导数在函数及不等关系证明中的应用(精选合集)

时间:2019-05-14 13:34:44下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《导数在函数及不等关系证明中的应用》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《导数在函数及不等关系证明中的应用》。

第一篇:导数在函数及不等关系证明中的应用

导数在函数及不等关系证明中的应用

摘 要:导数是研究函数形态,证明不等式和解决一些实际问题的有力工具,尤其是导数与数列的计算和与不等式的证明等知识进行综合。而数列又是特殊函数,于是本文将巧用函数的单调性来构造函数证明不等关系,来体现导数在证明不等关系中的作用。关键词:导数;不等式;函数

在证明不等式的过程中,常用方法很多,可以利用函数的单调性,函数的最值以及函数的凹凸性等来解答,但常因方法不当,使得运算量大,直接影响解题速度与结果的正确.所以本文探讨的是巧用导函数的单调性来证明不等式的方法.巧用构造函数这一创造性思维来有效合理的使不等式获得证明,从而体现出初等数学与高等数学的紧密联系.下面我们对导数在不等式及函数

证明中的应用,利用导函数的单调性来举例加以说明.

一、利用导函数单调性证明不等式[6]

抓住结构特征,合理变形,采用构造函数法利用函数的单调性,穿插与渗透导数应用时采用这种方法,从而达到证明不等式的目的.

例1.证明:a1a21a1a2a11a1a21a2.

证明:首先构造函数f(x)1xx0.,再对函数f(x)求导得f'(x)

1x1x(1x)2易知f(x)在(0,)上是单调递增函数. 设x1a1a2,x2a1a2.显然x1x2,因此有 fx1fx2 即 a1a21a1a2a1a21a1a2a1a21a1a2a1a21a1a2a11a1a2a11a1.

a21a1a2而 a11a1a21a2.

所以得到: a21a2.

从上面这个例子我们可以进一步地推广到更一般性情况 即 a1a2an1a1a2ana11a1a21a2an1an.本题巧妙的抓住了题目的结构特征,合理的利用了导数与函数的性质使题目得到了很好的解决,方法简单,让人一目了然,也给解题带来了不少的方便。

下面再看这样的一道例题,它是一道关于指数与对数的不等式问题,初看题目,结构特殊叫人无从下手,但是通过巧妙的换底,然后再利用导数的性质,使题目变的简单明了。

例2.已知a,b为实数,并且eab,其中e是自然对数的底. 证明:abba.

证明:当eab时,要证abba.

只须证明 blnaalnb. 即证

lnx(xe). x1lnx求导得 y'.

x2lnalnb. ab构造函数 y因为当xe时,lnx1,所以y'0 所以函数y因为eab 所以

lnx在(e,)上是减函数. xlnalnb.

所以得到 abba 成立.ab例3.已知函数g(x)xlnx,设0ab,证明:

ab0g(a)gb2g(ba)ln2.

2证明: 先证左边,设F(x)gagx2g(axax则F'(x)g'(x)[2g. ]'lnxln22ax). 2令F'(x)0 得xa.则当0xa时,F'(x)0. 故F(x)在0,a内为单调递减函数. 当xa时,F'(x)0. 故F(x)在a,内为单调递增函数. 从而当xa时, F(x)有极小值F(a)0. 因为ba0 所以 FbFa.

ab即

0g(a)gb2g.

2ax再证右边,设G(x)g(a)g(x)2g(xa)ln2.

2则

G'(x)lnxln则当x0时, G'x0. 因此G(x)在a,内为减函数.

axln2lnxlna(x). 2又因为0ab.所以GbGa0.

ab即

g(a)gb2g(ba)ln2.

2综上所述得原不等式成立.

以上两道题都是应用导数解决不等式证明问题,其中的导数起一个工具的作用,尽而让复杂的不等式证明题变的结构简单,思路明了,这就大大的缩小了解题步骤,简化了解题过程,节约了解题时间,而且使准确率有很大的提高。

二、利用导函数的单调性结合极值证明不等式[6]

用导数知识去求函数的最值与不等式,体现出函数与不等式的交汇,利用不等式的结构特征.可将问题转化为定义域上的最值问题,所以当一个函数的单调性已知时,函数的最大(小)值也就“水到渠成”了下面就对此方法进行举例说明.

