第一篇:3.3 导数在研究函数中的应用 教学设计 教案
教学准备
1.教学目标
知识与技能
1.正确理解利用导数判断函数的单调性的原理; 2.掌握利用导数判断函数单调性的方法。过程与方法
通过知识的探究过程培养学生细心观察、认真分析、严密推理的良好思维习惯,让学生感知从具体到抽象、从特殊到一般、从感性到理性的认知过程.
情感、态度与价值观
通过在教学过程中让学生多动手、多观察、勤思考、善总结,引导学生养成自主学习的学习习惯.
2.教学重点/难点
教学重点
探索并应用函数的单调性与导数的关系求单调区间; 教学难点
探索函数的单调性与导数的关系。
3.教学用具
多媒体
4.标签
教学过程
教学过程设计
复习引入
请同学们思考函数单调性的概念? 函数 y = f(x)在给定区间 D上,D=(a , b)当 x
1、x 2 ∈D且 x 1< x 2 时
①都有 f(x 1)< f(x 2),则 f(x)在D上是增函数; ②都有 f(x 1)> f(x 2),则 f(x)在D上是减函数;
若 f(x)在D上是增函数或减函数,D称为单调区间,则 f(x)在D 上具有严格的单调性。
【师】判断函数单调性有哪些方法?
①定义法;
②图象法;
③已知函数
以前,我们主要采用定义法去判断函数的单调性.在函数y=f(x)比较复杂的情况下,比较f(x1)与f(x2)的大小并不容易.如果利用导数来判断函数的单调性就比较简单.让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们一起来观察、研探。新知探究
[1]函数的单调性与其导函数的关系 【合作探究】
探究1 函数的单调性与其导函数的关系
【师】请同学们思考高台跳水运动员高度函数与速度函数之间的关系? 【板演/PPT】
下图(1)表示高台跳水运动员的高度 h 随时间 t 变化的函数的图象, 图
(2)表示高台跳水运动员的速度 v 随时间 t 变化的函数的图象.【活动】思考交流。
探究2:运动员从起跳到最高点, 以及从最高点到入水这两段时间的运动状态有什么区别? ①运动员从起跳到最高点,离水面的高度h随时间t 的增加而增加,即h(t)是增函数.相应地,②从最高点到入水,运动员离水面的高度h随时间t的增加而减少,即h(t)是减函数.相应地,【思考】以上情况是否具有一般性呢?
观察下面函数的图像(图1.3-3),探讨函数的单调性与其导数正负的关系.
近单调递减. 【结论】一般地,函数的单调性与其导函数的正负有如下关系 在某个区间(a,b)内,如果f'(x)>0,那么函数y=h(x)在这个区间内单调递增; 如果f'(x)<0 , 那么函数y=f(x)在这个区间内单调递减.
探究3 如果在某个区间内恒有h'(x)=0,那么函数y=f(x)在这个区间内有什么特征?
【提示】特别的,如果在某个区间内恒有f'(x)=0,那么函数y=f(x)在这个区间内是常函数.
探究4.求解函数y=f(x)单调区间的步骤:(1)确定函数y=h(x)的定义域;
(2)求导数y'=h'(x);
(3)解不等式f'(x)>0,解集在定义域内的部分为增区间;(4)解不等式f'(x)<0,解集在定义域内的部分为减区间. 【典例精讲】
例1.设函数f(x)在定义域内可导,y=f(x)的图象如图3-3-1所示,则导函数y=f′(x)可能为()
【解析】由函数的图象知:当x<0时,函数单调递增,导数应始终为正;当x>0时,函数先增后减再增,导数应先正后负再正,对照选项,只有D正确. 【答案】 D 【小结】判断导数与函数图象间的关系时,首先要弄清所给图象是原函数的图象还是导函数的图象;其次要注意函数的单调性与其导函数的正负的关系. 【变式训练】(2013·浙江高考)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如图所示,则该函数的图象是()
【解析】从导函数的图象可以看出,导函数值先增大后减小,x=0时最大,所以函数f(x)的图象的变化率也先增大后减小,在x=0时变化率最大.A项,在x=0时变化率最小,故错误;C项,变化率是越来越大的,故错误;D项,变化率是越来越小的,故错误.B项正确. 【答案】 B 例2.判断下列函数的单调性,并求出单调区间.
