小学奥数三年级第5讲 平均数

时间:2019-05-12 17:03:55下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《小学奥数三年级第5讲 平均数》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《小学奥数三年级第5讲 平均数》。

第一篇:小学奥数三年级第5讲 平均数

第7讲

平均数

一组数的和除以这组数的个数,称为这组数的平均数。

例1、5个连续自然数的中间一个数是45,这5个数的和是多少?

分析5个连续自然数的第3个数是45,第2个(44)与第4个(46)相加是两个45,第1个(43)与第5个(47)相加是两个45。

和是

45×5=225

随堂练习1 计算56+57+58+59+60+61+62+63+64 一般地,奇数个连续自然数的和等于中间一项乘以项数。换句话说,奇数个连续自然数的平均数就是中间的那个数。高斯求和方法的实质就是

和=平均数×项数

偶数个连续自然数的平均数不是整数,我们现在尚未学到。所以先将第一项加最后一项,第二项加倒数第二项……直至中间两项相加,这些和都相等。而个数是项数的一半,所以偶数个连续自然数的和等于中间两项的和(也即首末两项的和)乘以项数除以2.例2、8个连续自然数的和是108,写出这8个数。

分析

因为中间两个数相加再乘以4(=8÷2)等于108,所以中间两项的和可以求出来。

解 中间两项的和是108÷(8÷2)=27 又

27=13+14 所以中间两项是13、14.这8个数是10、11、12、13、14、15、16、17.(由13往前数4个数到10,由14往后数4个数到17)答:这8个连续的自然数是10、11、12、13、14、15、16、17.随堂练习2 6个连续自然数的和是273,这6个数中的第一个数是多少?

3、求出以下28个数的平均数: 12、13、13、14、15、16、16、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、35.分析与解

这28个数的和是(12+13+14+……+35)+13+16+16+35 求出和再除以28就得到平均数,但比较麻烦。如果注意到25个连续自然数11、12、13,……,35的平均数是23(中间一项),那么就比较容易。

因为 13+16+16+35 =(11+2)+(23+12)+(23-7)+(23-7)=11+23+23+23 所以原来的和就是11+12+13+……+35+23+23+23,原来28个数的平均数正好是23.随堂练习3 求28个数:12、13、14、14、14、15、16、17、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、35的平均数。

4、求数列 1、2、4、5、7、8,……,46、47、49、50、52、53(1)的规律,并求这组数的和与平均数。

分析 数列的奇数项数的项组成等差数列(公差是3)1、4、7,……,49、52.(2)数列的偶数项数的项组成等差数列(公差也是3)2、5、8,……,50、53.(3)

分别求出数列(2)(3)的和,再相加,可以得出所求的和,再得出平均数。但更为简单的办法是直接运用高斯的思想。注意: 1+53=2+52=4+50=……=25+29=26+28(4)解 1与53的平均数是27,也就是1+53可以换成2个27相加。同样,2+52,4+50,……,26+28都可以换成27+27.因此(1)的和是27×36=972.从例4可以看出,如果一组数可以分成许多小组,各小组的平均数都相等,那么这个相等的数就是这组数的平均数(例4中,每个小组2个数的和是54,每个小组的平均数是27)。

随堂练习4 寻找数列4,2,5,8,6,14,7,20,……,12,50,13,56的规律,并求这数列的和。

练习题:

(1)求1至100内能被4整除余1的所有数的和。

(2)求1至100内既是3的倍数又是5的倍数的所有数的和。

(3)有10只盒子,44只乒乓球。把这44只乒乓球放到盒子中,每个盒子中至少要放一个球,能不能使每个盒中的球数都不相同?

(4)影剧院共有25排座位,第一排有20个座位,以后每排比前一排多2个座位,问:影剧院共有多少个座位?

(5)时钟在每个整点时敲这钟点数,每半点钟时敲1下,问:一昼夜该时钟总共敲多少下?(6)求所有三位数的和。

(7)求1至100(包括100在内)的所有5的倍数的和。

(8)50把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,试多少次就足够了?

(9)已知数列:2,5,3,3,7,2,5,3,3,7,2,5,3,3,7,……。这个数列的第30项是哪个数?到第25项止,这些数的和是多少?

(10)24个连续自然数12―35,再添上一个35,一个13,两个16.这28个数的平均值是多少?

