边。

师:哦?为什么?怎么会出现这样的情况呢?

生:因为他们两厢运动都参加了,站左边不行,站右边也不行。师:请同学们来说说,他们应该怎么站比较好? 生:站中间。

三位同学都站到了讲台的中间。

师:那左边、右边、中间分别表示什么?

生:左边表示参加跳绳的同学,右边表示参加踢毽的同学,中间就是两种训练都参加的同学。

3、过程三。

师:谁能用画图的方法来表示一下刚才看到的情形?

学生组内讨论,画出自己设计的图来,教师巡视观察了解情况并及时指导创作。分组展示自己设计的图画,并介绍自己的创意或想法。学生可能会说:

生1:我觉得左边的同学是代表参加跳绳的,应该圈在一起;右边的同学代表参加踢毽的,他们也应该圈在一起;中间的同学再画一个圈。

师:杨明、李芳、刘红都参加了两项比赛,可是,为什么在跳绳和踢毽的圈里没有他们呢?能不能让大家一看就知道中间的是既参加了跳绳的,又参加了踢毽的呢?再想想,看还有没有更好的画法。

生2:中间的同学也应该和左边的圈在一起,因为他们也参加了跳绳的呀。生3:那我还说中间的还可以圈到右边呢,他们还参加了踢毽呢。师:那就按你们说的试试吧。

学生动手试着画图,并向全班展示。

4、过程四。

师:PPT出示创作出来的韦恩图,同学们真棒,居然和我们伟大数学家发明的图一样,这就是十九世纪英国的哲学家和数学家——韦恩发明的图,所以取名叫韦恩图,希望同学们也能继续扎实学习,老师期待以后能看到用咱们班同学的名字命名的数学小发明,看图,说说每一部分分别表示什么?

生:左边,表示只参加跳绳的;右边,表示只参加踢毽的;中间即参加跳绳又参加踢毽的。

师:你能用一个算式表示出参加这两项比赛的人数吗?

生:9+8-3=14(人)生:(8-3)+3+(9-3)=14(人)分别说一说每个数字代表的意义。

三、巩固提高

既然同学们这么聪明,把韦恩图学懂了,那接下来有些题目让大家来完成,考考大家是否真的学懂了,有信心吗? 请看题。

1、动物运动会

同学们都很爱动脑筋,自己设计了解决问题的方法,运用这些数学思想方法可以解决生活中的许多实际问题。

六一节就要到了,动物王国准备举行运动会,看哪些动物来参加呢?认识它们吗?

学生说说动物名称。老师表扬:你们的课外知识真丰富,老师很佩服你们。比赛项目:游泳、飞行

师:小动物们可以参加什么项目呢?学生讨论、反馈。

师:原来这些动物有这么多本领,那就请你们来帮小动物报名吧。(把动物序号填在课本上相应的圈内)说说哪些动物会飞,能参加飞翔比赛,哪些动物会游泳,能参加游泳比赛。点到天鹅时,说说它应参加什么项目,为什么?要放在哪儿?这说明两个圆圈交叉的中间部分表示什么? 出示:既会飞又会游泳的 2:龙田龙兴文具店

同学们帮助小动物们解决了运动会报名的问题,再接受一次挑战好吗? ①龙兴文具店昨天、今天批发文具的情况

②观察图,发现了什么?(两天都批发了钢笔、尺、练习本)③两天共批发多少种货?

学生列式:5+5-3=7 5×2-3=7 5-3+2=7 说说怎么想的?

3:回看这节课积极举手和坐姿优美的同学的名单情况,同学们能不能利用本节课的集合思想,创造出集合图呢? 动手创作(名单板书在黑板)四:全课小结

1:通过今天这节课的学习你学会了什么?

2:今天这节课,你觉得谁的表现较好,好在哪里?

教学反思 “数学广角”(第一课时)是义务教育课程实验教科书人教版数学三年级上册开始新增设的一个内容,涉及的集合也就是老版的重叠问题是日常生活中应用比较广泛的数学知识。教材例1编排的意图是借助学生熟悉的题材,通过统计表的方式列出参加语文小组和数学小组的学生名单,和实际参加这两个课外小组总人数不相符合引起学生的认知冲突,渗透并初步体会集合的有关思想,并利用直观图的方式求出两个小组的总人数。集合是比较系统、抽象的数学思想方法,针对三年级学生的认知水平,在这里只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就

可以了,教学时老师不要使用集合、集合的元素、基数、交集、并集等数学化的语言进行描述。综上分析,本课的教学目标定位为:

