构造函数法在导数中的应用(小编推荐)

时间:2019-05-14 15:41:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《构造函数法在导数中的应用(小编推荐)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《构造函数法在导数中的应用(小编推荐)》。

第一篇:构造函数法在导数中的应用(小编推荐)

构造函数法在导数中的应用

“作差法”构造

证明不等式或解决不等式恒成立问题都可以利用作差法将不等式右边转化为0,然后构造新函数[F(x)],最后根据新函数[F(x)]的单调性转化为[F(x)min≥0]或者[F(x)max≤0来解决.]

例1 设函数[f(x)=x1+x],[g(x)=lnx+12].求证:当[0

∵[F(x)=1+x-x1+x2-1x=-x2-x-11+x2?x<0.]

∴[F(x)]在(0,1]上单调递减.∵[F(1)=12-0-12=0,]

∴[F(x)]≥0,当且仅当[x=1]时,等号成立.∴当[0

恒成立问题中,求参数范围的问题,常常分离参数转化为[a≤F(x)min或者a≥F(x)max,]其中[F(x)]为构造的新函数.例2 若不等式[2x?lnx≥-x2+ax-3]恒成立,则实数[a]的取值范围是()

A.(-∞,0)B.(-∞,4]

C.(0,+∞)D.[4,+∞)

解析不等式[2x?lnx≥-x2+ax-3]恒成立,即[a≤2lnx+x+3x]在(0,+[∞])上恒成立.设[h(x)=2lnx+x+3x],则[h′(x)=(x+3)(x-1)x2(x>0)].当[x∈(0,1)]时,[h′(x)<0],函数[h(x)]单调递减;

当[x∈(1,+∞)]时,[h′(x)>0],函数[h(x)]单调递增.所以[h(x)min=h(1)=4].所以[a≤h(x)min=4].答案 B

根据题干的“结构特征”猜想构造

1.根据运算公式[f(x)?g(x)′=f(x)g(x)+f(x)g(x)]和[f(x)g(x)′][=f(x)g(x)-f(x)g(x)g(x)2来构造]

例3 已知函数[f(x)]的定义域是[R],[f(0)=2],对任意的[x∈R],[f(x)+f(x)>1]恒成立,则不等式[ex?f(x)][>ex+1]的解集为()

A.(0,+∞)B.(-∞,0)

C.(-1,+∞)D.(2,+∞)

解析构造函数[g(x)=ex?f(x)-ex],因为[g′(x)=ex?f(x)+ex?f(x)-ex=ex[f(x)+f(x)]-ex]

[>ex-ex=0],所以[g(x)=ex?f(x)-ex]为[R]上的增函数.又[g(0)=e0?f(0)-e0=1],所以原不等式转化为[g(x)>g(0)],所以[x>]0.答案 A

例4 设函数[f(x)]满足[x2?f(x)+2x?f(x)=exx,][f(2)=][e28,]则当[x>0]时,[f(x)]()

A.有极大值,无极小值

B.有极小值,无极大值

C.既有极大值又有极小值

D.既无极大值又无极小值

解析构造函数[F(x)=x2?f(x)]

则[f(x)=F(x)x2′=ex-2F(x)x3,]

[令h(x)=ex-2F(x),则h(x)=ex(x-2)x.]

[∴h(x)]在(0,2)上单调递减;在[(2,+∞)]上单调递增.[∴h(x)≥h(2)=0].[∴f(x)≥0,∴f(x)在(0,+∞)上单调递增.]

答案 D

2.根据已知条件等价转化后再以“形式”来构造

运用下列形式的等价变形构造:分式形式[f(b)-f(a)b-a<1,] 绝对值形式[f(x1)-f(x2)][≥4x1-x2],指对数形式[1×2×3×4ׄ×n≥en-sn.]