第二篇:启新教育三年级奥数第九讲平均数

启新教育三年级奥数第九讲平均数

把一个(总)数平均分成几个相等的数,相等的数的数值就叫做这个(总)数的平均数。

例如,24平均分成四个数:6,6,6,6,数6就叫做24分成四份的平均数。

又如,24平均分成六个数:4,4,4,4,4,4,数4就叫做24分成六份的平均数。

由此可见,平均数是相对于“总数”和分成的“份数”而言的。知道了被均分的“总数”和均分的“份数”,就可以求出平均数:

总数÷份数=平均数。

“平均数”这个数学概念在我们的日常生活和工作中经常用到。例如,某次考试全班同学的“平均成绩”,几件货物的“平均重量”,某辆汽车行驶某段路程的“平均速度”等等,都是我们经常碰到的求平均数的问题。根据求平均数的一般公式可以得到它们的计算方法:

全班同学的总成绩÷全班同学人数=平均成绩,几件货物的总重量÷货物件数=平均重量,一辆汽车行驶的路程÷所用的时间=平均速度。

我们在上一讲的例2中,已经接触到求平均数的应用题,下面再举一些例子来说明有关平均数应用问题的解法。

例1一小组六个同学在某次数学考试中,分别为98分、87分、93分、86分、88分、94分。他们的平均成绩是多少?

解:总成绩=98+87+93+86+88+94=546(分)。

这个小组有6个同学,平均成绩是

546÷6=91(分)。

答:平均成绩是91分。

例2把40千克苹果和80千克梨装在6个筐内(可以混装),使每个筐装的重量一样。每筐应装多少千克?

解:苹果和梨的总重量为40+80=120(千克)。

因要装成6筐,所以,每筐平均应装

120÷6=20(千克)。

答:每筐应装20千克。

例3小明家先后买了两批小猪,养到今年10月。第一批的3头每头重66千克,第二批的5头每头重42千克。小明家养的猪平均多重?

解:两批猪的总重量为 66×3+42×5=408(千克)。

两批猪的头数为3+5=8(头),故平均每头猪重

408÷8=51(千克)。答:平均每头猪重51千克。

注意,在上例中不能这样来求每头猪的平均重量:

(66+42)÷2=54(千克)。

上式求出的是两批猪的“平均重量的平均数”,而不是(3+5=)8头猪的平均重量。这是刚接触平均数的同学最容易犯的错误!

例4一个学生为了培养自己的数学解题能力,除了认真读一些书外,还规定自己每周(一周为7天)平均每天做4道数学竞赛训练题。星期一至星期三每天做3道,星期四不做,星期五、六两天共做了13道。那么,星期日要做几道题才能达到自己规定的要求?

分析:要先求出每周规定做的题目总数,然后求出星期一至星期六已做的题目数。两者相减就是星期日要完成的题目数。

每周要完成的题目总数是4×7=28(道)。星期一至星期六已做题目3×3+13=22(道),所以,星期日要完成28-22=6(道)。

解:4×7-(3×3+13)=6(道)。答:星期日要做6道题。

例5三年级二班共有42名同学,全班平均身高为132厘米,其中女生有18人,平均身高为136厘米。问:男生平均身高是多少?

解:全班身高的总数为 132×42=5544(厘米),女生身高总数为

136×18=2448(厘米),男生有42-18=24(人),身高总数为

5544-2448=3096(厘米),男生平均身高为 3096÷24=129(厘米)。

综合列式:

(132×42-136×18)÷(42-18)=129(厘米)。

答:男生平均身高为129厘米。例6小敏期末考试,数学92分,语文90分,英语成绩比这三门的平均成绩高4分。问:英语得了多少分?

分析:英语比平均成绩高的这4分,是“补”给了数学和语文,所以三门功课的平均成绩为

(92+90+4)÷2=93(分),由此可求出英语成绩。

解:(92+92+4)÷2+4=97(分)。答:英语得了97分。练习

1.一班有40个学生,二班有42个学生,三班有45个学生。开学后又转学来了11个学生。怎样分才能使每班学生人数相等?

2.小岗计划4天做15道数学题,结果多做了9道。平均每天做了多少道?

3.一小组同学体检量身高时发现其中2人的身高是123厘米,另外4人的身高均为132厘米。这个小组同学的平均身高是多少?

4.小梅做跳绳练习,第一次跳了67下,第二次跳了76下。她要想三次平均成绩达到80下,第三次至少要跳多少下?

5.一农机站有960千克的柴油。用了6天,还剩240千克。照此用法,剩下的柴油还可用几天?

6.小浩为培养自己的阅读能力,自己规定这一个月(30天)要读完共288页的彩图世界童话名著《伊索寓言》。头9天平均每天读了8页,第二个9天平均每天读了10页,第三个9天平均每天读了11页。最后三天平均每天需要读几页才能达到自己规定的要求?

7.五个同学期末考试的数学成绩平均94分,而其中有三个同学的平均成绩为92分,另两个同学的平均成绩是多少?

8.小亮学游泳,第一次游了25米,第二次游的距离比两次游的平均距离多8米。小亮第二次游了多少米?