例1.已知a,b为正数,且ab1.求证:证明:令ax则b1x,从而0x1. 我们设

f(x)11. 33x11x13111633 . 2a1b193x23(1x)2则

f'(x)3. 232(x1)[(1x)1]再求f'(x)的零点并讨论f'(x)的符号显然等价于求

g(x)

x1x. 33x1(1x)13

x[(1x)31](1x)(x31). 33(x1)([1x)1]的零点及符号的变化.

1时, g(x)0. 21因而 f'(x)0且当0x时, g(x)0.

2显然 当x故 f'(x)0.f(x)为单调递增函数. 当 1x1时, g(x)0. 2故 f'(x)0.f(x)为单调递减函数. 所以函数f(x)在x116处取得最大值. 29在x0或x1处取得最小值. . 2316所以 f(x) .

29又 f(0)f(1)例2.函数f(x)exln(x1)1(x0),求函数f(x)的最小值.[7] 解:(1)f'(x)ex11.当x0时,因为ex1,且1. 1x1x所以有f'(x)0.说明函数f(x)在区间0,上是增函数. 故当x0时,函数f(x)取得最小值为0.

以上例题是利用导数求函数的极值和最值问题,充分的体现了导数工具在解决函数问题时的优越性及它和函数与不等式的交融性,让导数的优越性得到了更充分的发挥,为我们的解题带来了不少的方便,简单的方法也让我们体验到了数学的乐趣。

三、利用函数单调性进行数列计算

导数为解不等式注入了新的活力,更是利用函数单调性来解答不等式问题的有利工具,而数列作为特殊函数,于是我们利用导数求解数列就是利用导数求解函数,准确的把握关系,进行有机地整合,来完成这一类问题.这一类型题的关键是利用函数的单调性进行数列计算,而我们知道衡量函数单调性的重要工具便是导数,这样通过函数的单调性把数列计算和导数很好的联系在了一起,起到了秒笔生辉的作用。为了更好的抓握这种方法,我们 来看下面的例题。

例1.已知数列{an}的通项为ann2(10n)(nN),求数列最大项. 证明:设 f(x)x2(10x).(x0). 则

f'(x)20x3x2. 令

f'(x)0 得0x令

f'(x)0 得x20. 320 或 x0. 320因为f(x)在区间0,上是单调增加.

320f(x)在区间,上是单调减少.

3因此当x20时,函数f(x)取得最大值. 3对nN.f(n)n2(10n).

因为f(7)147f(6)144.所以 f(n)max147 . 即数列的最大项为a7147 .

例2.求数列{nn}的最大项.[5]

解:利用函数单调性,通过考虑连续变量x的最大值来求离散变量n的最大值. 设 f(x)x(x0),211x则 f'(x)x22lnxx1lnx.

xx1x11x1n1x所以当0xe时, f'(x)0,f(x)为单调增加. 当xe时,f(x)为单调减少.

所以 12,34n. 又因为23 所以最大项为利用函数的单调性进行数列的计算,而导数又是衡量函数单调性的重要工具,如此便让导数,函数,不等式有机的结合在一起,构成了强有力的解题体系。为我们快速准确的 12***n解题带来了方便。

四、利用导数求函数的极值[3][4]

利用导数求函数的极值是导数在数学领域中又一大重要应用,它是求函数极值最重要的方法之一,为了掌握这种方法我们来看下面的两个例题。

例1.已知f(x)ax3bx2cx(a0)在x1时取得极值,且f(1)1.(1)试求常数a,b,c的值;

(2)试判断x1是函数的极小值还是极大值,并说明理由.命题意图:利用一阶导数求函数的极大值和极小值的方法是导数在研究函数性质方面的继续深入.是导数应用的关键知识点,通过对函数极值的判定,可使学生加深对函数单调性与其导数关系的理解.知识依托:解题的成功要靠正确思路的选择.本题从逆向思维的角度出发,根据题设结构进行逆向联想,合理地实现了问题的转化,使抽象的问题具体化.这是解答本题的闪光点.错解分析:本题难点是在求导之后,不会应用f(1)0的隐含条件,因而造成了解决问题的最大思维障碍.技巧与方法:考查函数f(x)是实数域上的可导函数,可先求导确定可能的极值,再通过极值点与导数的关系,建立由极值点x1所确定的相等关系式,运用待定系数法求值.解:(1)f(x)3ax22bxc ∵x1是函数f(x)的极值点,∴x1是方程f(x)0,即3ax22bxc0的两根.2b03a由根与系数的关系,得