例5 设函数[ f(x)=lnx+mx],[m∈R].(1)当[m=e]([e]为自然对数的底数)时,求[f(x)]的极小值;

(2)讨论函数[g(x)=f(x)-3x]零点的个数;

(3)若对任意[b>a>0],[f(b)-f(a)b-a<1]恒成立,求[m]的取值范围.解析(1)当[m=e]时,[f(x)=lnx+ex],则[f(x)=x-ex2].∴当[x∈(0,e)],[f(x)<0],[f(x)]在[(0,e)]上单调递减;

当[x∈(e,+∞)],[f(x)>0],[f(x)]在[(e,+∞])上单调递增.∴[x=e]时,[f(x)]取得极小值[f(e)=lne+ee]=2.∴[f(x)]的极小值为2.(2)由题设知,[g(x)=f(x)-x3=1x-mx2-x3(x>0)].令[g(x)=0]得,[m=-13x3+x(x>0)].设[φ(x)][=-13x3+x(x>0)],则[φ(x)=-x2+1=-(x-1)(x+1)],当[x∈(0,1])时,[φ(x)]>0,[φ(x)]在(0,1)上单调递增;

当[x∈(1,+∞)]时,[φ(x)]<0,[φ(x)]在(1,+∞)上单调递减.∴[x=1]是[φ(x)]的惟一极值点,且是极大值点.因此[x=1]也是[φ(x)]的最大值点.∴[φ(x)]的最大值为[φ(1)]=[23].又[φ(0)]=0,结合[y=φ(x)]的图象(如图)可知,①当[m>23]时,函数[g(x)]无零点;

②当[m=23]时,函数[g(x)]有且只有一个零点;

③当[0

④当[m≤0]时,函数[g(x)]有且只有一个零点.综上所述,当[m>23]时,函数[g(x)]无零点;

当[m=23]或[m≤0]时,函数[g(x)]有且只有一个零点;

当[0a>0],[f(b)-f(a)b-a<1]恒成立[?f(b)-b0)],∴[h(x)]在(0,+∞)上单调递减.由[h′(x)=1x-mx2-1≤0]在(0,+∞)上恒成立得,[m≥-x2+x=-(x-12)2+14(x>0)]恒成立.∴[m≥14(对m=14,h(x)=0仅在x=12时成立).]

∴[m]的取值范围是[14,+∞].例6 已知[f(x)=(a+1)lnx+ax2+1],(1)讨论函数[f(x)]的单调性;

(2)[设a<-1,?x1,x2∈(0,+∞),][f(x1)-f(x2)][≥4x1-x2]恒成立,求[a]的取值范围.解析(1)[∵x∈(0,+∞),∴f(x)=2ax2+a+1x.]

[①当a≥0时,f(x)>0,f(x)在(0,+∞)上单调递增.②当-10时,f(x)在(0,-a+12a)上单调递增;当f(x)<0时,f(x)在(-a+12a,+∞)上单调递减.③当a≤-1时,f(x)<0,f(x)在(0,+∞)上单调递减.]

(2)不妨设[x1≤x2,]由(1)可知,当[a<-1]时,[f(x)]在[(0,+∞)上单调递减.]

[则有f(x1)-f(x2)≥4x1-x2]

[?f(x1)-f(x2)≥-4(x1-x2)]

[?f(x1)+4x1≥f(x2)+4x2.]

[构造函数g(x)=f(x)+4x,则g(x)=a+1x+2ax+4≤0].[∴a≤(-4x-12x2+1)min.]

[设φ(x)=-4x-12x2+1,x∈(0,+∞),]

[则φ(x)=4(2x-1)(x+1)(2x2+1)2.]

[故φ(x)在(0,12)上单调递减;][在(12,+∞)上单调递增].[∴φ(x)min=φ(12)=-2.]

[∴a≤-2.]

