第一篇:湖南郴州小学数学教案排列与组合
《排列与组合》教学设计
一、设计思想
根据学生认知特点和规律,在本节课的设计中,我活用教材,利用“观看乒乓球赛”这一情境为线索,对教材进行了灵活的处理,重新组合了教材,将各部分知识有机的渗透在球赛中。并着眼于学生的发展,注重发挥多媒体教学的作用,通过课件演示、动手操作、游戏活动等方式组织教学.二、教材分析
排列与组合的思想方法不仅应用广泛,而且是后面学习概率统计知识的基础,同时也是发展学生抽象能力和逻辑思维能力的好素材。《标准》中指出:在解决问题的过程中,使学生能进行简单的、有条理的思考。本套实验教材试图在渗透数学思想方法方面做一些努力和探索,把重要的数学思想方法通过学生日常生活中最简单的事例呈现出来,并运用操作、实验、猜测等直观手段解决这些问题。重在向学生渗透这些数学思想方法,并初步培养学生有顺序地、全面地思考问题的意识。本节课的教学内容是人教版义务教育小学数学第三册第99页和练习二十三的第1、2题有关排列与组合知识,例1属于排列知识,要让学生体会不重复不遗漏的排列方法,“做一做”属于组合知识,要让学生明白选定的一组事物与顺序无关。练习中的题目属于组合知识。
三、学情分析
本班学生思维比较活跃,遇到问题反映敏捷,但缺乏成熟的思考。大部分的学生已经能够进行简单的排列组合,能解决一些简单的排列组合的实际问题,但他们是想到怎么排就怎么排,还处于一种无序思考的状态。但只要教师稍加引导,学生就能在活动中体会有顺序地排列组合的好处,掌握排列组合的方法。
四、教学目标
1、知识技能:在尝试用3个一位数组成不同的两位数和3个人的打球活动中体验最简单的排一排、组一组,掌握排列组合的方法。
2、数学思考:引导学生经历探索、发现、交流等活动过程,培养学生初步的观察、分析及推理能力。
3、问题解决:引导学生从数学的角度认识世界、解释生活,并在这一过程中初步培养学生有顺序的、全面的思考问题的意识和数学交流能力,逐步形成“数学的思维”的习惯。
4、情感态度:在数学活动中养成与人合作的良好习惯,初步学会表达解决问题的大致过程和结果,初步体会排列组合的实际应用价值。
五、重点难点
教学重点:了解简单的排列组合知识,能应用排列组合的知识解决实际生活中的问题。
教学难点:怎样有规律地按一定的顺序进行排列组合以及对“例1”和“做一做”中握手次数的区别。
教学关键:注重学生的实践活动,充分运用教学资源感知新知,应用新知。
六、教学策略与手段
关注师生合作,促进交流,以小组合作的形式贯穿全课,充分应用分组合作、共同探究的学习模式,在教学中鼓励学生与同伴交流,引导学生展开讨论,使学生在合作中学会知识,并使用多媒体课件,让学生体验学习的乐趣,并活跃思维。
七、课前准备
1、学生的学习准备:3张数字卡片、合作学习卡、小衣服图片
2、教师的教学准备:多媒体课件、若干张数字卡片
八、教学过程
(一)、赛前--复习导入
师:(点击课件:一座宏伟的体育馆,伴有打乒乓球的声音。)这儿正要进行乒乓球比赛,你们想进去看吗?(想)不过,得买门票,儿童票一张5角钱,你们带钱了吗?(略停1、2秒。)如果你能用这些纸币说出5角钱的一种付法,就可免费进去看球赛。(多媒体出示1角、2角、5角三种面值的人民币)。你们知道5角钱可以怎么付? 生汇报5角钱的付法。
师:真了不起!想出了这么多种方法,有重复或遗漏的吗?好,咱们进去。(点击多媒体课件:体育馆的大门徐徐打开,乒乓球声也由小渐大。)(设计意图:5角钱怎样付?一年级时学生已经学习了这部分知识。课的开始,把教材的安排稍做改动,将“做一做”中的“买5角钱的拼音本”改为“一张门票5角钱”,利用已有的知识经验,让学生初步感知5角钱的几种不同组合方式。从学生最近发展区导入新课,有利于学生构建新知模型。)(二)、赛中--探索新知
1、探讨排列。
(1)、编号码
a、师:运动员来了(点击课件:球声渐小,3个运动员走上前来)。参赛的每个运动员的都有自己的号码。可是这次号码很特别,要用(在黑板贴出)编出不同的两位数。请同学们帮忙,你们会吗?有没有方法。
