人教版数学六年级上册教学设计 圆锥的体积

时间:2019-05-12 17:46:19下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版数学六年级上册教学设计 圆锥的体积》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版数学六年级上册教学设计 圆锥的体积》。

第一篇:人教版数学六年级上册教学设计 圆锥的体积

学情分析美国教育心理学家奥苏伯尔说:如果我不得不把教育心理学还原为一条原理的话,影响学习的最重要的原因是学生已经知道了什么,我们应当根据学生原有的知识状况进行教学。本节课是学生在认识了圆锥特征的基础上进行学习的。圆锥高的概念仍是本节课学习的一个重要知识储备,因而有必要在复习阶段利用直观教具通过切、摸等活动,帮助学生理解透彻。学生分组操作时,肯定能借助倒水(或沙子)的实验,亲身感受等底等高的圆柱与圆锥体积间的3倍关系。但是他们不易发现隐藏在实验中的等底等高的这一条件,这是实验过程中的一个盲点。为凸现这一条件,可借助体积关系不是3倍的实验器材,引导学生经历去粗取精、去伪存真、由表及里、层层逼近的过程,进行深度信息加工。教学过程

一、复习旧知,铺垫孕伏1.(电脑出示一个透明的圆锥)仔细观察,圆锥有哪些主要特征呢?2.复习高的概念。(1)什么叫圆锥的高?(2)请一位同学上来指出用橡皮泥制作的圆锥体模型的高。(提供刀片、橡皮泥模型等,帮助学生进行操作)评析:圆锥特征的复习简明扼要。圆锥高的复习颇具新意,通过动手操作,从而使抽象的高具体化、形象化。

二、创设情境,引发猜想1.电脑呈现出动画情境(伴图配音)。夏天,森林里闷热极了,小动物们都热得喘不过气来。一只小白兔去动物超市购物,在冷饮专柜熊伯伯那儿买了一个圆柱形的雪糕。这一切都被躲在一旁的狐狸看见了,它也去熊伯伯的专柜里买了一个圆锥形的雪糕。小白兔刚张开嘴,满头大汗的狐狸拿着一个圆锥形的雪糕一溜烟跑了过来。(图中圆柱形和圆锥形的雪糕是等底等高的。)2.引导学生围绕问题展开讨论。问题一:狐狸贪婪地问:小白兔,用我手中的雪糕跟你换一个,怎么样?(如果这时小白兔和狐狸换了雪糕,你觉得小白兔有没有上当?)问题二:(动画演示)狐狸手上又多了一个同样大小的圆锥形雪糕。(小白兔这时和狐狸换雪糕,你觉得公平吗?)问题三:如果你是森林中的小白兔,狐狸手中的圆锥形雪糕有几个时,你才肯与它交换?(把你的想法与小组同学交流一下,再向全班同学汇报)过渡:小白兔究竟跟狐狸怎样交换才公平合理呢?学习了圆锥的体积后,就会弄明白这个问题。评析:数学课程要关注学生的生活经验和已有的知识体验,教师在引入新知时,创设了一个有趣的童话情境,使枯燥的数学问题变为活生生的生活现实,让数学课堂充满生命活力。学生在判断公平与不公平中蕴涵了对等底等高圆柱和圆锥体积关系的猜想,他们在这一情境中敢猜想、要猜想、乐猜想,在猜想中交流,在交流中感悟,自然地提出了一个富有挑战性的数学问题,从而引发了学生进一步探究的强烈欲望。