第二篇:导数的应用(构造法)

导数的应用(构造法证明不等式)

1.已知函数f(x)lnx(p0)是定义域上的增函数.(Ⅰ)求p的取值范围;

(Ⅱ)设数列an的前n项和为Sn,且an

2.已知函数f(x)alnxax3在x=2处的切线斜率为1,函数g(x)xx(f(x)区间(2,3)内有最值,(Ⅰ)试判断函数g(x)在区间(2,3)内有最大值还是最小值,并求m的范围;(Ⅱ)证明不等式:ln(221)ln(321)ln(n21)12lnn!.32/2n1n,证明:Sn2ln(n1).m2)在3.已知函数f(x)1x

ax

3lnx(a0)在区间1,上为单调递增函数.(Ⅰ)求实数a的范围;(Ⅱ)证明:

4.已知函数f(x)ln(x1)k(x1)1.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若f(x)0恒成立,求k的取值范围;(Ⅲ)证明:

ln23ln34lnnn1n(n1)4,(nN,n1).121nlnn112131n1,nN,n2.

第三篇:构造函数解导数

合理构造函数解导数问题

构造函数是解导数问题的基本方法,但是有时简单的构造函数对问题求解带来很大麻烦甚至是解决不了问题的,那么怎样合理的构造函数就是问题的关键。

例1:已知函数fxlnax1x3x2ax.(1)若2为yfx的极值点,求实数a的值; 3(2)若yfx在1,上增函数,求实数a的取值范围;(3)若a1时,方程f1x1x3b有实根,求实数b的取值范围。x

变量分离直接构造函数 抓住问题的实质,化简函数

1、已知fx是二次函数,不等式fx0的解集是0,5,且fx在区间1,4上的最大值12.(1)求fx的解析式;

(2)是否存在自然数m,使得方程fx370在区间m,m1内有且只有两个不等的x实数根?若存在,求出所有m的值;若不存在,请说明理由。

变式练习:设函数fxx6x5,xR,求已知当x1,时,fxkx1恒

3成立,求实数k的取值范围。

抓住常规基本函数,利用函数草图分析问题

例: 已知函数fxnlnx的图像在点P(m,fm)处的切线方程为yx, 设gxmxn2lnx.x(1)求证:当x1时,gx0恒成立;(2)试讨论关于x的方程mxngxx32ex2tx根的个数。x第 1 页

共 1 页 一次函数,二次函数,指对数函数,幂函数,简单的分式根式函数,绝对值函数的图象力求清晰准确,一些综合性的问题基本上是这些函数的组合体,如果适当分解和调配就一定能找到问题解决的突破口,使问题简单化明确化。

复合函数问题一定要坚持定义域优先的原则,抓住函数的复合过程能够逐层分解。例:已知函数fx单调递增。

(1)求实数a的值.(2)若关于x的方程f2xm有3个不同的实数解,求实数m的取值范围.(3)若函数ylog2fxp的图像与坐标轴无交点,求实数p的取值范围。复合函数尤其是两次复合,一定要好好掌握,构造两种函数逐层分解研究,化繁为简,导数仍然是主要工具。

1423xxax22x2在区间1,1上单调递减,在区间1,2上43

导数—构造函数

一:常规的构造函数

例一.若sin3cos3cossin,02,则角的取值范围是()(A)[0,4]

(B)[5,]

(C)[,]

4(D)[34,2)

xyxy变式、已知3355成立,则下列正确的是()

A.xy0

B.xy0

C.xy0

D.xy0

2变式.f(x)为f(x)的导函数,若对xR,2f(x)xf(x)x恒成立,则下列命题可能错误的是()A.f(0)0 B.f(1)4f(2)C.f(1)4f(2)D.4f(2)f(1)

二:构造一次函数

二、对于满足|a|2的所有实数a,求使不等式x2+ax+1>a+2x恒成立的x的取值范围.第 2 页

共 2 页 三:变形构造函数 例三.已知函数f(x)12xax(a1)lnx,a1. 2(Ⅰ)讨论函数f(x)的单调性;

(Ⅱ)证明:若a5,则对任意x1,x2(0,),x1x2,有

四、已知函数f(x)(a1)lnxax21.(Ⅰ)讨论函数f(x)的单调性;

(Ⅱ)设a2,证明:对任意x1,x2(0,),|f(x1)f(x2)|4|x1x2|.四:消参构造函数

五、设函数fxxaln1x有两个极值点x1,x2,且x1x2.