生汇报,师板书。
b、师:才两个号码,可运动员有3个,号码不够(在黑板再贴出卡片)现在就用三张数字卡片,还摆两位数,你们会吗?(略停1、2秒钟)这样,同桌两人,一人摆数字卡片,一人把摆好的数记录下来。先商量一下谁摆数字卡片,谁记数。然后拿出数字卡片和合作学习卡片,比比哪桌合作的又好又快。
C、生合作摆数。(2)、说号码。
师:你们摆了几个两位数?哪几个? 生汇报,师相机板出6个不同的两位数。
(3)、找规律。
师:怎样摆才能把这6个不同的两位数不重复不遗漏的摆出来呢?小组讨论交流一下,看看哪组的方法最好? 生小组讨论。
(4)、汇报交流。(学生有可能出现以下几种排列方法:A、先用2张数字卡片摆出一个两位数,再交换它们的位置;B、分别把1、2、3这三个数字放在十位上,依次排列;C、从小到大排列……)
(5)、小结。
师:大家都采用各种方法摆出了6个不同的两位数。真了不起啊!今后我们只要运用规律就能把号码不重复不遗漏的摆出来。
(设计意图:例题的呈现由易到难,由浅入深,由2个数过渡到3个数的排列,给学生留有较大的探索交流空间,符合学生的认知规律。教法的设计由导到放,自主合作,体现新课程理念。)
2、观球赛,算场次,感知组合。
(1)、师;比赛开始了,瞧--(点击多媒体课件:演示两名运动员训练打球,一名运动员在旁观看,球声清脆,后声音渐小)如果他们每两个人打一场,那么三个人至少打几场?(2)、汇报、解说。
(设计说明:利用具体情境中,激发兴趣,有助于学生对新知的探究。再借助数学画,直观形象的掌握组合的知识。)
3、巧比较,深思辨,巩固新知。
师:3个数字卡片摆出了6个不同的两位数,而3个运动员每两个人打一场,只有打3场,这是怎么回事? 学生小组讨论,后汇报交流
(设计意图:这是本节课的重难点。引导学生对6个不同的两位数和3个场次,进行比较,引发学生争辩。让学生在比较中感受排列与组合的区别,在争辩中明白排列与顺序有关,组合与顺序无关。)(三)、颁奖--应用拓展
1、巧配衣服,运用新知。
(1)、师:比赛继续进行着,这次活动得到新世纪儿童服装公司的赞助,每个参赛运动员都将获得一套服装,看--(师粘贴几种服装款式:红上衣、黄上衣、蓝裤子、黄裤子)这就是他们的服装款式,你们愿意为他们搭配一套服装吗?(愿意)先想想有几种搭配方式,再动手用学具摆一摆。
(2)、生动手搭配衣服。
(3)、汇报。(多媒体演示搭配方式)
2、握手问题,拓展延伸。
(1)、师:(多媒体课件演示:运动员穿上小朋友们搭配好的服装,在嘹亮的《运动员进行曲》歌声中登上了领奖台。校长向他们献上了鲜花,并握手向他们表示祝贺。3位运动员也互相握手表示祝贺。画面定格。)如果每两个人握一次手,那么4个人至少握几次?小组4个人试一试。
(2)、生小组握手。
(3)、生汇报表演。
生:每两个人握一次手,4个人至少握6次。
(生4人小组表演各种握手方法,师引导借助图式板演: ① ▲ ▲ ② ▲ ▲ ▲ ③ ▲ ▲ ▲ ▲ ▲ ▲
(设计意图:多彩美丽的衣服学具可激发学生对新知进一步探究的欲望,小组四人握手活动,可激起学生的创新思维。这两个直观形象、生动具体的情境,可让学生在动手摆衣服、互相握手中亲身感受和体验排列组合知识。接着师在根据实际情况引导学生借助数学画来表示4人不同顺序的握手方法,由直观形象的物体过渡到图式的揭示,真正理解和掌握基本的数学知识和技能、数学思想和方法,获得广泛的数学活动经验,同时也感受数学在生活中的重要性,培养学习数学的兴趣。)(四)、赛后--总结揭题
师(多媒体课件演示:球赛结束,声音渐小,体育馆的大门徐徐关上。)今天,咱们在看球赛中学会了什么?说给大家听听。
师:是的,在一场球赛中咱们学到了这么多的知识,其实这仅仅是数学广角里的一小部分(点击:两扇大门幻化为二年级上册数学教科书《数学广角(排列组合)》内容,同时板题:《数学广角》),今后,只要我们认真观察生活,仔细动脑思考,一定能愉快地畅游在广阔的数学广角里。
(五)、机动练习
现在请表现最好的三个同学来合影,他们可以怎样排列呢?