9.篮球队中四名队员的平均身高是182厘米,另一名队员的身高比这五队员的平均身高矮8厘米,这名队员的身高是多少? 答案与提示

1.一、二、三班分别转入6,4,1人。

提示:每班应有(40+42+45+11)÷3=46(人)。2.6道。解:(15+9)÷4=6(道)。

3.129厘米。解:(123×2+132×4)÷6=129(厘米)。4.97下。解:80×3-(67+76)=97(下)。

5.2天。解:240÷[(960—240)÷6]=2(天)。6.9页。解:[288-(8+10+11)×9]÷3=9(页)。7.97分。解:(94×5-92×3)÷2=97(分)。8.41米。解:25+8×2=41(米)。9.172厘米。

解:这名队员比平均身高矮的这8厘米,是由另四名队员给“补上”的,所以平均身高为182-8÷4=180(厘米),这名队员身高180-8=172(厘米)。

第三篇:三年级奥数第9次课:平均数(学生版)

【我生命中最最最重要的朋友们,请你们认真听老师讲并且跟着老师的思维走。学业的成功重在于考点的不断过滤,相信我赠予你们的是你们学业成功的过滤器。谢谢使用!!】

平均数

一、考点、热点回顾

1、平均数:把一个(总)数平均分成几个相等的数,相等的数的数值就叫做这个(总)数的平均数。把几个不相等的数,在总和不变的条件下,通过移多补少,使他们完全相等,得到的数就是平均数。例如,24平均分成四个数:6,6,6,6,数6就叫做24分成四份的平均数。又如,24平均分成六个数:4,4,4,4,4,4,数4就叫做24分成六份的平均数。

2、平均数是相对于“总数”和分成的“份数”而言的。知道了被均分的“总数”和均分的“份数”,就可以求出平均数:

总数÷份数=平均数。平均数×总份数=总数量 总数量÷平均数=总份数

3、“平均数”这个数学概念在我们的日常生活和工作中经常用到。例如,某次考试全班同学的“平均成绩”,几件货物的“平均重量”,某辆汽车行驶某段路程的“平均速度”等等,都是我们经常碰到的求平均数的问题。根据求平均数的一般公式可以得到它们的计算方法:

全班同学的总成绩÷全班同学人数=平均成绩,几件货物的总重量÷货物件数=平均重量,一辆汽车行驶的路程÷所用的时间=平均速度。

二、典型例题

1、一小组六个同学在某次数学考试中,分别为98分、87分、93分、86分、88分、94分。他们的平均成绩是多少?

2、把40千克苹果和80千克梨装在6个筐内(可以混装),使每个筐装的重量一样。每筐应装多少千克?

3、小明家先后买了两批小猪,养到今年10月。第一批的3头每头重66千克,第二批的5头每头重42千克。小明家养的猪平均多重?

4、一个学生为了培养自己的数学解题能力,除了认真读一些书外,还规定自己每周(一周为7天)平均每天做4道数学竞赛训练题。星期一至星期三每天做3道,星期四不做,星期五、六两天共做了13道。那么,星期日要做几道题才能达到自己规定的要求?

5、三年级二班共有42名同学,全班平均身高为132厘米,其中女生有18人,平均身高为136厘米。问:男生平均身高是多少?

6、小敏期末考试,数学92分,语文90分,英语成绩比这三门的平均成绩高4分。问:英语得了多少分?

三、习题巩固

1、一班有40个学生,二班有42个学生,三班有45个学生。开学后又转学来了11个学生。怎样分才能使每班学生人数相等?

2、小岗计划4天做15道数学题,结果多做了9道。平均每天做了多少道?

3、一小组同学体检量身高时发现其中2人的身高是123厘米,另外4人的身高均为132厘米。这个小组同学的平均身高是多少?

4、小梅做跳绳练习,第一次跳了67下,第二次跳了76下。她要想三次平均成绩达到80下,第三次至少要跳多少下?

5、一农机站有960千克的柴油。用了6天,还剩240千克。照此用法,剩下的柴油还可用几天?

6、小浩为培养自己的阅读能力,自己规定这一个月(30天)要读完共288页的彩图世界童话名著《伊索寓言》。头9天平均每天读了8页,第二个9天平均每天读了10页,第三个9天平均每天读了11页。最后三天平均每天需要读几页才能达到自己规定的要求?

7、五个同学期末考试的数学成绩平均94分,而其中有三个同学的平均成绩为92分,另两个同学的平均成绩是多少?

8、小亮学游泳,第一次游了25米,第二次游的距离比两次游的平均距离多8米。小亮第二次游了多少米?

9、篮球队中四名队员的平均身高是182厘米,另一名队员的身高比这五队员的平均身高矮8厘米,这名队员的身高是多少?

四、习题练习

1、一次考试,甲、乙、丙三人平均91分,乙、丙、丁三人平均89分,甲、丁二人平均95

分,问甲、丁各多少分?

2、甲、乙、丙、丁四人称重量,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人平均体重是40千克。求四人的平均体重是多少千克?