三、自主探索,操作实验下面,请同学们利用老师提供的实验材料分组操作,自己发现屏幕上的圆柱与圆锥体积间的关系,解决电脑博士给我们提出的问题。出示思考题:(1)通过实验,你们发现圆柱的体积和圆锥体积之间有什么关系?(2)你们的小组是怎样进行实验的?1.小组实验。(1)学生分6组操作实验,教师巡回指导。(其中4个小组的实验材料:沙子、水、水槽、量杯、等底等高的圆柱形和圆锥形容器各一个;另外2个小组的实验材料:沙子等,既不等底也不等高的圆柱形和圆锥形容器各一个,体积有8倍关系的,也有5倍关系的。(2)同组的学生做完实验后,进行交流,并把实验结果写在长条黑板上。2.大组交流。(1)组织收集信息。学生汇报时可能会出现下面几种情况,教师把这些信息逐一呈现在插式黑板上:① 圆柱的体积正好是圆锥体积的3倍。② 圆柱的体积不是圆锥体积的3倍。③ 圆柱的体积正好是圆锥体积的8倍。④ 圆柱的体积正好是圆锥体积的5倍。⑤ 圆柱的体积是等底等高的圆锥体积的3倍。⑥ 圆锥的体积是等底等高的圆柱体积的1/3。(2)引导整理信息。指导学生仔细观察,把黑板上的信息分类整理。(根据学生反馈的实际情况灵活进行)(3)参与处理信息。围绕3倍关系的情况讨论:① 请这几个小组同学说出他们是怎样通过实验得出这一结论的?② 哪个小组得出的结论更加科学合理一些?圆锥的体积是等底等高的圆柱体积的1/3。(突出等底等高,并请他们拿出实验用的器材,自己比划、验证这个结论。)③引导学生自主修正另外两个结论。3.诱导反思。(1)为什么有两个小组实验的结果不是3倍关系呢?(2)把一个空心的圆锥慢慢按入等底等高且装满水的圆柱形容器里,剩下水的体积是多少?这时和圆柱体积有什么关系?4.推导公式。尝试运用信息推导圆锥的体积计算公式。(1)这里Sh表示什么?为什么要乘1/3?(2)要求圆锥体积需要知道哪两个条件?5.问题解决。童话故事中的小白兔和狐狸怎样交换才公平合理呢?它需要什么前提条件?(动画演示:等底等高)之后播放狐狸拿着圆锥形雪糕离去的画面。评析:圆锥体积公式的推导,教师敢于大胆放手,让学生自主探索,经历再创造的过程。学生在教师的引导下,通过观察、实验、猜测、验证、推理与交流等数学活动,积极主动地发现了等底等高的圆柱与圆锥体积间的关系,进而推导出圆锥体积的计算公式。特别是数学交流体现得很充分,有学生与教师之间的交流、学生与学生之间的交流以及小组或大组的多向交流,这种交流是立体、交叉型的,它能催化学生的意义建构。在有的小组实验失败后,引导学生在反思中不断进行自我调控,在调控中增强了体验的力度,有效培养了学生的元认知能力。

四、运用公式,解决问题1.教学例1。一个圆锥形的零件,底面积是19平万厘米,高是12厘米。这个零件的体积是多少?2.学生尝试行算,指名板演,集体订正。3.引导小结:不要漏乘1/3;计算时,能约分时要先约分。

五、巩固练习,拓展深化(略)

六、质疑问难,总结升华通过这节课的学习,你们探索到了什么?怎样推导出圆锥体积公式的?回到童话情节。我们发现三个圆锥形的雪糕换一个与它等底等高的圆柱形雪糕公平合理,如果狐狸只用一个圆锥形的雪糕和小白兔交换,而不使小白兔吃亏,那么圆锥形的雪糕应该是什么样的?配合用课件演示、总评1.摸得清,考虑周。教师能深入了解学生,对学生的原有认知水平、知识技能、情感态度,即学习起点能力分析得比较清楚。设计教案时,能充分估计教学过程的复杂性,考虑学生在课堂上可能发生的意外情况,以顺应学生的学习过程,力求构建一种非直线型的教学路径,这样的教学设计思路值得提倡。2.理念新,设计巧。教师能利用《数学课程标准(实验稿)》的理念处理教材,加工教材。如本节课结合了现实中的具体情景,创设了一个学生喜闻乐见的童话情境狐狸和小白兔换雪糕,并把这一故事情节贯穿整节课的始终。教学中尽量做到一波未平,一波又起,整节课的结构浑然一体。教师遵循了现实题材数学问题数学模型数学方法解决问题的过程来设计教学,引导学生亲身经历将实际问题抽象成数学模型,并进行探索与应用的过程,使学生逐步学会用数学知识和方法解决生活中的实际问题。3.重建构,促发展。建构主义学习观认为,学习是学习者主动建构内部心理表征的过程,不同的学习者可能以不同的方式来建构对事物的理解,产生不同的建构结果,本节课在实验探索中,学生通过小组合作,发现出等底等高的圆柱体积是圆锥体积的3倍,有的同学会持反对意见,这样刚刚建立起来的平衡旋即被打破,当大家发现他们的实验器材不等底等高时,又能建立起新的平衡,学生在平衡不平衡新的平衡中,认知结构得到了丰富和发展。多样化的数学活动,如实验、交流、反思、推理、问题解决使学生的意义建构有了坚实的基础。学生的情感在认知的过程中也得到了和谐的发展,他们在相互交往中加深了理解、沟通和包容,品尝到了探索成功的喜悦。