九、板书设计
数学广角
12 23 13 21 31 32 12 21 13 31 23 32 12 13 21 23 31 32 ① ▲ ▲ ② ▲ ▲ ▲ ③ ▲ ▲ ▲ ▲
▲ ▲
十、作业设计
1、在格格、天天、小浩三人中选一人做升旗手,两人做护旗手,有几种选法?
2、红红和明明在赛马,他们都有上、中、下三等的马各一匹,红红赢两场就算胜利了,她该怎样选呢? 红红 明明
对
对
对
3、从花、眼、红中选出两个字,能组成什么词?
第二篇:排列与组合教案
课 题: 数学广角
——简单的排列和组合
鹤鸣山小学:佘莎
教学内容:九年义务教育课程标准实验教科书 数学二年级上册p99例1 教学目标:
1.通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数,初步培养有序地全面地思考问题的能力。
2.感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣,使学生在数学活动中养成与人合作的良好习惯。
教学重点:经历探索简单事物排列与组合规律的过程。教学难点:初步理解简单事物排列与组合的不同。教学准备:课件、数字卡片等 教学过程:
一、创设情境,引发探究
1、初步感知排列
1)师:看喜羊羊来欢迎我们了。
喜羊羊:大家好,在你们面前的是一把密码锁,密码是由数字1和2这两个数字摆成的两位数。快来试试吧!
2)学生独立摆卡片,并记下数。
师:请先独自摆摆,边摆边记,看谁摆最完整? 3)反馈交流,说一说你是怎样摆的?
板书:12
21 4)试着输入密码?
二、动手操作、探究新知
1、合作探究排列 1)进入数字乐园。
喜洋洋说:“欢迎来到数字乐园,我们一起来玩一个数字游戏吧!你能用1、2、3三个数字摆出几个两位数呢?
生猜想,有两个,4个,6个等等。
师:让我们来动手摆一摆就知道了。老师给小朋友们准备了1、2、3三张数字卡片,还有一张记录卡。同桌合作,一人摆数字卡片,一人把摆好的数记录下来,先商量一下谁摆数字卡片,谁记数,比比哪桌合作得又好又快。2)反馈交流。
①请几组学生把自己记录下的数字写在黑板上。②交流你觉得谁摆得更好。为什么? 想一想:怎样摆才不会遗漏和重复?
师:为什么有的摆的数多,而有的却摆的少呢?有什么好办法能保证既不漏数、也不重复呢?请每个小组进行讨论,看看有什么好办法?小组交流,集体反馈。
③再按你们的方法,边摆,找一个人把他记下来!
学生小结方法:
1、固定十位。
2、固定个位。
3、交换位置。
师:大家都采用各种方法摆出了6个不同的两位数。真了不起啊!今后我们在排列数的时候,要想既不重复也不漏掉,就必须要按照一定的规律和一定的方法进行。这就是我们今天所要学习的排列与组合。巩固练习。
师:喜洋洋想请我们去他家里作客。可是它还想考考大家。
1、我家的门牌号码是由6、7、8这三个数字组成的两位数,请你猜一猜可能是多少?
2、是这6个数中最大的一个两位数。
学生先排列出6个两位数,再找出其中最大的两位数。2.感知组合
师:喜洋洋请小朋友们吃水果。苹果、香蕉、梨子,只吃其中的两种水果有几种吃法。生:回答。
说出三种这后,还有孩子说有别的吃法,当他列举出来之后,再让学生观察。学生发现最后一种和前面其中一种是同样的吃法。从而得出只有三种吃法。师质疑:三张卡面取两张摆两位数能摆6个,而三种水果吃其中两种确只有3种吃法?