3、甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植18棵,甲、丙两组平均每组植17棵,乙、丙两组平均每组植19棵,三个小组各植树多少棵?

4、有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。求一箱苹果多少个?一箱桃多少个?

5、一次数学测验,全班的平均分是91.2分,已知女生有21人,平均每人92分,男生平均每人90.5分,求这个班男生有多少人?

6、两组学生进行跳绳比赛,平均每人跳152下,甲组有6人,平均每人跳140下,乙组平均每人跳160下。乙组有多少人?

7、有两块棉田,平均每平方米的产量是92.5千克。已知一块田是5平方米,平均每平方米产量是101.5千克;另一块田平均每平方米产量是85千克,这块田是多少平方米?

8、把甲级糖和乙级糖混在一起,平均每千克卖7元。已知甲级糖有4千克,每千克8元,乙级糖有2千克。乙级糖每千克多少元?

9、小莉读一本小说,第一天读74页,第二天读82页,第三天读71页,第四天读63页,第五天读的页数比这5天中平均每天读的少6页,小莉第五天读了多少页?

10、一个技术工人带四个普通工人完成了一项工作,每个普通工人各得200元,这位技术工人的收入比他们5人的平均收入还多80元,问这位技术工人得多少元?

11、小宇与五名同学参加数学竞赛,那5名同学的成绩分别是79分、82分、90分、85分、84分,小宇的成绩比6人的平均成绩高5分,求小宇的数学成绩?

12、两组工人加工零件,第一组有30人,平均每人加工60个零件。第二组有25人,平均每人比两组工人加工的平均数多6个,两组工人平均每人加工多少个零件?

13、一位同学在期中测验中,除了数学外,其他几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?

14、小明前几次数学测验的平均成绩是84分,这次要考100分才能把数学平均成绩提高到86分,问这是他第几次数学测验?

15、老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。如果师生合起来算正好平均每人做了7朵,求有多少个同学在做花?

16、、小明前五次数学测验的平均成绩是88分。为了使平均成绩达到92.5分,小明要连续考多少个满分?

17、小亮在期末考试中,政治、语文、数学、英语、自然五科的平均成绩是89分,政治、数学两科平均91.5分,语文、英语两科平均84分,政治英语平均86分,英语比语文多10分。小亮的各科成绩是多少分?

18、甲、乙、丙三个数的平均数是82,甲、乙两数的平均数是86,乙、丙两数的平均数是77。乙数是多少?甲、丙两个数的平均数是多少?

19、小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好把前几次的平均成绩提高到85分。这一次是他第几次测验?

20、五个数排成一排,平均数是9。如果前四个数的平均数是7,后四个数的平均数是10,那么,第一个数和第五个数平均数是多少?

第四篇:小学奥数教案平均数问题(定稿)

小学奥数教案---平均数问题

第1讲

平均数(一)

一、知识要点

把几个不相等的数,在总数不变的条件下,通过移多补少,使它们完全相等,求得的相等的数就是平均数。

如何灵活运用平均数的数量关系解答一些稍复杂的问题呢?

平均数=总数量÷总份数

总数量=平均数×总份数

总份数=总数量×平均数

二、精讲精练

【例题1】 有4箱水果,已知苹果、梨、橘子平均每箱42个,梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。一箱苹果多少个?

【思路导航】(1)1箱苹果+1箱梨+1箱橘子=42×3=136(个);

(2)1箱桃+1箱梨+1箱橘子=36×3=108(个)(3)1箱苹果+1箱桃=37×2=72(个)由(1)(2)两个等式可知:

1箱苹果比1箱桃多126-108=18(个),再根据等式(3)就可以算出:1箱桃有(74-18)÷2=28(个),1箱苹果有28+18=46(个)。

1箱苹果和1箱桃共有多少个:37×2=74(个)1箱苹果比1箱桃多多少个:42×3-36=18(个)1箱苹果有多少个:28+18=46(个)练习1:

1.一次考试,甲、乙、丙三人平均分91分,乙、丙、丁三人平均分89分,甲、丁二人平均分95分。问:甲、丁各得多少分?

2.甲、乙、丙、丁四人称体重,乙、丙、丁三人共重120千克,甲、丙、丁三人共重126千克,丙、丁二人的平均体重是40千克。求四人的平均体重是多少千克?

【例题2】 一次数学测验,全班平均分是91.2分,已知女生有21人,平均每人92分;男生平均每人90.5分。求这个班男生有多少人?

【思路导航】女生每人比全班平均分高92-91.2=0.8(分),而男生每人比全班平均分低91.2-90.5=0.7(分)。全体女生高出全班平均分0.8×21=16.8(分),应补给每个男生0.7分,16.8里包含有24个0.7,即全班有24个男生。

练习2:

1.两组学生进行跳绳比赛,平均每人跳152下。甲组有6人,平均每人跳140下,乙组平均每人跳160下。乙组有多少人?