【小结】根据导数确定函数的单调性步骤: 1.确定函数f(x)的定义域.2.求出函数的导数.3.解不等式f´(x)>0,得函数单增区间;解不等式f´(x)<0,得函数单减区间.例3.已知函数+∞)上是单调递增时,求a的取值范围.
当函数f(x)在x∈[2,【小结】在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即还有可能f′(x)=0也能使f(x)在这个区间上单调,因而对于能否取到等号的问题需要单独验证.
【变式训练】若将本例中的x∈[2,+∞)改为x∈(-∞,2],且使f(x)在(-∞,2]上是单调递减的,则a的取值范围是什么? 当堂检测
1.函数y=3x-x3的单调增区间是()(A)(0,+∞)
(B)(-∞,-1)(C)(-1,1)
(D)(1,+∞)2.设
则f(x)的单调增区间是()(A)(-∞,-2)
(B)(-2,0)
(C)(-∞,)(D)(,0)3.函数y=xlnx在区间(0,1)上是()(A)单调增函数
(B)单调减函数
(C)在(0,)上是减函数,在(, 1)上是增函数
(D)在(, 1)上是减函数,在(0,)上是增函数
4.函数y=x2(x+3)的减区间是,增区间是
.5.函数f(x)=cos2x的单调区间是
。【参考答案】 1.C 2.C 3.C 4.(-2,0);(-∞,-2)及(0,+∞)5.课堂小结 【课堂小结】
1.求可导函数f(x)单调区间的步骤:(1)求f'(x)。
(2)解不等式f'(x)>0(或h'(x)<0)(3)确认并指出递增区间(或递减区间)
2.证明可导函数f(x)在(a,b)内的单调性的方法:(1)求f'(x)(2)确认f'(x)在(a,b)内的符号(3)作出结论
课后习题
1、复习本节课所讲内容
2、预习下一节课内容
3、课本 P31习题1.3 A组1,2,3.板书
第二篇:1.3导数在研究函数中的应用 教学设计 教案
教学准备
1.教学目标
(1)使学生理解函数的最大值和最小值的概念,能区分最值与极值的概念(2)使学生掌握用导数求函数最值的方法和步骤
2.教学重点/难点
【教学重点】:
利用导数求函数的最大值和最小值的方法. 【教学难点】:
函数的最大值、最小值与函数的极大值和极小值的区别与联系.熟练计算函数最值的步骤
3.教学用具
多媒体
4.标签
1.3.3函数的最大(小)值与导数
教学过程
第三篇:导数在研究函数问题中的应用
龙源期刊网 http://.cn
导数在研究函数问题中的应用
作者:朱季生
来源:《中学教学参考·理科版》2013年第04期
函数是高中数学的重要内容和主干知识,而导数知识在研究函数图象、函数零点、不等式证明以及不等式恒成立等诸多问题中亦有着广泛的应用.本文以2012年福建省高考中的函数试题举例阐述.一、函数的凹凸性与拐点的有关性质
第四篇:《导数在函数中的应用——单调性》教学反思
本节课是一节新授课,教材所提供的信息很简单,如果直接得出结论学生也能接受。可学生只能进行简单的模仿应用,为了突出知识的发生过程,不把新授课上成习题课。设计思路如下以便教会学生会思考解决问题。
1、首先从同学们熟悉的过山车模型入手,将实际问题转化为数学模型,提出如何刻画函数的变化趋势,引出课题。研究从学生熟悉的一次函数,二次函数入手,寻找导数和单调性的关系,用几何画板演示特殊的三次函数的图像,研究单调性和导数。在此基础上提出问题:单调性和导数到底有怎样的关系?学生通过思考、讨论、交流形成结论。也使学生感受到解决数学问题的一般方法:从简单到复杂,从特殊到一般。
2、在结论得出后,继续引导学生思考,提出自己的困惑,因为确实有学生对结论有不一样的想法,所以,尽可能地暴露问题,让学生彻底理解、掌握。
3、铺垫:在引入部分,我涉及到了一个三次的函数,而例2就是此题的变式,这样既可以在开始引起学生兴趣,后来他们自己解决了看似复杂的问题,增加了信心,也做到了首尾呼应。
4、在知识应用中重点指导学生解题步骤,在学生自己总结解题步骤时,发现学生忽略了第一点求函数定义域,所以我就将错就错,给出了求函数的单调区间,很多学生栽了跟头,然后自己总结出应该先求函数定义域。虽然这道题花了些时间,但我觉得很值得,我想学生印象也会更深刻。
5、数形结合:数形结合不是光口头去说,而是利用一切机会去实施,在例1的教学中,我让学生先熟练法则,再从形上分析,加深印象,这样在后面紧接的高考题中(没有给解析式),学生会迎刃而解。
为了培养学生的自主学习、自主思考的能力,激发学习兴趣,在教学中采取引导发现法,利用多媒体等手段引导学生动口、动脑、参与数学活动,发挥主观能动性,主动探索新知。让学生分组讨论,合作交流,共同探讨问题。但是,真正做到以学生为中心,学生100%参与,体现三维目标,培养学习能力还是比较困难。在今后的教学中,应更注重学生的参与,引发认知冲突,教会学生思考问题。
第五篇:常用函数的导数教学设计
几个常用函数的导数教学设计
一、课题引入
情境一:我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数yf(x),如何求它的导数呢? 问题1:导数是用什么来定义的?(平均变化率的极限)
问题2:平均变化率的极限如何计算?(求增量,求比值,取极限)
问题3:以上求导数的过程用起来是否方便?我们有没有必要归结一下公式便于以后的运算? 情境二:
1.利用定义求出函数①yc的导数
2.若yc表示速度关于时间的函数,则y0可以如何解释?如何描述物体的运动状态? 我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数yf(x),如何求它的导数呢?