请两个学生上黑板,一人摆卡片,一人取水果。然后交换位置。学生发现卡片交换位置得到两个数,而水果交换位置之后得到的还是原来的两种水果只能算一种吃法。
师小结:摆数与顺序有关,取水果与顺序无关。摆数可以交换位置,而取水果交换位置没用。
三、应用拓展,深化探究 来到游艺乐园,搭配衣服。
1、出示:四件衣服有几种不同的穿法呢?在书上连一连,画一画。(学生操作)
学生说课件演示。
2、出示:如果三个人握手,每两个人握一次,三人一共要握多少次呢? 2)小组合作演示,并记录结果。3)小组汇报结果。
四、总结延伸,畅谈感受
师:生活中哪里有排列与组合。
师总结:只要我们有心,你会发现生活中处处有数学。愿孩子们做一个生活的有心人,去发现身边的数学。
2012-11-10
第三篇:排列与组合高考专题
高中数学《排列组合的复习》教学设计
教学目标 1.知识目标
(1)能够熟练判断所研究问题是否是排列或组合问题;(2)进一步熟悉排列数、组合数公式的计算技能;(3)熟练应用排列组合问题常见解题方法;
(4)进一步增强分析、解决排列、组合应用题的能力。2.能力目标
认清题目的本质,排除非数学因素的干扰,抓住问题的主要矛盾,注重不同题目之间解题方法的联系,化解矛盾,并要注重解题方法的归纳与总结,真正提高分析、解决问题的能力。3.德育目标
(1)用联系的观点看问题;
(2)认识事物在一定条件下的相互转化;(3)解决问题能抓住问题的本质。教学重点:排列数与组合数公式的应用 教学难点:解题思路的分析
教学策略:以学生自主探究为主,教师在必要时给予指导和提示,学生的学习活动采用自主探索和小组协作讨论相结合的方法。
媒体选用:学生在计算机网络教室通过专题学习网站,利用网络资源(如在线测度等)进行自主探索和研究。教学过程
一、知识要点精析
(一)基本原理
1.分类计数原理:做一件事,完成它可以有 类办法,在第一类办法中有 种不同的方法,在第二类办法中有 种不同的方法,„„,在第 类办法中有 种不同的办法,那么完成这件事共有: „ 种不同的方法。
2.分步计数原理:做一件事,完成它需要分成 个步骤,做第一步有 种不同的方法,做第二步有 种不同的方法,„„,做第 步有 种不同的办法,那么完成这件事共有:
„ 种不同的方法。
3.两个原理的区别在于一个与分类有关,一个与分步有关即“联斥性”:(1)对于加法原理有以下三点: ①“斥”——互斥独立事件;
②模式:“做事”——“分类”——“加法”
③关键:抓住分类的标准进行恰当地分类,要使分类既不遗漏也不重复。(2)对于乘法原理有以下三点:
洪恩网校
①“联”——相依事件;
②模式:“做事”——“分步”——“乘法”
③关键:抓住特点进行分步,要正确设计分步的程序使每步之间既互相联系又彼此独立。
(二)排列
1.排列定义:一般地说从 个不同元素中,任取 个元素,按照一定的顺序排成一列,叫做从 个不同元素中,任取 个元素的一个排列。特别地当 时,叫做 个不同元素的一个全排列。2.排列数定义:从 个不同元素中取出 个元素的所有排列的个数,叫做从 个不同元素中取出 个元素的排列数,用符号 表示。3. 排列数公式:(1)„,特别地
(2)且规定
(三)组合
1.组合定义:一般地说从 个不同元素中,任取 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合。
2.组合数定义:从 个不同元素中取出 个元素的所有组合的个数,叫做从 个不同元素中取出 个元素的组合数,用符号 表示。3. 组合数公式:(1)
(2)
4.组合数的两个性质:(1)规定(2)
(四)排列与组合的应用 1.排列的应用问题
(1)无限制条件的简单排列应用问题,可直接用公式求解。
(2)有限制条件的排列问题,可根据具体的限制条件,用“直接法”或“间接法”求解。2.组合的应用问题
(1)无限制条件的简单组合应用问题,可直接用公式求解。
(2)有限制条件的组合问题,可根据具体的限制条件,用“直接法”或“间接法”求解。3.排列、组合的综合问题
排列组合的综合问题,主要是排列组合的混合题,解题的思路是先解决组合问题,然后再讨论排列问题。
在解决排列与组合的应用题时应注意以下几点:(1)限制条件的排列问题常见命题形式: “在”与“不在” “相邻”与“不相邻”
在解决问题时要掌握基本的解题思想和方法:
①“相邻”问题在解题时常用“捆绑法”,可以把两个或两个以上的元素当做一个元素来看,这是处理相邻最常用的方法。
洪恩网校
②“不相邻”问题在解题时最常用的是“插空法”。