第二篇:六年级数学圆锥的体积教学设计

六年级数学《圆锥的体积》教学设计

教学内容:北师大版数学六年级下册 教材分析

本节内容是北师大版六年级下册圆锥的体积,本节内容是在学生已经掌握了圆锥的特征和圆柱体积的基础上安排的,符合学生的认识特点,本节内容是本单元的难点,目的是通过学生动手操作,在实践活动中探究“圆锥体积的计算方法”,进一步了解圆柱与圆锥的区别与联系,培养学生的综合分析能力和应用能力。学情分析

已经对圆柱和圆锥有了一定的认识,学习了圆柱体积的计算方法,明确圆柱体积的推导方法。在教学几何体这部分内容时学生的参与意识会比较强的,可能遇到的困难是在实际应用体积公式进行计算时忽略了×的现象。教学目标:

1、引导学生运用转化思想,通过实验的方法,理解和掌握圆锥体积公式,并能运用公式正确地计算圆锥的体积;解决一些实际问题。

2、提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。

3、使学生在经历中获得成功的体验,体验数学与生活的联系;渗透事物之间是相互联系的辩证唯物主义思想。

教学重点、难点:

重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题; 难点:理解圆锥和等底等高圆柱体积间的倍数关系。教具准备:

等底等高、等底不等高、等高不等底的圆锥和圆柱容器共三套,细沙、米,实验报告单;带有刻度的直尺,绳子等。教学过程:

(一)创设情境,导入新课

1、故事:一天,洋洋准备在冷饮店去买冰淇凌,售货员拿出两支不同形状的冰淇凌,一是圆柱形的,一是圆锥形的,都卖两元钱。洋洋想:我买那一种划算呢?你们能帮他解决到底买哪种形状的冰淇凌更划算吗?

二、抓旧引新

迁移引入 提问:圆柱体的体积公式是什么?生答师板书。指名说说推导过程。

2、设疑:那圆锥体呢?要想知道它的体积该量什么?怎样计算呢? 同学们想不想知道?今天我们来研究“圆锥的体积”(板书课题)

三、看题引问

明确目标

看到课题,你想知道什么?

四、探究新知

1、猜想圆锥的体积与我们所学的那个知识联系最紧密?

2、我们可不可以将圆锥的体积转化成圆柱的体积来计算呢?

3、提出猜想

(1)讨论:如果让你选择一个圆锥和一个圆柱来进行转化探究,你打算选什么样的?

通过讨论,让学生明确只有等底等高的圆锥和圆柱才可以比较。

(2)在讨论的基础上,出示一组等底等高的圆柱和圆锥,猜想圆锥体积是等底等高的圆柱体积的几分之几?

师简要板书。

4、验证猜想

(1)学生小组合作、操作实验,填写实验报告单。(2)各小组汇报实验方法和结论。(3)教师课件演示,再次验证。

5、课件演示,强化推导过程,归纳结论

根据实验和讨论,想一想:可以怎样求圆锥的体积? 师相机板书:圆锥体积=底面积×高×

追问:“底面积×高”求的是什么?为什么要乘?

6、用字母表示公式

学生尝试用字母表示公式后,自学课本p30用字母表示公式的一段,对照检查。板书:V=Sh

7、练一练:完成“试一试”

说说要求圆锥的体积必须知道哪些条件? 出示“试一试”学生独立解答,集体讲评。

五、尝试练习,强化重点

完成课堂之初的“小麦体积”生独立完成,集体讲评。

六、看书质疑,拓展延伸

看书第11页,有那些收获,还有那些疑惑提出来大家一起讨论。

七、达标训练,形成能力

1、填空

(1)、圆柱和圆锥在等底等高的情况下,圆柱的体积是圆柱体积的(),圆锥体积是圆柱体积的()。

(2)、圆柱的体积是15立方厘米,与它等底等高的圆锥的体积是()立方厘米。

(3)、圆锥的体积21立方米,与它等底等高的圆柱的体积是()立方米。

(4)、一个圆锥的底面积是24平方分米,高5分米,圆锥的体积是()立方分米。

(5)、一个底面半径是2厘米的圆锥,高3厘米,体积是()立方

八、全课总结,提出希望

这节课你有什么收获?你是怎样获取这些知识的?有什么需要提醒大家注意的地方或是自己还不明白的地方?