2.有两块棉田,平均每亩产量是92.5千克,已知一块地是5亩,平均每亩产量是101.5千克;另一块田平均每亩产量是85千克。这块田是多少亩?

【例题3】 某3个数的平均数是2.如果把其中一个数改为4,平均数就变成了3。被改的数原来是多少?

【思路导航】原来三个数的和是2×3=6,后来三个数的和是3×3=9,9比6多出了3.是因为把那个数改成了4。因此,原来的数应该是4-3=1。

练习3: 1.已知九个数的平均数是72.去掉一个数之后,余下的数的平均数是78。去掉的数是多少?

2.有五个数,平均数是9。如果把其中的一个数改为1.那么这五个数的平均数为8。这个改动的数原来是多少?

【例题4】 五一班同学数学考试平均成绩91.5分,事后复查发现计算成绩时将一位同学的98分误作89分计算了。经重新计算,全班的平均成绩是91.7分,五一班有多少名同学?

【思路导航】98分比89分多9分。多算9分就能使全班平均每人的成绩上升91.7-91.5=0.2(分)。9里面包含有几个0.2.五一班就有几名同学。

练习4:

1.五(1)班有40人,期中数学考试,有2名同学去参加体育比赛而缺考,全班平均分为92分。缺考的两位同学补考均为100分,这次五(1)班同学期中考试的平均分是多少分?

2.某班的一次测验,平均成绩是91.3分。复查时发现把张静的89分误看作97分计算,经重新计算,该班平均成绩是91.1分。问全班有多少同学?

【例题5】 把五个数从小到大排列,其平均数是38。前三个数的平均数是27,后三个数的平均数是48。中间一个数是多少?

【思路导航】先求出五个数的和:38×5=190,再求出前三个数的和:27×3=81.后三个数的和:48×3=144。用前三个数的和加上后三个数的和,这样,中间的那个数就算了两次,必然比190多,而多出的部分就是所求的中间的一个数。

练习5:

1.甲、乙、丙三人的平均年龄为22岁,如果甲、乙的平均年龄是18岁,乙、丙的平均年龄是25岁,那么乙的年龄是多少岁?

2.十名参赛者的平均分是82分,前6人的平均分是83分,后6人的平均分是80分。那么第5人和第6人的平均分是多少分?

第2讲

平均数

二、精讲精练

【例题1】 小明前几次数学测验的平均成绩是84分,这次要考100分,才能把平均成绩提高到86分。问这是他第几次测验?

【思路导航】100分比86分多14分,这14分必须填补到前几次的平均分84分中去,使其平均分成为86分。每次填补86-84=2(分),14里面有7个2.所以,前面已经测验了7次,这是第8次测验。

练习1:

1.老师带着几个同学在做花,老师做了21朵,同学平均每人做了5朵。如果师生合起来算,正好平均每人做了7朵。求有多少个同学在做花?

2.一位同学在期中测验中,除了数学外,其它几门功课的平均成绩是94分,如果数学算在内,平均每门95分。已知他数学得了100分,问这位同学一共考了多少门功课?

【例题2】 小亮在期末考试中,政治、语文、数学、英语、自然五科的平均成绩是89分,政治、数学两科平均91.5分,政治、英语两科平均86分,英语比语文多10分。小亮的各科成绩是多少分?

【思路导航】因为语文、英语两科平均分84分,即语文+英语=168分,而英语比语文多10分,即英语-语文=10分,所以,语文是(168-10)÷2=79分,英语是79+10=89分。又因为政治、英语两科平均86分,所以政治是86×2-89=83分;而政治、数学两科平均分91.5分,数学是91.5×2-83=100分;最后根据五科的平均成绩是89分可知,自然分是89×5-(79+89+83+100)=94分。

练习2:

1.甲、乙、丙三个数的平均数是82.甲、乙两数的平均数是86,乙、丙两数的平均数是77。乙数是多少?甲、丙两个数的平均数是多少?

2.小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好把这几次的平均分提高到85分。这一次是他第几次测验?

【例题3】 两地相距360千米,一艘汽艇顺水行全程需要10小时,已知这条河的水流速度为每小时6千米。往返两地的平均速度是每小时多少千米?

【思路导航】用往返的路程除以往返所用的时间就等于往返两地的平均速度。显然,要求往返的平均速度必须先求出逆水行全程时所用的时间。因为360÷10=36(千米)是顺水速度,它是汽艇的静水速度与水流速度的和,所以,此汽艇的静水速度是36-6=30(千米)。而逆水速度=静水速度-水流速度,所以汽艇的逆水速度是30-6=24(千米)。逆水行全程时所用时间是360÷24=15(小时),往返的平均速度是360×2÷(10+15)=28.8(千米)。

练习3:

1.甲、乙两个码头相距144千米,汽船从乙码头逆水行驶8小时到达甲码头,已知汽船在静水中每小时行驶21千米。求汽船从甲码头顺流行驶几小时到达乙码头?