c13a①

又f(1)=-1,∴abc1, 由①②③解得a,b0,c, 1232

133xx, 22333∴f(x)x2(x1)(x1), 222(2)f(x) 6 当x1或x1时,f(x)0, 当1x1时,f(x)0, ∴函数f(x)在(-∞,-1)和(1,+∞)上是增函数,在(-1,1)上是减函数.∴当x=-1时,函数取得极大值f(1)1, 当x=1时,函数取得极小值f(1)1.例2.设f(x)=ax3+x恰有三个单调区间,试确定a的取值范围,并求其单调区间[2] 解:f'(x)=3ax2+1 若a>0, f'(x)>0对x∈(-∞,+∞)恒成立,此时f(x)只有一个单调区间,矛盾.若a =0, f'(x)=1>0,∴x∈(-∞,+∞),f(x)也只有一个单调区间,矛盾.若a<0,因为f'(x)=3a(x+

13|a|)·(x-

13|a|13|a|),此时f(x)恰有三个单调区间.13|a|13|a|所以a<0且单调减区间为(-∞,-13|a|)和(,+∞),单调增区间为(-,).例3.设x=1与x=2是函数f(x)= a lnx+bx2+x的两个极值点.(1)试确定常数a和b的值;

(2)试判断x=1, x=2是函数f(x)的极大值还是极小值,并说明理由.解:f'(x)=a+2bx+1. xa+4b+1=0,解方程组可得 2(1)由极值点的必要条件可知:f'(1)=f'(2)=0,即a+2b+1=0,且a =-,b=-,∴f(x)=-lnx-(2)f'(x)=-2-11x-x+***

x+x. 6,当x∈(0,1)时,f'(x)<0,当x(1,2)时,f'(x)>0,当

56x(2,+∞)时,f'(x)<0,故在x =1处函数f(x)取得极小值,在x=2处函数取得极大值42-ln2.33 因此,从上面的例题分析来看,导数在证明不等式及函数中有很多妙处,在解答函数及不等式证明问题时避免了一些不必要的复杂运算,简化了解题过程.而本文主要是利用了函数的单调性来研究不等式,并且数列作为特殊函数,用导数解决了有关数列的单调性问题及函数极值问题.在其中主要用到了构造函数,利用导数这一创造思维合理地有效地证明了不等式,使求极值的方法更简便。参考文献

[1] 唐永,徐秀. 慎用导数解数列问题. 数学通报. 2006.3 [2] 韩什元,李晓培. 高等数学解题方法汇编. 华南理工大学出版社. 2002.9. [3] 杨爱国. 利用导数解初等数学问题. 中学数学研究. 2004.4 [4] 陈文灯,黄先开. 高等数学复习指南:思路方法与技巧. 清华大学出版社.2003.7 [5] 龚冬保,武忠祥. 高等数学典型题解法技巧. 西安交通大学出版社. 2000.1 [6] 刘聪, 胜秦永. 函数与不等式高考题目回顾与展望. 中学数学教学参考. 2006.3 [7] 林源渠,方正勤. 数学分析解题指南. 北京大学出版社. 2003 Application in not waiting for the relation to prove of derivative

tala

200411557 Instructor

taogesi Mathematical Sciences Mathematics and Applied Mathematics

Mongolian class 2004 level

Abstract:The derivative studies the function attitude, prove the inequality and solve the strong tools of some practical problems, especially knowledge such as the calculation of the derivative and several and identification with the inequality are synthesized. And several this special function, then this text come on structure function prove monotonicity to skilfully use function that does not vary the relation, come , reflect derivative in function to wait for relation of proving.

Keyword : Derivative;Inequality;Function 8

第二篇:导数在不等式证明中的应用

导数在不等式证明中的应用

引言

不等式的证明是数学学习中的难点,而导数在不等式的证明中起着关键的作用。不等式的证明是可以作为一个系列问题来看待,不等式的证明是数学学习的重要内容之一,也是难点之一。其常用的证明方法有: 比较法、综合法、分析法、重要不等法、数学归纳法等等,然而有一些问题用上面的方法来解决是很困难的,我们在学完导数及其应用这一内容以后,可以利用导数的定义、函数的单调性、最值性(极值性)等相关知识解决一些不等式证明的问题。导数也是微积分的初步基础知识,是研究函数、解决实际问题的有力工,它包括微分中值定理和导数应用。不等式的证明在数学课题中也是一个很重要的问题,此类问题能够培养我们理解问题、分析问题的能力。本文针这篇论文是在指导老师的悉心指导和严格要求下完成的。这篇论文是在指导老师的悉心指导和严格要求下完成的。对导数的定义、微分中值定理、函数的单调性、泰勒公式、函数的极值、函数的凹凸性在不等式证明中的应用进行了举例。