板书设计: 圆锥的体积

圆锥的体积=圆柱的体积(圆柱和圆锥等底等高)圆锥的体积=底面积 V= Sh 集体备课:

数学

六年下册

圆锥的体积

教学设计

刘春彦

圆柱的体积 教学反思

教学圆锥的体积是学生在掌握了圆锥的认识和圆柱的体积的基础上教学的。是小学几何初步知识教学的重要内容。本节教学分两个层次进行,一是推导圆锥体积计算公式,二是运用公式求圆锥的体积。我在教学时,主要运用了探究式的教学方法进行教学,收到了较好的效果,现总结以下几点做法:

一、大胆猜测,培养猜测意识。

假设和猜想是科学的天梯,是科学探究的重要一环。任何发明创造我想都是离不开假设和猜想的。基于这样的认识,结合本节课教学内容的特点,我在教学中借助教具和学具,让学生充分观察等底等高的圆柱和圆锥后,再大胆猜想它们的体积可能会有什么样的关系?这样设计,事实证明不仅仅是能够培养学生的猜测意识,更重要的是充分调动了所有学生的积极性,大家探究的欲望强烈,为本节课的成功教学奠定了基础。

二、操作验证,培养科学的实验观。

数学不仅是思维科学,也是实验科学,通过观察猜想,实验操作得到数学结论,这种形式也是进行科学研究的最基本形式.教学中,使学生通过自主探究实验得出结论:圆锥的体积是与这个圆锥等底等高的圆柱体积的三分之一。从而总结出圆锥体积的计算公式:V=Sh。教学圆锥的体积计算时先分组做实验,在空圆锥里装满沙子(或大米),然后倒入空等底等高的圆柱中,从倒的次数中观察到怎样的现象呢?两者体积之间有怎样的关系。我们将空圆锥里装满沙子(或大米),然后倒入空圆柱中,三次正好装满。说明圆锥的体积是圆柱的三分之一。然后用不等底等高的圆锥和圆柱所得的情况与以上不同。最后得到一个原理等底等高。圆锥的体积等于和它等底等高的圆柱体积的三分。《圆锥的体积》的教学都是先由教师演示等底等高情况下的三分之一,再让学生去验证,最后教师通过对比实验说明不等底等高的差异,而在以上教育中却不然,我先采用学生做实验的方法,让学生亲自实践,在实际中懂得其中的道理,用一个等底等高圆柱和圆锥,让学生分组进行实际操作,使学生清楚的知道其中的知识点,明白了圆锥与圆柱之间的体积关系,从而是学生发现其中的数学原理,而且我有意地将实验的环节复合,在看似混乱无序的实践中,增加了学生对实验条件的辨别及信息的批判,同时这也是这堂课需要解决的重点和难点。

三、自主探究,培养参与意识

在整个教学过程中,我非常重视让学生参与教学的全过程,学生始终是活动的主体,我则是这一活动的组织者、指导者、和参与者。同时引导学生用科学的态度去对待这个实验,实事求是,认真分析自己操作实验出现了和别人不太一样的结论的原因,培养学生科学实验观。学生学的主动,经历了一番观察、发现、合作、探究的过程,既能达到圆满地推导出了圆锥的体积公式,又使学生的实践能力得到发挥.总之,这节课,每个学生都经历了猜想---实验---发现的自主探究学习的过程。学生获得的不仅是鲜活的数学知识,获得更多的是科学探究的学习方法和研究问题的方法,孩子们体验到了探究成功的喜悦,进行了探究失败的深刻反思,有利于从小树立科学的实验观。我思考:如果长期在这样的探究中去学习知识,学生就会变成有思想、会思考、会研究、会学习的人。我为自己加油:做一个引领学生学会探究学习的好老师。不足:

1、仍有少数学生在计算过程中常忘记除以3,需要加强练习。

2.仍有少数学生计算能力还不过关,口算也不过关,导致计算失败。

3、一节好课在教学时要层次清楚,步步深入,重点突出。应注意激发学生的求知欲。要有全体学生的积极参与,突出学生的主体作用。我在这几个方面还要加强。

三、措施:

1、培养学生养成良好的学习习惯,做题时认真仔细。

2、认真的去设计教学过程,要更加熟悉教学的各个环节,设计好课件,上课要用心去感受学生课堂上出现的各种情况,使自己更有激情,把自己更好地融入到课堂教学中去。

第三篇:《圆锥体积》教学设计

《圆锥的体积》教学设计

教学目标:

1.通过“演示、猜测、操作、验证”使学生理解和掌握圆锥体积的计算公式,会运用公式计算圆锥的体积并能运用公式解决简单的实际问题。

2.在推导公式过程中,通过小组合作、动手实验的方法,培养学生分析、推理的能力及抽象概括能力,发展学生空间观念。

3.在探究公式的过程中,向学生渗透“事物之间是相互联系”的,并通过活动,使学生形成良好的合作探究意识。

教学重点:理解和掌握圆锥体积的计算公式。教学难点:圆锥体积公式的推导过程。教 具:ppt课件

学 具:圆柱、圆锥量杯各一个,水一桶。教学过程:

一、复习旧知,设疑导入

1、前几节课我们学习了圆柱的体积,圆柱的体积的计算公式你还记得么?字母公式又怎样表示?(板书:v =sh)

2、一个圆柱的底面积是60平方分米,高是15分米,它的体积是多少立方分米?

课件出示圆锥形谷堆,问:它占了多大的空间呢?圆锥的体积怎样计算呢?他又是怎样推导出来了呢?这节课我们就来研究这个问题。(板书课题:圆锥的体积)

二、科学验证,经历过程

引导学生借助圆柱,用实验的方法,推导圆锥的体积公式。教师出示实验用具:圆柱,圆锥,水。

1、引导学生观察圆锥、圆柱的特点。

通过看一看,比一比,有什么特点?(学生发现等底等高)(师板书:等底等高)

2、这个圆柱和圆锥,谁的体积大?谁的体积小?你是怎样想的?(圆柱的体积大,它们等底等高,圆锥上面是尖的,所以体积小)

3、学生实验。(把学生分成六组)

实验要求:把圆锥装满水倒进等底等高的圆柱中,观察要几次才能倒满。

学生分小组动手演示:

(1)通过实验,你们发现了所给的圆锥、圆柱在体积上有什么关系?

(2)根据这个关系怎样求出圆锥的体积?

4、学生汇报,完成计算公式的推导:

一名学生汇报,师板书。

生:我们把圆锥装满水,倒入这个等底等高的圆柱体当中,正好倒了3次倒满,得出圆锥的体积等于这个等底等高圆柱的体积的1/3,因为圆柱的体积v=sh,所以圆锥的体积v =1/3sh(教师板书)

等底等高V=1/3Sh

5、教师课件再演示:圆柱体积与圆锥体积的关系。

6、找条件:根据这个公式就可以求出圆锥的体积,要计算圆锥的体积需要知道那些条件?

7、(反例子)强调等底等高: 同学们经过实验,发现了用来实验的圆锥的体积等于圆柱的体积的1/3,老师也想做实验:出示一个非常大的圆柱,一个很小的圆锥,这个圆柱的体积是圆锥体积的3倍吗?(你有什么看法、为什么?)

强调:圆锥的体积等于与它等底等高的圆柱的体积的1/3。(让学生说)

三、巩固练习,运用拓展 1.填空:(1)、一个圆柱体体积是27立方分米,与它等底等高的圆锥的体积是()立方分米。

(2)、一个圆锥体积是15立方厘米,与它等底等高的圆柱的体积是()立方厘米。

2.计算下列圆锥的体积(1)、底面半径2厘米,高6厘米。(2)、底面半径3厘米,高3厘米。

3、一个近似于圆锥的沙堆,测得底面直径是4米,高是1.5米。每立方米沙约重1.7吨,这堆沙约重多少吨?(得数保留整吨数)

4.如图,直角梯形ABCD,以AB为旋转轴旋转一周,所围成几何图形的体积是多少?