2.一艘客轮从甲港驶向乙港,全程要行165千米。已知客轮的静水速度是每小时30千米,水速每小时3千米。现在正好是顺流而行,行全程需要几小时?

【例题4】 幼儿园小班的20个小朋友和大班的30个小朋友一起分饼干,小班的小朋友每人分10块,大班的小朋友每人比大、小班小朋友的平均数多2块。求一共分掉多少块饼干?

【思路导航】只要知道了大、小班小朋友分得的平均数,再乘(30+20)人就能求出饼干的总块数。因为大班的小朋友每人比大、小班小朋友的平均数多2块,30个小朋友一共多2×30=60(块),这60块平均分给20个小班的小朋友,每人可得60÷20=3(块)。因此,大、小班小朋友分得平均块数是10+3=13(块)。一共分掉13×(30+20)=650(块)。

练习4:

1.数学兴趣小组里有4名女生和3名男生,在一次数学竞赛中,女生的平均分是90分,男生的平均分比全组的平均分高2分,全组的平均分是多少分?

2.两组同学跳绳,第一组有25人,平均每人跳80下;第二组有20人,平均每人比两组同学跳的平均数多5下,两组同学平均每人跳几下? 【例题5】 王强从A地到B地,先骑自行车行完全程的一半,每小时行12千米。剩下的步行,每小时走4千米。王强行完全程的平均速度是每小时多少千米?

【思路导航】求行完全程的平均速度,应该用全程除以行全程所用的时间。由于题中没有告诉我们A地到B地间的路程,我们可以设全程为24千米(也可以设其他数),这样,就可以算出行全程所用的时间是12÷12+12÷4=4(小时),再用24÷4就能得到行全程的平均速度是每小时6千米。

练习5:

1.小明去爬山,上山时每小时行3千米,原路返回时每小时行5千米。求小明往返的平均速度。

2.运动员进行长跑训练,他在前一半路程中每分钟跑150米,后一半路程中每分钟跑100米。求他在整个长跑中的平均速度。

作业

1.甲、乙、丙三个小组的同学去植树,甲、乙两组平均每组植树18棵,甲、丙两组平均每组植树17棵,乙、丙两组平均每组植树19棵。三个小组各植树多少棵?

2.把甲级和乙级糖混在一起,平均每千克卖7元,乙知甲级糖有4千克,平均每千克8元;乙级糖有2千克,平均每千克多少元?

3.甲、乙、丙、丁四位同学,在一次考试中四人的平均分是90分。可是,甲在抄分数时,把自己的分错抄成了87分,因此,算得四人的平均分是88分。求甲在这次考试中得了多少分?

4.五个数的平均数是18,把其中一个数改为6后,这五个数的平均数是16。这个改动的数原来是多少?

5.两组同学进行跳绳比赛,平均每人跳152次。甲组有6人,平均每人跳140次,如果乙组平均每人跳160次,那么,乙组有多少人?

6.五个数排一排,平均数是9。如果前四个数的平均数是7,后四个数的平均数是10,那么,第一个数和第五个数的平均数是多少?

7.甲船逆水航行300千米,需要15小时,返回原地需要10小时;乙船逆水航行同样的一段水路需要20小时,返回原地需要多少小时?

8.一个技术工带5个普通工人完成了一项任务,每个普通工人各得120元,这位技术工人的收入比他们6人的平均收入还多20元。问这位技术工得多少元?

9.把一份书稿平均分给甲、乙二人去打,甲每分钟打30个字,乙每分钟打20个字。打这份书稿平均每分钟打多少个字?

第五篇:三年级奥数

发到

三年级奥数--年龄问题

教学目标

1.掌握用线段图法来分析题中的年龄关系.2.利用已经学习的和差、和倍、差倍的方法求解年龄问题.

知识点说明:

一、年龄问题变化关系的三个基本规律:

1.两人年龄的倍数关系是变化的量.2.每个人的年龄随着时间的增加都增加相等的量; 3.两个人之间的年龄差不变

二、年龄问题的解题要点是:

1.入手:分析题意从表示年龄间倍数关系的条件入手理解数量关系. 2.关键:抓住“年龄差”不变.

3.解法:应用“差倍”、“和倍”或“和差”问题数量关系式. 4.陷阱:求过去、现在、将来。

年龄问题变化关系的三个基本规律: 1.两人年龄的差是不变的量; 2.两人年龄的倍数关系是变化的量;

年龄问题的解题正确率保证:验算!