一、利用导数的定义证明不等式

定义 设函数ffx在点x0的某领域内有定义,若极限

fxfx0 存在 limxx0xx0则称函数f在点x0处可导,并称该极限为函数f在点x0处的导数,记作f'x0 令 xx0x,yfx0xfx0,则上式可改写为

fx0xfx0ylimf'x0

x0xx0xlim所以,导数是函数增量y与自变量增量x之比

y的极限。这个增量比称为函x数关于自变量的平均变化率(又称差商),而导数f'x0则为f在x0处关于x的变化率。

以下是导数的定义的两种等价形式:

1(1)f'x0limxx0fxfx0

xx0fxxfx0

x(2)f'x0limx0例1: 设fxr1sinxr2sin2xrnsinnx,并且fxsinx,证明:r12r2nrn1

证明 fxr1sinxr2sin2xrnsinnx,可得出f00,因为 f'xr1cosx2r2cos2xnrncosnx, 则 f'0r12r2nrn 又由导数的定义可知

limx0fxf0fxfx limlimx0x0x0xxsinx1 xf'0limx0所以 f'01,即可得 r12r2nrn1.1221ylny,求证: y1,y2y2lny.232211分析 令hyy2y2lny,y(1,),因为h10, 326例

2、已知函数fy要证当x1时,hx0,即hxh10,只需证明hy在(1,)上是增函数。证明 令hy22121yylny,则h'y2y2y,32y'2y3y21(y1)(2y2y1)因为 当y1时, hy0 ,yy所以hy在(1,)上是增函数,就有hyh11210,y3y2lny0,632 2 21即可得y1,y2y2lny.32注:证明方法为先找出x0,使得yf'x0恰为结论中不等式的一边;再利用导数的定义并结合已知条件去证明。

二、利用微分中值定理证明不等式

证题思路 将要证的不等式改写成含变量之商不等式,则可尝试利用中值公式

fbfaf'

bafbfafbfa或的bagbgafbfaf'或者 'gbgag并做适当的放缩到待证不等式中 1.使用拉格朗日中值定理证明不等式 定理 若函数满足如下条件:(i)f在闭区间[a,b]上连续;(ii)在开区间(a,b)内可导,则在(a,b)内至少存在一点,使得

f'fbfa

ba例

3、证明对一切h1,h0成立不等式

hln1hh 1h证明 设fxln1x,则ln1hln1hln1当h0时,由01可推知

11h1h,h,01 1hhhh 1h1hhhh 1h1h当1h0时,由01可推得

11h1h0,从而得到所要证明的结论.注:利用拉格朗日中值定理的方法来证明不等式的关键是将所要证明的结论与已知条件归结为一个函数在某区间上的函数增量,然后利用中值定理转化为其导数的单调性等问题.2.使用柯西中值定理证明不等式 定理 设函数f和g满足(i)在[a,b]上都连续;(ii)在(a,b)内都可导;

(iii)f'x和g'x不同时为零;(iv)gagb,f'fbfa则存在(a,b),使得' ggbga例

4、证明不等式

ln1yarctany(y0)1y分析 该不等式可化为

1yln1y1(y0)

arctany可设 fy1yln1y,gyarctany,fyf0注意到f0g00,故可考虑对使用柯西中值定理

gyg0证明 如上分析构造辅助函数fy和gy,则对任意y0,由柯西中值定理,存在(0,y),使得

1yln1yfyf0f'1ln(1)

1arctanygyg0g'12[1ln(1)](12)1.4

三、利用函数的单调性证明不等式

证明思路 首先根据题设条件及所证不等式,构造适当的辅助函数fx,并确定区间[a,b];然后利用导数确定fx在[a,b]上的单调性;最后根据fx的单调性导出所证的不等式.1.直接构造函数,再运用函数的单调性来证明不等式

例5 证tany2siny3y,其中y[0,)

2分析 欲证f(y)f(a)(ayb),只要证f(y)在[a,b]上单调递增,即证f'(y)0即可.