2f(x1)f(x2)1.

x1x2(I)求a的取值范围,并讨论fx的单调性;(II)证明:fx2

五:消元构造函数

六、已知函数fxlnx,gxex.

(Ⅰ)若函数xfx12ln2. 4x1,求函数x的单调区间; x1(Ⅱ)设直线l为函数的图象上一点Ax0,fx0处的切线.证明:在区间1,上存在唯一的x0,使得直线l与曲线ygx相切.

第 3 页

共 3 页 六:二元合一构造函数

12axbx(a0)且导数f'(1)0 2(1)试用含有a的式子表示b,并求f(x)的单调区间;(2)对于函数图象上的不同两点A(x1,y1),B(x2,y2)如果在函数图象上存在点M(x0,y0)(其中x0(x1,x2))使得点M处的切线l//AB,则称AB存在“跟随切线”。

xx2特别地,当x01时,又称AB存在“中值跟随切线”。试问:在函数f(x)上是否存在2两点A、B使得它存在“中值跟随切线”,若存在,求出A、B的坐标,若不存在,说明理由。例

七、已知函数f(x)lnx

七:构造函数解不等式

八、设函数f(x)=x32mx2m2x1m(其中m >-2)的图像在x=2处的切线与直线y=-5x+12平行;

(Ⅰ)求m的值与该切线方程;

(Ⅱ)若对任意的x1,x20,1,fx1fx2M恒成立,则求M的最小值;(Ⅲ)若a0, b0, c0且a+b+c=1,试证明:

九、设函数f(x)lnxpx1

(Ⅰ)求函数f(x)lnxpx1的极值点

(Ⅱ)当p0时,若对任意的x0,恒有f(x)0,求p的取值范围。

abc9

1a21b21c210ln22ln32ln42lnn22n2n1(Ⅲ)证明:2222(nN,n2)

234n2(n1)

十、证明:对任意的正整数n,不等式ln(1)

第 4 页

共 4 页

1n113都成立.2nn1、移项法构造函数

【例1】已知函数f(x)ln(x1)x,求证:当x1时,恒有1

2、作差法构造函数证明 【例2】已知函数f(x)1ln(x1)x x112xlnx.求证:在区间(1,)上,函数f(x)的图象在函数2g(x)23x的图象的下方; 31111)23 都成立.nnn

3、换元法构造函数证明

【例3】证明:对任意的正整数n,不等式ln(4、从条件特征入手构造函数证明

【例4】若函数y=f(x)在R上可导且满足不等式xf(x)>-f(x)恒成立,且常数a,b满足a>b,求证:.af(a)>bf(b)

第 5 页

共 5 页

第四篇:构造函数法

函数与方程数学思想方法是新课标要求的一种重要的数学思想方法,构造函数法便是其中的一种。

高等数学中两个重要极限

1.limsinx1 x0x

11x2.lim(1)e(变形lim(1x)xe)x0xx

由以上两个极限不难得出,当x0时

1.sinxx,2.ln(1x)x(当nN时,(1)ne(1)n1).

下面用构造函数法给出两个结论的证明.

(1)构造函数f(x)xsinx,则f(x)1cosx0,所以函数f(x)在(0,)上单调递增,f(x)f(0)0.所以xsinx0,即sinxx.

(2)构造函数f(x)xln(1x),则f(x)11n1n1x0.所以函数f(x)在1x1x

(0,)上单调递增,f(x)f(0)0,所以xln(1x),即ln(1x)x. 1要证1n事实上:设1n111e,两边取对数,即证ln1, nn111t,则n(t1), nt1

1因此得不等式lnt1(t1)t

1构造函数g(t)lnt1(t1),下面证明g(t)在(1,)上恒大于0. t

11g(t)20, tt

∴g(t)在(1,)上单调递增,g(t)g(1)0, 即lnt1, 1

t

111∴ ln1,∴1nnn1n1e,以上两个重要结论在高考中解答与导数有关的命题有着广泛的应用.