③“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置。
④元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后利用规定顺序的实情求出结果。
(2)限制条件的组合问题常见命题形式: “含”与“不含” “至少”与“至多”
在解题时常用的方法有“直接法”或“间接法”。
(3)在处理排列组合综合题时,通过分析条件按元素的性质分类,做到不重复,不遗漏按事件的发生过程分类、分步,正确地交替使用两个原理,这是解决排列问题的最基本,也是最重要的思想方法。
4、解题步骤:
(1)认真审题:看这个问题是否与顺序有关,先归结为排列问题或组合问题或二者的综合题,还应考虑以下几点:
①在这个问题中 个不同的元素指的是什么?② 个元素指的又是什么? ②从 个不同的元素中每次取出 个元素的排列(或组合)对应的是什么事件;(2)列式并计算;(3)作答。
二、学习过程 题型一:排列应用题
9名同学站成一排:(分别用A,B,C等作代号)(1)如果A必站在中间,有多少种排法?(答案:)(2)如果A不能站在中间,有多少种排法?(答案:)
(3)如果A必须站在排头,B必须站在排尾,有多少种排法?(答案:)(4)如果A不能在排头,B不能在排尾,有多少种排法?(答案:)(5)如果A,B必须排在两端,有多少种排法?(答案:)(6)如果A,B不能排在两端,有多少种排法?(答案:)(7)如果A,B必须在一起,有多少种排法?(答案:)(8)如果A,B必须不在一起,有多少种排法?(答案:)(9)如果A,B,C顺序固定,有多少种排法?(答案:)题型二:组合应用题
若从这9名同学中选出3名出席一会议
(10)若A,B两名必在其内,有多少种选法?(答案:)(11)若A,B两名都不在内,有多少种选法?(答案:)
洪恩网校
(12)若A,B两名有且只有一名在内,有多少种选法?(答案:)(13)若A,B两名中至少有一名在内,有多少种选法?(答案: 或)(14)若A,B两名中至多有一名在内,有多少种选法?(答案: 或)题型三:排列与组合综合应用题 若9名同学中男生5名,女生4名
(15)若选3名男生,2名女生排成一排,有多少种排法?(答案:)(16)若选3名男生2名女生排成一排且有一男生必须在排头,有多少种排法?(答案:)
(17)若选3名男生2名女生排成一排且某一男生必须在排头,有多少种排法?(答案:)
(18)若男女生相间,有多少种排法?(答案:)题型四:分组问题
6本不同的书,按照以下要求处理,各有几种分法?(19)一堆一本,一堆两本,一堆三本(答案:)(20)甲得一本,乙得两本,丙得三本(答案:)(21)一人得一本,一人得两本,一人得三本(答案:)(22)平均分给甲、乙、丙三人(答案:)(23)平均分成三堆(答案:)
(24)分成四堆,一堆三本,其余各一本(答案:)(25)分给三人每人至少一本。(答案: + +)题型五:全能与专项
车间有11名工人,其中5名男工是钳工,4名女工是车工,另外两名老师傅既能当车工又能当钳工现在要在这11名工人里选派4名钳工,4名车工修理一台机床,有多少种选派方法?
题型六:染色问题
(26)梯形的两条对角线把梯形分成四部分,用五种不同颜色给这四部分涂不同颜色,且相邻的区域不同色,问有()种不同的涂色方法?(答案:260)
(27)某城市在中心广场建造一个花圃,花圃分为6个部分(如图)。现在栽种4种不同颜色的花,每部分栽种一种且相 邻部分不能栽种同样颜色的花,不同的栽种方法有 种。分析:先排1、2、3排法 种排法;再排4,若4与2同色,5有 种排法,6有1种排法;若4与2不同色,4只有1种排法; 若5与2同色,6有 种排法;若5与3同色,6有1种排法 所以共有(+ +1)=120种
洪恩网校
题型七:编号问题
(28)四个不同的小球放入编号为1,2,3,4的四个盒子中,则恰有一个空盒的放法共有多少种?(答案:144)
(29)将数字1,2,3,4填在标号为1,2,3,4的四个方格里,每格填上一个数字且每个方格的标号与所填的数字均不相同的填法有多少种?(答案:9)题型八:几何问题
(30):(Ⅰ)四面体的一个顶点为A,从其它顶点和各棱的中点中取3个点,使它们和点A在同一个平面上,有多少种不同的取法?
(Ⅱ)四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,有多少种不同的取法?