四、整理归纳,回顾体验

本节课学习了什么?这节课你有什么收获?

(从两个方面谈:圆锥体体积公式的推导方法和公式的应用)

板书:

圆锥的体积

v =sh 等底等高 V =1/3Sh

第四篇:圆锥体积教学设计

《圆锥的体积》教学设计

教学内容:人教版《义务教育课程标准实验教科书数学》六年级下册圆锥的体积 教学目标:1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。

2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。

教学重点和难点:圆锥体体积公式的推导。教学过程:

(一)、复习准备

一、创设情境,导入新课

1、故事情景 渗透转化

师:你知道《曹冲称象》的故事吗?

2、圆锥实物 揭示课题

① 教师出示一筒沙子。师:将这筒沙子倒在桌上,会变成什么形状?这是什么体?(圆锥体)(板书:圆锥)上节课我们已经认识了圆锥体

在这几个圆锥体中,几号线段是圆锥体的高,就举手示意。你为什么选2号线段呢?为什么不选3号、4号呢?(指名回答)(二)学习新课

一、问题引入

(老师拿出不等底、不等高,但体积相等的一个圆柱体和一个圆锥体问学生)这两个圆锥哪个体积大,哪个体积小?(引起学生争论,说法不一。)看来我们只凭眼睛看是不能准确地得出谁的体积大,谁的体积小,必须通过测量计算出它们的体积,这节课我们就重点研究圆锥的体积。

二、教师引导、学生合作学习

(1)为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?

(学生得出:底面积相等,高也相等。)底面积相等,高也相等,用数学语言说就叫“等底等高”。(2)那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)你可以用大米、水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。注意,用大米做实验的同学不要浪费一粒粮食。

(3)学生分组做实验,教师巡视。

学生先在小组里面讨论如何试验,然后再做试验。有困难可以看书第25、26页。

谁来汇报一下,你们组是怎样做实验的?

你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?(学生发言。)同学们得出这个结论非常重要,其他组也是这样的吗?

我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)(不是)是啊,(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了米,往这个小圆柱体里倒,倒三次能倒满吗?(不能)

现在我们得到的这个结论就更完整了。(指名反复叙述公式。)今后我们求圆锥体体积就用这种方法来计算。

(三)巩固反馈 1.口答。

2.板书例题。

例 一个圆锥体,它的底面积10cm2,高6cm,它的体积是多少?(指名回答,老师板书。)

3.练习题。一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)4.选择题。每道题下面有3个答案,你认为哪个答案正确就举起几号卡片。(1)一个圆锥体的体积是a(dm3),和它等底等高的圆柱体体积是()(dm3)。

(1)、a+3(dm3)(2)、3a(dm3)(3)、a3(dm3)(举卡片反馈,订正。)(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6cm3,圆锥体体积是()cm3。

6.出思考题:

现在我们比一比谁的空间想象能力强。看看我们的教室是什么体?(长方体)要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)指名发言。当争论不出结果时,老师给数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大。

(四)总结、质疑

这节课我们学了什么知识?你还有什么不懂的地方

《 圆锥的体积》的说课材料

《数学课程标准》指出:“有效的数学学习活动不能单纯地依赖模仿和记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。”因此,在教学圆锥体积计算时,一改以前教师演示或在教师指令下实验的做法;采取提供学生材料和机会,引导学生自主探究的学习方式。具体表现在:(1)密切数学与现实的联系,富有儿童情趣。学生从熟悉的经典历史故事《曹操称象》中,理解了“大象”转化为“石头”的等量代换的数学方法,渗透转化的方法,为新知识作好铺垫和准备。又从刨铅笔直观引入,引发学生大胆猜想,学生的主动性,探究性得到培养。实验中的米、沙、水;最后,习题中又回归生活,延伸了课堂。

(2)致力于改变学生的学习方式。在教学过程中,能够在学生已有的知识经验基础和动手操作上,经过学生自主探索与合作交流,解决了与生活经验密切联系,具有挑战性的问题。课堂中,启发学生提问,猜想,动手测量,注重了解决问题能力的培养,体验到了成功的快乐。