例题精讲

【例 1】 小卉今年6岁,妈妈今年36岁,再过6年,小卉读初中时,妈妈比小卉大多少岁? 【解析】 这道题有两种解答方法:

方法一:解答这道题,一般同学会想到,小卉今年6岁,再过6年6612(岁);妈妈今年36岁,再过6年是(366)岁,也就是42岁,那时,妈妈比小卉大421230(岁).

列式:(366)(66)421

230(岁)

方法二:聪明的同学会想,虽然小卉和妈妈的岁数都在不断变大,但她们两人相差的岁数永远不变.今年妈妈比小卉大(366)岁,不管过多少年,妈妈比小卉都大这么多岁.通过比较第二种方法更简便.

列式:36630(岁)

答:再过6年,小卉读初中时,妈妈比小卉大30岁.

【巩固】 小英比小明小3岁,今年他们的年龄和是老师年龄的一半,再过15年,他们的年龄和就等于老师的年龄,今年小英的年龄是多少岁?

【解析】 经过15年,小英和小明的年龄和比老师多增加15岁,所以老师今年年龄的一半是15岁,即小英和小明今年的年龄和是15岁,小英今年的年龄是(15-3)÷2=6(岁).【巩固】 爸爸妈妈现在的年龄和是72岁;五年后,爸爸比妈妈大6岁.今年爸爸妈妈二人各多少岁?

【解析】 五年后,爸爸比妈妈大6岁,即爸妈的年龄差是6岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是6岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是72岁,他们的年龄差是6岁,求二人各是几岁”发到 的和差问题.

爸爸的年龄:(726)239(岁)妈妈的年龄:39633(岁)【巩固】 今年小宁9岁,妈妈33岁,那么再过多少年小宁的岁数是妈妈岁数的一半?

【解析】 今年小宁比妈妈小33924(岁),那么小宁永远比妈妈小24岁.几年后小宁是妈妈岁数的一半时,即妈妈年龄是小宁的2倍时,妈妈仍比小宁大24岁.这是个差倍问题.以小宁的年龄作为1倍量,妈妈年龄是2倍量,所以妈妈比小宁大的岁数也是1倍量,即1倍量代表着24岁.所以小宁24岁时是妈妈年龄的一半,因此再过24915(年).

【巩固】 6年前,母亲的年龄是儿子的5倍,6年后母子年龄和是78岁.问:母亲今年多少岁? 【解析】 6年后母子年龄和是78岁,可以求出母子今年年龄和是78-6×2=66(岁).6年前母子年龄和是66-6×2=54(岁).又根据6年前母子年龄和与母亲年龄是儿子的5倍,可以求出6年前母亲年龄,再求出母亲今年的年龄.

母子今年年龄和: 78-6×2=66(岁),母子6年前年龄和: 66-6×2=54(岁),母亲6年前的年龄: 54÷(5+1)×5=45(岁),母亲今年的年龄: 45+6=51(岁).

【巩固】 学而思学校张老师和刘备、张飞、关羽三个学生,现在张老师的年龄刚好是这三个学生的年龄和;9年后,张老师年龄为刘备、张飞两个学生的年龄和;又3年后,张老师年龄为刘备、关羽两个学生的年龄和;再3年后,张老师年龄为张飞、关羽两个学生的年龄和.求现在各人的年龄.

【解析】 张老师刘备张飞关羽,张老师9刘备9张飞9,比较一下这两个条件,很快得到关羽的年龄是9岁;同理可以得到张飞是9312(岁),刘备是93315(岁),张老师是9121536(岁).

【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).

【例 2】 小明与爸爸的年龄和是53岁,小明年龄的4倍比爸爸的年龄多2岁,小明与爸爸的年龄相差几岁? 【解析】 把小明的年龄看成是一份,那么爸爸的年龄是四份少2,根据和倍关系:

小明的年龄是:(53+2)÷(4+1)=11(岁),爸爸的年龄是:53-11=42(岁),小明与爸爸的年龄差是:42-11=31(岁).

【巩固】 一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁? 【解析】 妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把孩子的年龄作为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为:72÷(1+4+4)=8(岁),妈妈的年龄是:8×4=32(岁),爸爸和妈妈同岁为32岁.【例 3】 姐姐今年13岁,弟弟今年9岁,当姐弟俩岁数和是40岁时,两人各应该多少岁?

【分析】 用线段图显示数量关系,可以看出这道题实际上就是前面总结过的和差问题.姐弟俩的年龄差总是1394(岁),不管经过多少年,姐弟年龄的差仍是4岁,由图可见,如果从40岁中减去姐弟年龄的差,再除以2就得到所求的弟弟的年龄,也就可以求出姐姐的年龄了.发到

弟弟的年龄:(404)218(岁),姐姐的年龄:18422(岁).

【例 4】 东东3年前的年龄与西西4年后的年龄之和是25岁,东东3年后的年龄等于西西l年前的年龄,求东东、西西今年的年龄各是多少?