第五篇:高二数学2-2导数中构造函数

1.已知f(x)为定义在(,)上的可导函数,且f(x)f(x)对于任意xR恒成立,则()A.f(2)e2f(0),B.f(2)e2f(0),C.f(2)e2f(0),D.f(2)e2f(0),1.A

【解析】解:因为f(x)为定义在(,)上的可导函数,且f(x)f(x)对于任意xR恒成立可以特殊函数f(x)=e,然后可知选A

x也可以构造函数g(x)=f(x)/e,2.函数f(x)的定义域为R,f(1)2,对任意xR,f(x)2,则f(x)2x4的解集为

A.(-1,1)B.(-1,+)C.(-,-1)D.(-,)

2.B

【解析】设g(x)f(x)2x4,则g(x)f(x)20对任意xR都成立;所以函数2x'f(2010)e2010f(0)f(2010)e2010f(0)f(2010)e2010f(0)f(2010)e2010f(0)'g(x)是定义域R上的增函数,且g(1)0.所以不等式f(x)2x4,即

g(x)0g(1),所以x1.故选B

3.已知可导函数f(x)(xR)满足f(x)f(x),则当a0时,f(a)和eaf(0)的大小关系为c

A.f(a)eaf(0)B.f(a)eaf(0)C.f(a)eaf(0)D.f(a)eaf(0)

下载构造函数法在导数中的应用(小编推荐)word格式文档
下载构造函数法在导数中的应用(小编推荐).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    导数证明不等式构造函数法类别(教师版)

    导数证明不等式构造函数法类别 1、移项法构造函数 1ln(x1)x x111,分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数g(x)ln(x1)x1【例1】 已知函数f(x)ln(x1)x,求证:......

    微积分学中的函数构造法在求解不等式问题的应用

    函数构造法在证明不等式方面的应用杨利辉(成都纺织高等专科学校人文社科与基础部,成都 611731)作者:杨利辉(1970-),女,助教,主要从事大学数学教学及研究。摘要:关于不等式的证明方法......

    导数证明不等式构造函数法类别(学生版)

    导数证明不等式构造函数法类别 1、移项法构造函数 1ln(x1)x x111,分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数g(x)ln(x1)x1【例1】 已知函数f(x)ln(x1)x,求证:......

    构造法之构造函数

    构造法之构造函数:题设条件多元-构造一次函数B:题设有相似结构-构造同结构函数主要介绍C:题设条件满足三角特性-构造三角函数 D:其它方面——参考构造函数解不等式A、题设条件多......

    构造函数,结合导数证明不等式

    构造函数,结合导数证明不等式 摘 要:运用导数法证明不等式首先要构建函数,以函数作为载体可以用移项作差,直接构造;合理变形,等价构造;分析(条件)结论,特征构造;定主略从,减元构造;挖掘......

    构造函数,利用导数证明不等式

    构造函数,利用导数证明不等式湖北省天门中学薛德斌2010年10月例1、设当xa,b时,f/(x)g/(x),求证:当xa,b时,f(x)f(a)g(x)g(a).例2、设f(x)是R上的可导函数,且当x1时(x1)f/(x)0.求证:(1)f(......

    导数在函数及不等关系证明中的应用(精选合集)

    导数在函数及不等关系证明中的应用 摘 要:导数是研究函数形态,证明不等式和解决一些实际问题的有力工具,尤其是导数与数列的计算和与不等式的证明等知识进行综合。而数列又是特......

    数学论文-导数在函数中的应用[五篇范例]

    导数在函数中的应用 【摘 要】新课程利用导数求曲线的切线,判断或论证函数的单调性,函数的极值和最值。导数是分析和解决问题的有效具。 【关键词】导数 函数的切线 单调性......