解:(1)(直接法)如图,含顶点A的四面体的3个面上,除点A外都有 5个点,从中取出3点必与点A共面共有 种取法,含顶点A的 三条棱上各有三个点,它们与所对的棱的中点共面,共有3种取法。根据分类计数原理,与顶点A共面三点的取法有 +3=33(种)
(2)(间接法)如图,从10个顶点中取4个点的取法有 种,除去4点共面 的取法种数可以得到结果。从四面体同一个面上的6个点取出4点必定共面。有 =60种,四面体的每一条棱上3点与相对棱中点共面,共有6种共面情况,从6条棱的中点中取4个点时有3种共面情形(对棱中点连线两两相交且互相平分)故4点不共面的取法为
-(60+6+3)=141 题型九:关于数的整除个数的性质:
①被2整除的:个位数为偶数;
②被3整除的:各个位数上的数字之和被3整除;
③被6整除的:3的倍数且为偶数;
④被4整除的:末两位数能被4整除;
⑤被8整除的:末三位数能被8整除;
⑥25的倍数:末两位数为25的倍数;
⑦5的倍数:个位数是0,5;
⑧9的倍数:各个位数上的数字之和为9的倍数。
(31):用0,1,2,3,4,5组成无重复数字的五位数,其中5的倍数有多少个?(答案:216)
题型十:隔板法:(适用于“同元”问题)
(32):把12本相同的笔记本全部分给7位同学,每人至少一本,有多少种分法? 分析:把12本笔记本排成一行,在它们之间有11个空当(不含两端)插上6块板将本子分成7份,对应着7名同学,不同的插法就是不同的分法,故有 种。
三、在线测试题
洪恩网校
1.以一个正方形的顶点为顶点的四面体共有(D)个(A)70(B)64(C)60(D)58 2.3名医生和6名护士被分配到3所所为学生体检,每校分配1名医生和2名护士,不同的分配方法共有(D)
(A)90种(B)180种(C)270种(D)540种
3.将组成篮球队的12个名额分配给7所学校,每校至少1个名额,则不同的名额分配方法共有(A)
(A)(B)(C)(D)
4.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为(B)(A)480(B)240(C)120(D)96 5.编号为1,2,3,4,5的五个人分别去坐在编号为1,2,3,4,5的座位上,至多有两个号码一致的坐法种数为(C)
(A)90(B)105(C)109(D)100 6.如右图,一个地区分为5个行政区域,现给地图着色,要求相邻区域不得使用同一颜色,现在4种颜色可供选择,则不同的着色方法共有(B)种(用数字作答)(A)48(B)72(C)120(D)36 7.若把英语“error”中字母的拼写顺序写错了,则可能出现的错误的种数是(A)。(A)19(B)20(C)119(D)60 8.某赛季足球比赛的计分规则是:胜一场,得3分;平一场,得1分;负一场,得0分,一球队打完15场,积分33分,若不考虑顺序,该队胜、负、平的情况有(D)(A)6 种(B)5种(C)4种(D)3种
四、课后练习
1.10个不加区别的小球放入编号为1,2,3的三个盒子中,要求每个盒内的球数不小于盒子的编数,问有 种不同的放法?
2.坐在一排9个椅子上,相邻两人之间至少有2个空椅子,则不同的坐法的种数是 3.如图A,B,C,D为海上的四个小岛,要建三座桥,将这四个岛连接起来,不同的建桥方案共有 种。
4.面直角坐标系中,X轴正半轴上有5个点,Y轴正半轴有3个点,将X轴上这5个点或Y轴上这3个点连成15条线段,这15条线段在第一象限内的交点最多有 个。5.某邮局现只有邮票0.6元,0.8元,1.1元的三种面值邮票,现有邮资为7.5元的邮件一件,为使粘贴的邮票张数最小,且邮资恰为7.5元,则至少要购买 张邮票。6.(1)从1,2,„,30这前30个自然数中,每次取出不同的三个数,使这三个 数的和是3的倍数的取法有多少种?
(2)用0,1,2,3,4,5这六个数字,可以组成多少个能被3整除的四位数。
洪恩网校
(3)在1,2,3,„,100这100个自然数中,每次取出三个数,使它们构成一个等差数列,问这样的等差数列共有多少个?
(4)1!+2!+3!+„+100!的个位数字是
7.5个身高均不等的学生站成一排合影,若高个子站中间,从中间到两边一个比一个矮,则这样的排法种数共有()
(A)6种(B)8种(C)10种(D)12种
8.某产品中有4只次品,6只正品(每只产品均可区别),每次取一只测试,直到4只次品全部测出为止,则第五次测试发现最后一只次品的可能情况共有多少种?
《排列和组合的综合应用》多媒体教学的教师小结 数学教师在传统教学环境下也许会遭遇诸如以下的困难: ——我怎样向学生提供更多的相关的学习资料? ——我如何有效地进行课堂检测并及时反馈?
——我怎样让每个学生都参与讨论并且使讨论的结果都呈现出来?