【分析】 东东3年后的年龄等于西西1年前的年龄,说明东东比西西小4岁; 东东3年前的年龄与西西4年后的年龄之和是25岁,所以今年东东和西西的年龄和是253424(岁),今年东东的年龄:(244)210(岁),今年西西的年龄:241014(岁).

【巩固】 哥哥5年后的年龄与弟弟3年前的年龄和是29岁,弟弟现在的年龄是两人年龄差的4倍.哥哥今年多少岁?

【解析】 兄弟二人现在的年龄和是27岁,两人的年龄差是27,哥哥现在3515(岁).(45)3(岁)

【巩固】 今年彬彬的年龄是表弟年龄的4倍,20年后,彬彬的年龄比表弟的年龄的2倍少l2岁,今年彬彬、表弟各多少岁?

【解析】 表弟今年年龄的4122(倍)对应的是:20220128(年),由此可以求出表弟今年的年龄,使问题得解.824(岁),4416(岁).所以表弟今年4岁,彬彬今年16岁.

【例 5】 父子年龄之和是45岁,再过5年,父亲的年龄正好是儿子的4倍,父子今年各多少岁?

【解析】 再过5年,父子俩一共长了10岁,那时他们的年龄之和是4510=55(岁),由于父亲的年龄是儿子的4倍,因而55岁相当于儿子年龄的41=5倍,可以先求出儿子5年后的年龄,再求出他们父子今年的年龄.

5年后的年龄和为:455255(岁)5年后儿子的年龄:55(41)11(岁)儿子今年的年龄:1156(岁),父亲今年的年龄:45639(岁)【巩固】 父子年龄之和是60岁,8年前父亲的年龄正好是儿子的3倍,问父子今年各多少岁?

【解析】 由已知条件可以得出,8年前父子年龄之和是608244(岁),又知道8年前父亲的年龄正好是儿子的3倍,由此可得:

儿子:(6082)(31)819(岁)父亲:601941(岁)【巩固】 父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁? 【解析】 三人现在的年龄和是84岁,12年后的年龄和是84123120(岁),那时父亲120260(岁),父亲现在601248(岁).

【巩固】 王老师与王平和李刚两位同学的平均年龄是20岁,李老师与王平和李刚两位同学的平均年龄是

18岁.王老师今年32岁,李老师今年多少岁? 【解析】 王老师比李老师大2031836(岁).故李老师今年的年龄为32626(岁).

下载小学奥数三年级第5讲 平均数word格式文档
下载小学奥数三年级第5讲 平均数.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    4.四年级奥数平均数问题

    第四讲平均数问题 教学目标 1、熟练的求平均数问题的基本数量关系:总数量÷总份数=平均数 教学重难点 1、找准已知量,未知量。准确的找到总数量,相应地份数,再求平均数。 2、......

    四年级奥数-平均数问题(含五篇)

    小学奥数培训教材程四年级全一册第十四讲平均数问题在生活和实际生产中,经常会遇到比较平均身高、平均气温等问题。求平均数问题的基本数量关系是: 总数量÷总份数=平均数; 由......

    五年级奥数教案----平均数应用题

    五年级奥数教案-2平均数应用题 教学要求和目的 进一步理解和掌握平均数应用题的意义和数量关系,进一步学会以多补少的方法解决平均数问题,并进一步学习解答稍为复杂的求平均......

    三年级数学第 十 讲 《平均数问题(一)》

    三年级数学思维训练: 第 十 讲 《平均数问题(一)》 姓名 【点燃思维】 【例l】用4个同样的杯了装水,水面的高度分别是8厘米、5厘米、4厘米、3厘米。这4个杯子里水面的平均高度......

    小学三年级奥数题及答案_精选

    小学三年级奥数题 一绿化队4天种树200棵,还要种400棵,照这样的工作效率,完成任务共需多少天? 二3个笼子里共养了78只鹦鹉,如果从第1个笼子里取出8只放到第2个笼子里,再从第2个笼子......

    小学三年级奥数题100道

    三年级奥数集训 姓名 2016.3.5 1 练习1 1、40个梨分给3个班,分给一班20个,其余平均分给二班和三班,二班分到( )个。 2、7年前,妈妈的年龄是儿子的6倍,儿子今年12岁,妈妈今年( )......

    小学三年级奥数题及答案

    小学三年级奥数题及答案 1、工程问题 绿化队4天种树200棵,还要种400棵,照这样的工作效率,完成任务共需多少天? 解答:200÷4=50 (棵)(200+400)÷50=12(天)【小结】 归一思想.先求出一......

    小学三年级奥数 29一笔画

    小学三年级奥数 29一笔画 本教程共30讲 第29讲 一笔画(二) 利用一笔画原理,我们可以解决许多有趣的实际问题。 例1 右图是某展览馆的平面图,一个参观者能否不重复地穿过每一......