(3)学习过程中揭示了一般科学的研究方法: 提出问题——直觉猜想——实验探索——合作交流——实验验证——得出结论——实践运用。这为以后的探究学习提供了一个基本方法,使学生在自主探索中掌握了知识,同时获得了最广泛的数学活动经验、理想和方法,更发展了学生的反思意识、小组自我评价意识。

纵观本节课的设计,运用现代教学理论,以新课程的理念指导教学,较好的处理了主导和主体、知识和能力、过程和结论的关系,充分调动了学生的积极性,引导全体学生动脑、动手、动口参与学习的全过程。整节课教学目标明确,教学层次清楚。结构严谨,重点突出,取得了良好的教学效果。

第五篇:圆锥体积 教学设计2010

《圆锥体积》教学设计

野角中心校 杨宗华

教学目标

1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。教学重点和难点: 圆锥体体积公式的推导。教学过程设计(一)复习导入新课:

1.我们每组桌上都摆着几何形体,哪种形体的体积我们已经学过了?举起来。这是什么体?(圆锥体)(板书,在“圆锥”二字的后面写“的体积”。)(复习内容紧扣重点,由实物到实间图形,采用对比的方法,不断加深学生对形体的认识。)(二)学习新课

(老师拿出一大一小两个圆锥体问学生)这两个圆锥体哪个体积大,哪个体积小?

(再拿出不等底、不等高,但体积相等的一个圆柱体和一个圆锥体)这两个形体哪个体积大,哪个体积小?(引起学生争论,说法不一。)看来我们只凭眼睛看是不能准确地得出谁的体积大,谁的体积小,必须通过测量计算出它们的体积。圆柱体的体积我们已经学过了,等我们学完了圆锥的体积再来解决这个问题。为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?(学生得出:底面积相等,高也相等。)底面积相等,高也相等,用数学语言说就叫“等底等高”。(板书:等底 等高)既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行)为什么?(因为圆锥体的体积小)(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)的大米、水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。注意,用大米做实验的同学不要浪费一粒粮食。(学生分组做实验。)谁来汇报一下,你们组是怎样做实验的?

你们做实验的圆柱体和圆锥体在体积大小上有什么倍数关系?(学生发言。)同学们得出这个结论非常重要,其他组也是这样的吗? 我们学过用字母表示数,谁来把这个公式整理一下?(指名发言)(不是)是啊,(老师拿起一个小圆锥、一个大圆柱)如果老师把这个大圆锥体里装满了米,往这个小圆柱体里倒,倒三次能倒满吗?(不能)为什么你们做实验的圆锥体里装满了水或米往圆柱体里倒,倒三次能倒满呢?(因为是等底等高的圆柱体和圆锥体。)

呢?(在等底等高的情况下。)(老师在体积公式与“等底等高”四个字上连线。)

现在我们得到的这个结论就更完整了。(指名反复叙述公式。)今后我们求圆锥体体积就用这种方法来计算。

(老师在教学中,注意调动学生的学习积极性,采用分组观察,操作,讨论等方法,突出了学生的主体作用。)(三)巩固反馈 1.口答。填空: 2.板书例题。

例 一个圆锥体,它的底面积10cm2,高6cm,它的体积是多少?(指名回答,老师板书。)答:它的体积是20cm3。3.练习题。

一个圆锥体,半径为6cm,高为18cm。体积是多少?(学生在黑板上只列式,反馈。)4.我们已经学会了求圆锥体的体积,现在我们会求前面遗留问题中的比大小的圆锥体体积了。

(幻灯出示其中之一)这个圆锥体,直径为10cm,高为12cm,求体积。(学生在小黑板上只写结果,举黑板反馈。)你们求出这个圆锥体的体积是314cm3。现在告诉你们另一个圆柱体的体积我已经计算出来了,它的体积也是314cm3。这两个形体体积怎样?(一样)刚才我们留下的问题就解决了,看来判断问题必须要有科学依据。

5.选择题。每道题下面有3个答案,你认为哪个答案正确就举起几号卡片。(1)一个圆锥体的体积是a(dm3),和它等底等高的圆柱体体积是()(dm3)。②3a(dm3)③a3(dm3)(举卡片反馈,订正。)(2)把一段圆钢切削成一个最大的圆锥体,圆柱体体积是6cm3,圆锥体体积是()cm3。