这种在教学资源、教学检测、教学组织上所体现出来的局限,不仅在传统教学环境下难以改变,即使在多媒体辅助教学下也是捉襟见肘。它不仅影响了数学教学效率的提高,更是阻碍了数学教改的进程。
幸而,计算机技术的发展已经到了网络时代,基于Web的网络教学给我们的数学教学带来了革命的曙光。鉴此认真分析教材特点,学生特点开了《排列和组合的综合应用》这堂网络课,现对此进行课后总结:
《排列和组合的综合应用》这堂网络课,教学重点是几种常见命题的形式的解题思路及有关应用。首先,通过排列和组合有关知识的学习,对排列和组合有一个整体上的认识,给学生打下了很好的基础。其次,在教学中,本着以学生为本的原则,让学生自己动手参与实践,使之获取知识。在传统教学过程中,学生主要依靠老师,自主探索的能力不强,因此在本节课学习中,教师在课堂上适时抛出问题,使学生有的放矢,有针对性,知道自己下一步应该做什么,同时组织学生以小组进行讨论学习,防止出现学生纯粹浏览网页这种现象。在强大的网络环境下,让学生探讨排列和组合的区别与联系,自主发现结论,以人机交互的方式,使个性化学习成为可能,体现了学科教学与教育技术的整合。第三、针对数学学科的特点,在学生自主探索发现结论后,还需在理论上给予支持。因此,对各种常见的类型,教师在课堂上分别给予小结,目的是让学生在今后的自主学习中,若遇到同样的问题,有能力自己解决。从而让学生逐步熟悉、形成较为完整的一套自主学习的方法。
在上课的过程中,充分体现出计算机的交互和便捷的特点,学生可以根据需要,在老师的引导下,选择自己学习的进度和内容,去自主的学习和探索。通过实际操作,帮助理解和掌握本节课重点内容。在上课过程中,学生积极思考,相互协作讨论,踊跃回答问题,气氛
洪恩网校
活跃,教学效果好。在学生课后的反馈中,总体的反映都觉得各自获益匪浅,从中学到了不少的东西,切实掌握了排列和组合的有关知识。
当然,本节课还有许多需要改进的地方,如课堂上安排节奏比较快,例题,练习留给学生探索,动手的时间还可以再多一些;另外由于学生电脑的水平以及数学学科的特点,所以许多学生不能很熟练地操作电脑,许多数学符号,公式无法在讨论区中体现。
总之,网络探究的最大好处是学生能够在网络中找到课堂教学中体验过和未体验过的感性知识,提高学生求知欲,增强学习的自主性,使学生的个性在学习中得以充分张扬。而探究过程中的相互交流不仅可扩大知识的摄入量,更可培养学生形成一种在交流中学习成长的意识。因此在网络教学这领域中,今后还有很大的学习空间,做为一名教师,要适应时代的需要,改善自己平时的传统教学思维,大胆创新,努力学习,不断地探索,不断反思。树立现代教育观念,不断学习现代化技术,完善自己,提高素质,才能担负起祖国赋于我们肩上的重任。
洪恩网校
第四篇:数学 -排列、组合、二项式定理-基本原理 -数学教案
教学目标
(1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;
(2)能结合树形图来帮助理解加法原理与乘法原理;
(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;
(4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;
(5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。
教学建议
一、知识结构
二、重点难点分析
本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。
加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。
两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是,做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,如果完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;如果完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。
三、教法建议
关于两个计数原理的教学要分三个层次:
第一是对两个计数原理的认识与理解.这里要求学生理解两个计数原理的意义,并弄清两个计数原理的区别.知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理.(建议利用一课时).
第二是对两个计数原理的使用.可以让学生做一下习题(建议利用两课时):
①用0,1,2,……,9可以组成多少个8位号码;
②用0,1,2,……,9可以组成多少个8位整数;
③用0,1,2,……,9可以组成多少个无重复数字的4位整数; ④用0,1,2,……,9可以组成多少个有重复数字的4位整数; ⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数;
⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整数等等.
第三是使学生掌握两个计数原理的综合应用,这个过程应该贯彻整个教学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现.教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理. 教学设计示例
加法原理和乘法原理
教学目标
正确理解和掌握加法原理和乘法原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力. 教学重点和难点
重点:加法原理和乘法原理.
难点:加法原理和乘法原理的准确应用. 教学用具
投影仪. 教学过程设计
(一)引入新课
从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.
今天我们先学习两个基本原理.
(二)讲授新课
1.介绍两个基本原理
先考虑下面的问题:
问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有2个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?
因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有4+2+3=9种不同的走法.
这个问题可以http://jiaoan.cnkjz.com/Article/Index.html>总结为下面的一个基本原理(打出片子——加法原理):
加法原理:做一件事,完成它可以有几类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法.那么,完成这件事共有N=m1+m2+…+mn种不同的方法.
请大家再来考虑下面的问题(打出片子——问题2):
问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见下图),从A村经B村去C村,共有多少种不同的走法?
这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又各有2种不同的走法,因此,从A村经B村去C村共有3×2=6种不同的走法.
一般地,有如下基本原理(找出片子——乘法原理):
乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有mn种不同的方法.那么,完成这件事共有N=m1×m2×…×mn种不同的方法. 2.浅释两个基本原理
两个基本原理的用途是计算做一件事完成它的所有不同的方法种数.
比较两个基本原理,想一想,它们有什么区别?
两个基本原理的区别在于:一个与分类有关,一个与分步有关.
看下面的分析是否正确(打出片子——题1,题2):
题1:找1~10这10个数中的所有合数.第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,共有2个;第三类办法是找含因数5的合数,共有1个. 1~10中一共有N=4+2+1=7个合数.
题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A村到C村的总时数不超过12时,共有多少种不同的走法?
第一步从A村到B村有3种走法,第二步从B村到C村有2种走法,共有N=3×2=6种不同走法.