1、使学生借助直观图,利用集体的思想方法解决简单的实际问题。

2、使学生解决实际问题的过程中体会集合的思想。

3、培养学生善于观察、善于思考,养成良好的学习习惯。

在本节课的教学试验中我觉得在教学设计中,注重以下几个方面: 一:情境导入,适时引导

数学来源于生活,并应用于生活。教师可以通过现场调查学生熟悉的兴趣爱好,如:对“唱歌和画画”的喜欢情况作为教学素材展开教学,根据学生名单获得生活中的数学信息,并根据信息提出教学问题,使学生置身于熟悉的生活情境中,多种感官被调动起来,主动参加学习过程。二:设置认知冲突,感知体验集合图

以“这一小组一共有几人?”这一问题冲突为线索,让学生提出问题,当学生解答时出现分歧时,进而引导学生借助一种图(集合图)来理解解决这一问题,让学生充分感知体验到集合图的作用。

三:联系生活实际、体现数学的应用的广泛性

在教学设计过程中创设了贴近学生生活实际的事例和学生喜闻乐见的故事情境。如在进行练习时,把根据动物特性填写集合图的练习题,创设成了一个“动物运动会”的场景,把动物特性“游泳、会飞”形象地比喻成“游泳、飞翔”两个比赛项目,让学生帮助小动物进行报名,这一场景的创设变原本枯燥的练习形式为生动的数学活动,既提高了学生参与数学活动的积极性,又激发了学生乐于助人的思想品质;又如在紧接的“龙兴文具店”中也充分引入学生的社会经验,让学生真真切切的感受到数学就在自己的身边,数学在生活中实际作用,体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心,同时还对进行了热爱家乡、立志建设好家乡的思想教育。

四、总结提升。师:同学们今天表现都很出色,谁愿意来说说今天有什么收获?和同学们一起分享。学生自己交流各自的收获。

课后请大家留心观察,用今天学习的知识还能解决生活中的哪些问题?

第五篇:数学广角集合

《数学广角集合》教学设计

教材分析:

本单元是非常有趣的数学活动,也是逻辑思维训练的起始课。逻辑推理能力是人们在生活、学习工作中很重要的能力。本单元主要要求学生能根据提供的信息,借助集合圈进行判断、推理,得出结论,使学生初步接触和运用集合圈分析问题、解决问题。教材试图通过一些生动有趣的简单事例,运用操作、实验、猜测等直观手段解决这些问题,渗透数学的思想方法,初步培养学生借助几何直观思考问题的意识。教学要求:

1.在具体情境中,使学生感受集合的思想,感知集合图的产生过程。2.能借助直观图,利用几何的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。3.渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。教学目标:

1.在具体情境中,使学生感受集合的思想,感知集合圈的产生过程。2.能借助直观图,利用集合的思想方法解决简单的实际问题,同时使学生在解决问题的过程中,进一步体会集合的思想,进而形成策略。3.渗透多种方法解决重叠问题的意识,培养学生善于观察、勤于思考的学习习惯。

教学重点 :让学生感知集合的思想,并能初步用集合的思想解决简单的实际问题。教学难点 :对重叠部分的理解。教具准备 :课件 教学过程:

一、创设情景,激趣导入。

师:老师先给大家出一道脑筋急转弯:两位妈妈和两位女儿一同去看电影(每人都得买一张票),可是她们只买了3张票,便顺利地进了电影院。这是为什么?

学生活动:学生猜测各种可能性,你一言我一语地发表自己的高见。师:大家的猜测都有自己的道理,但答案到底是什么呢?暂时老师还不想告诉你们,我想通过下面的活动,大家一定能自己找到答案的。

二、探究体验,经历过程。1.教学例1.师:学校准备从每个班中选几名热爱运动的学生参加体育训练,为下学期的校运动会做准备。下面是三(1)班参加跳绳、踢毽比赛的学生名单。(出示第104页表格)

师:数一数,参加跳绳的有几位同学?参加踢毽的有几位同学? 生:参加跳绳的有9人,参加踢毽的有8人。师:那么,参加体育训练的一共有几位同学?你会计算吗?

学生可能回答;一共有17人,9+8=17(人)。

可是,参加这两项活动的没有17人呀。我发现有的人两项活动都参加了。应该是一共有14人参加了,算式是9+8=14(人)。……

师:到底怎么回事呢?为什么有人说一共是14人呢?为什么要减去3呢?

生:因为有3个人重复了。

生:因为这3个人及参加了跳绳,又参加了踢毽。

生:因为跳绳的9人里面有这3个人,踢毽的8人里面也有这3个人,所以计算的时候就不能是9+8=17(人),还应该减去3人,所以是9+8-3=14(人)。

生:因为9+8就把这3个人重复算了,也就是多算了一遍,所以要减掉3人。

师:同学们的发言真是精彩,报名参加校体育训练的一共有多少名同学呢? 生:14人。2.出示另一种方法

师:为了能使同学们更方便的看清楚,我们把一项活动演示一遍,请班里的14名同学分别对应的替代其中一人,自己选一个替代的对象吧。班内的14名学生分别选定自己要替代的人。

师:请报名参加跳绳的同学站到讲台的左边,报名参加踢毽的同学站到讲台的右边。

“参与报名”的学生活动,站到相应的位置。师:杨明、刘红、李芳你们怎么还不站好呀? 生:不知道站哪边。

师:哦?为什么?怎么会出现这样的情况呢?