(学生举卡片反馈,订正。)6.刚才都是老师给你们数据,求圆锥体体积,你们能不能直接告诉我你们桌上的圆锥体体积是多少呢?(不能)为什么?(因为不知道底面积和高。)需要测量什么?(底面半径和高。)怎么测量?(小组讨论。)(指名发言)今天回家后,把你们测量的数据写在本子上,再计算出体积。这节课我们学了什么知识? 出思考题:

现在我们比一比谁的空间想象能力强。看看我们的教室是什么体?(长方体)要在我们的教室里放一个尽可能大的圆锥体,想一想,怎样放体积最大?(小组讨论)指名发言。当争论不出结果时,老师给数据:教室长12m,宽6m,高4m。并板书出来,再比较怎样放体积最大。(四)指导看书,布置作业

(五)全课总结:

今天同学都有什么收获呢?会求圆锥的体积了吗?

《附》课堂教学设计说明: 本节课的主要特点有以下几点:

一是始终注意激发学生的求知欲。新课一开始就让学生观察,猜测两组圆锥的大小,激发学习的欲望。在公式推导过程中又引导学生估计两个等底等高的圆柱和圆锥的体积之间的倍数关系,使学生的学习兴趣进一步高涨。在应用公式的教学中,又把问题转向了课初学生猜测体积大小的两个圆锥,并引导学生边测量,边计算,终于使悬念得出了满意的结果,使学生获得了成功的喜悦。

二是在教学中重视以学生为学习活动的主体,整个公式的推导,是建立在学生分组观察、实验操作、测量的基础上的,学生不仅参与了获取知识的全过程,更重要的是参与了获取知识的思维过程。

三是教学层次清楚,步步深入,重点突出。

四是练习有坡度,形式多,教学反馈及时、准确、全面、有效

下载人教版数学六年级上册教学设计 圆锥的体积word格式文档
下载人教版数学六年级上册教学设计 圆锥的体积.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    圆锥体积教学设计

    教学进度:圆锥的体积 练习一 实践活动 教学内容:圆锥的体积 教材分析: 圆锥体积的计算方法是在探索圆柱体积计算方法的基础上,教材继续渗透类比的思想,再次引导学生经历“类比猜......

    圆锥体积教学设计

    一、教学目标 1、知识与技能 理解圆锥体积公式的推导过程,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积。 2、过程与方法 通过操作、实验、观察等方式,引......

    圆锥体积教学设计

    第十二册数学《圆锥的体积》教学设计 课题:《圆锥的体积》 备课、授课人:泰永梅 课时数:1课时(35分钟) 教材解读 教材解读:圆锥是小学几何初步知识的最后一个教学内容,是学生在......

    人教新课标六年级下册数学教案 圆锥的体积 4教学设计

    圆锥的体积 教学目的: 1.使同学们初步掌握圆锥体积的计算公式。 2.并能运用公式正确地计算圆锥的体积。 3.发展同学们的空间观念。 教学过程: 一、复习 1.圆锥有什么特征? 使......

    人教新课标六年级下册数学教案 圆锥的体积 1教学设计

    圆锥的体积 教学目标: 1.知识目标: 通过实验推导出圆锥体积计算公式,并能运用公式计算圆锥的体积,解决有关的实际问题。 2.能力目标: (1)培养观察、猜测、操作能力。 (2)培养良好的合......

    六年级数学下册《圆锥的体积》教学设计(人教版)

    《圆锥的体积》教学设计 教学目标: 1.通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。 2.通过学生动脑、动手,培养学生的思维能力和空间想象能力。3......

    人教版六年级《圆锥的体积》教学设计

    人教版六年级《圆锥的体积》教学设计教学内容:六年级下册数学课本第25页例2和相应的练习。 教学目标: 1、引导学生通过实验,推导出圆锥体积的计算公式,并能运用计算公式求圆锥......

    教学设计六年级下册圆锥的体积

    圆锥的体积 龙首村小学 万瑞 教材分析: 圆锥的体积是在学生已经掌握了圆柱体积计算及应用和认识了圆锥的基本特征的基础上学习的,是小学阶段学习几何知识的最后一课时的内容。......