由导数定义本身,给出了求导数的最基本的方法,但这种方法在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,从这一节课开始我们将研究比较简捷的求导数的方法,下面我们先求几个常用的函数的导数. 二.新课讲授
1.函数yf(x)c的导数 知识点
根据导数定义,因为yf(xx)f(x)cc0 xxxylim00 所以ylimx0xx0y0表示函数yc图像(图1.2-1)上每一点处的切线的斜率都为0.若yc表示路程关于时间的函数,则y0可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 2.函数yf(x)x的导数
yf(xx)f(x)xxx1 因为xxxylim11 所以ylimx0xx0y1表示函数yx图像(图1.2-2)上每一点处的切线的斜率都为1.若yx表示路程关于时间的函数,则y1可以解释为某物体做瞬时速度为1的匀速运动. 练习:在同一直角坐标系中,分别画出函数y2x,y3x,y4x的图象,求出它们的导数。
(1)从图象上看,它们的导数分别表示什么?(2)这三个函数,哪一个增加得最快,哪一个增加的最慢?(3)函数ykxk0增(减)的快慢与什么有关?
3.函数yf(x)x2的导数
yf(xx)f(x)(xx)2x2因为 xxxx22xx(x)2x22xx
x所以ylimylim(2xx)2x
x0xx0y2x表示函数yx2图像(图1.2-3)上点(x,y)处的切线的斜率都为2x,说明随着x的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当x0时,随着x的增加,函数yx2减少得越来越慢;当x0时,随着x的增加,函数yx2增加得越来越快.若yx表示路程关于时间的函数,则y2x可以解释为某物体做变速运动,它在时刻x的瞬时速度为2x. 4.函数yf(x)21的导数 x11yf(xx)f(x)xxx因为 xxxx(xx)12
x(xx)xxxxy11lim(2)2
x0xx0xxxx1练习作出函数y的图象,根据图象,描述它的变化情况,并求出其在点(1,1)处的切x所以ylim线方程
5.函数yfxx的导数
xxx
x因为yf(xx)fxxx
=xxxxxxx1xxx xxx
=所以ylimy11 limx0xx0xxx2xnn16.推广:若fxxnQ,则f(x)nx
练习求下列函数的导数
(1)yx3(2)y1 x2(3)y三.例题讲解 3x(4)yx2x
3例1.曲线yx上哪一点的切线与直线y3x1平行?
解:设点P(x0,y0)为所求,则 它的切线斜率为k3,∵f(x)3x,∴3x03,x01,∴P(1,1)或P(1,1).
例2.证明:曲线xy1上的任何一点P(x0,y0)(x00)的切线与两坐标轴围成的三角形面积是一个常数. 解:由xy1,得y∴y()221,x1x1,x2
∴kf(x0)1,2x0过点P(x0,y0)的切线方程为
yy01(xx0),2x02,x0令x0得y令y0得x2x0,∴过P(x0,y0)的切线与两坐标轴围成的三角形面积
S122x02是一个常数. 2x0四.课时小结
C0,xn
五、作业 nxnQ n
1六、板书设计
七、教学反思