生:因为他们两厢运动都参加了,站左边不行,站右边也不行。师:请同学们来说说,他们应该怎么站比较好? 生:站中间。

三位同学都站到了讲台的中间。

师:那左边、右边、中间分别表示什么?

生:左边表示参加跳绳的同学,右边表示参加踢毽的同学,中间就是两种训练都参加的同学。3.方法三。

师:谁能用画图的方法来表示一下刚才看到的情形?

学生组内讨论,画出自己设计的图来,教师巡视观察了解情况并及时指导创作。

分组展示自己设计的图画,并介绍自己的创意或想法。学生可能会说:

生1:我觉得左边的同学是代表参加跳高的,应该圈在一起;右边的同学代表参加跳远的,他们也应该圈在一起;中间的同学再画一个圈。师:这样的话,能不能让大家一看就知道中间的是及参加了跳绳的,又参加了踢毽的呢?再想想,看还没有没更好的画法。

生2:中间的同学也应该和左边的圈在一起,因为他们也参加了跳绳的呀。

生3:那我还说中间的还可以圈到右边呢,他们还参加了踢毽呢。师:那就按你们说的试试吧。学生动手试着画图,并向全班展示。4.方法四。

师:看图,说说每一部分分别表示什么?

生:左边,表示只参加跳绳的;右边,表示只参加踢毽的;中间即参加跳绳又参加踢毽的。

师:你能列式计算这两个小组的人数吗? 生:9+8-3=14(人)

生:(8-3)+3+(9-3)=14(人)

三、总结提升。

师:同学们今天表现都很出色,谁愿意来说说今天有什么收获?和同学们一起分享。学生自己交流各自的收获。

课后请大家留心观察,用今天学习的知识还能解决生活中的哪些问题?

四、课堂作业。

1、同学们去春游,带面包的有78人,带水果的有77人,既带面包又带水果的有48人。参加春游的同学一共与多少人?

2、三年级有20个同学参加竞赛,其中参加数学竞赛的有15人,参加作文竞赛的有11人。

(1)既参加数学竞赛又参加作文竞赛的有几人?(2)只参加数学竞赛的有几人?(3)只参加作文竞赛的有几人?

下载数学广角(集合图)学案设计(xiexiebang推荐)word格式文档
下载数学广角(集合图)学案设计(xiexiebang推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《数学广角──集合》教学设计[5篇范文]

    《数学广角──集合》教学设计1一、教学目标(一)知识与技能1.适度让学生亲历集合思想方法的形成过程,初步理解集合知识的意义。2.让学生借助直观图理解集合图中每一部分的含义,通......

    数学广角-集合教学设计(合集五篇)

    三年级数学上册《数学广角——集合》教学设计 镇远城关五小盘龙校区:詹声炯 教学目标: 1.理解集合圈里各部分的意义。 2.会读集合圈中的信息,会按条件填写集合圈。 3.使学生会......

    三上《数学广角——集合》教学设计

    三上 《数学广角——集合》 教学目标: (一)知识与技能 1、在具体情境中,让学生感受集合的思想,亲历集合圈的产生过程。 2、让学生借助直观图理解集合圈中每一部分的含义,通过语言......

    《数学广角——集合》教案设计(范文)

    《数学广角——集合》教案设计 【教学内容】义务教育程标准实验教科书人教版数学(三)年级(上)册第(九)单元第(1)时《 集合 》。 【教学分析】 在例1教学中,用统计表的形式给出三(1)班参......

    数学广角集合教案

    数学广角——集合 贾市小学姚小维 【教学目标】 1.能借助直观图,利用集合思想解决简单的实际问题。 2.感受数学在现实生活中的广泛应用,尝试用数学的方法解决问题,体验解决问......

    数学广角—集合说课稿

    《数学广角——集合》说课稿 执教:陈明琴 一、对教材的认识和理解 《集合》是新课标三年级上“数学广角”例1。集合的知识体系集合是比较系统、抽象的数学思想方法,是数学中最......

    《数学广角——集合》教案

    《9 数学广角——集合》教案 教学目标: 1、使学生能借助直观的韦恩图解决简单的实际问题,并能用数学语言描述。 2、让学生经历探究韦恩图的产生过程,使学生感知韦恩图的产生,初......

    数学广角搭配导学案

    《数学广角——搭配》教学设计 教学内容:《九年义务教育课程标准实验教科书数学》(人教版)二年级上册, 8单元“数学广角—搭配”。教学内容分析: 搭配就是排列与组合,这样的思想方......