题2中的合数是4,6,8,9,10这五个,其中6既含有因数2,也含有因数3;10既含有因数2,也含有因数5.题中的分析是错误的.
从A村到C村总时数不超过12时的走法共有5种.题2中从A村走北路到B村后再到C村,只有南路这一种走法.
(此时给出题1和题2的目的是为了引导学生找出应用两个基本原理的注意事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力)
进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.
如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用乘法原理.
也就是说:类类互斥,步步独立.
(在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应用两个基本原理时,思路进一步清晰和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法.从而深入理解两个基本原理中分类、分步的真正含义和实质)
(三)应用举例
现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了.
例1 书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.
(1)若从这些书中任取一本,有多少种不同的取法?
(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?
(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?
(让学生思考,要求依据两个基本原理写出这3个问题的答案及理由,教师巡视指导,并适时口述解法)
(1)从书架上任取一本书,可以有3类办法:第一类办法是从3本不同数学书中任取1本,有3种方法;第二类办法是从5本不同的语文书中任取1本,有5种方法;第三类办法是从6本不同的英语书中任取一本,有6种方法.根据加法原理,得到的取法种数是 N=m1+m2+m3=3+5+6=14.故从书架上任取一本书的不同取法有14种.
(2)从书架上任取数学书、语文书、英语书各1本,需要分成三个步骤完成,第一步取1本数学书,有3种方法;第二步取1本语文书,有5种方法;第三步取1本英语书,有6种方法.根据乘法原
第五篇:小学奥数经典专题点拨:排列与组合
排列与组合
【有条件排列组合】
例1 用0、1、2、3、4、5、6、7、8、9这十个数字能够组成______个没有重复数字的三位数。
(哈尔滨市第七届小学数学竞赛试题)
讲析:用这十个数字排列成一个不重复数字的三位数时,百位上不能为0,故共有9种不同的取法。
因为百位上已取走一个数字,所以十位上只剩下9个数字了,故十位上有9种取法。
同理,百位上和个位上各取走一个数字,所以还剩下8个数字,供个位上取。
所以,组成没有重复数字的三位数共有
9×9×8=648(个)。
例2 甲、乙、丙、丁四个同学排成一排,从左到右数,如果甲不排在第一个位置上,乙不排在第二个位置上,丙不排在第三个位置上,丁不排在第四个位置上,那么不同的排法共有______种。
(1994年全国小学数学奥林匹克初赛试题)
讲析:因每个人都不排在原来的位置上,所以,当乙排在第一位时,其他几人的排法共有3种;同理,当丙、丁排在第一位时,其他几人的排法也各有3种。
因此,一共有9种排法。
例3 有一种用六位数表示日期的方法,如890817表示1989年8月17日,也就是从左到右第一、二位数表示年,第三、四位数表示月,第五、六位数表示日。如果用这种方法表示1991年的日期,那么全年中六个数字都不相同的日期共有______天。
(1991年全国小学数学奥林匹克决赛试题)
讲析:第一、二位数字显然只能取9和1,于是第三位只能取0。
第五位数字只能取0、1、2或3,而0和1已取走,当取3时,第六位上只能取0和1,显然不行。因此,第五位上只能取2。
于是,第四位上只能取3、4、5、6、7、8;第六位上也只能取3、4、5、6、7、8,且第四、六位上数字不能取同。
所以,一共有 6×5=30(种)。【环形排列】
例1 编号为1、2、3、4的四把椅子,摆成一个圆圈。现有甲、乙、丙、丁四人去坐,规定甲、乙两人必须坐在相邻座位上,一共有多少种坐法?
(长沙市奥林匹克代表队集训试题)
讲析:如图5.87,四把椅子排成一个圆圈。
当甲坐在①号位时,乙只能坐在②或④
号位上,则共有4种排法;同理,当甲分别坐在②、③、④号位上时,各有4种排法。
所以,一共有16种排列法。
例2 从1至9这九个数字中挑出六个不同的数填在图5.88的六个圆圈中,使任意相邻两个圆圈内数字之和都是质数,那么最多能找出______种不同的挑法来。(挑出的数字相同,而排列次序不同的都只算一种)
(北京市第九届“迎春杯”小学数学竞赛试题)
讲析:在1至9这九个自然数中,奇数有1、3、5、7、9五个,偶数有2、4、6、8四个。要使排列之后,每相邻两个数字之和为质数,则必须奇数与偶数间隔排列,也就是每次取3个奇数和3个偶数。
从五个奇数中,取3个数共有10种方法;
从四个偶数中,取3个数共有4种方法。
但并不是每一种3个奇数和3个偶数都可以排成符合要求的排列。经检验,共有26种排法。