若f'(y)的符号不好直接判定,可借助于f''(y),以至于f3(y)进一步判定.证明 令fytany2siny3y,则 f'ysec2y2cosy3,f''y2sinysec3y1

于是y[0,)时,f''y0,有f'y单调增加

2所以f'yf'00,有fy单调增加,可推得fyf00,即tany2siny3y.2.先将不等式变形,然后再构造函数并来证明不等式 例

6、已知b,cR,be,求证:bccb为(e自然对数的底)证明 设fxxlnbblnx(xbc)

b则 f'xlnb,就有 be,xb

xb因为 lnb1,1, x所以 f'x0,则f'x在(e,)上递增;

又因cb,所以fcfb,就有clnbblncblncblnc0 从而有clnbblnc,即bccb.注: 对于一些不易入手的不等式证明, 可以利用导数思想,先通过特征不等式构 造一个函数, 再判定其函数单调性来证明不等式成立,这就是利用函数的单调性证明不等式的思想。

构造辅助函数有以下几种方法: 1.用不等式的两边“求差”构造辅助函数;  2.用不等式两边适当“求商”构造辅助函数; 3.根据不等式两边结构构造“形似”辅助函数; 

4.如果不等式中涉及到幂指函数形式,则可通过取对数将其化为易证明的形式再根据具体情况由以上所列方法构造辅助函数.四、利用泰勒公式证明不等式

证题思路 若fx在(a,b)内具有(n+1)阶导数,x0(a,b),则

fxfx0f'x0xx0

f''x02xx0 2!fnx0fn1nn1xx0xx0 n!n1!其中介于x0与x之间.

7、设fy在[0,1]上二阶可导,f010,且maxfy1,求证:存在y[0,1](0,1),使得f''y8.证明 因fy在[0,1]上二阶可导,故在[0,1]上连续, 据最值定理,必c(0,1)使得fc为最大值,即fc=1,且有f'c0.而fy在y=1的一阶泰勒展式为

f''2 fyfcfcycxc,其中介于c与y间

2'分别在上式中令y0与y1得

f011''f1c20,1(0,c),2 6

1''2f21c0,2(c,1).212故当c(0,]时,f''128,2cf1112当c(,1)时, f''28,221c所以存在(1或2)(0,1),使得f''y8.注: 用泰勒展式证明不等式的方法是将函数fx 在所给区间端点或一些特点(如区间的中点,零点)进行展开,通过分析余项在点的性质,而得出不等式。值得说明的是泰勒公式有时要结合其它知识一起使用,如当使用的不等式中含有积分号时,一般要利用定积分的性质结合使用泰勒公式进行证明;当所要证明的不等式是含有多项式和初等函数的混合式时,需要作一个辅助函数并用泰勒公式代替。使用泰勒公式巧妙灵活的证明不等式往往使证明方便简捷。

五、利用函数的最值(极值)证明不等式

由连续函数在[a,b]上的性质,若函数f在闭区间[a,b]上连续,则f在[a,b]上一定有最大、最小值,这就为我们求连续函数的最大,最小值提供了理论保证。

若函数f的最大(小)值点x0在区间(a,b)内,则x0必定是f的极大(小)点。又若f在x0可导,则x0还是一个稳定点。所以我们只要比较f在所有稳定点、不可导点和区间端点上的函数值,就能从中找到f在[a,b]上的最大值与最小值。证明方法:先构造辅助函数,再求出fx在所设区间上的极值与最大、最小值,进而证明所求不等式。

8、已知: 0x1,证明当r1时,有

r1rrx1x1 r12证明 令fxxr1x,0x1,则f0f11

1,2111111则f()r(1)rrrr1

222222令fx0,求得x因为 f'xrxr1r1xr1,7 令 f'x0,求得驻点为x又因为当r1时,11, r121,2所以fx在[0,1]上的最小值为从而

1,最大值为1, 2r11rrx1x1,0x1,r>1.2r1例

9、证明:当y1时, ey证明 作辅助函数 1yfy1xey,则f'yyey,y0是fy在(,1)内的唯一驻点,且当y0时,f'(y)0 ;当0y1时,f'y0.故y0是fy的极大值点,f01是fy的极大值.因为当y由小变大时,fy由单调增变为单调减, 故f01同时也是fy的最大值, 所以,当y1时,fy1 , 即ey1.1y注:在对不等式的证明过程中,可以以不等式的特点为根据,以此来构造函数,从而运用导数来得出函数的最值,而此项作用也是导数的另一个功能,即可以被用作求函数的最值。例如,当此函数为最大或最小值的时候,不等式的成立都有效的,因此可以推出不等式是永远成立的,从而可以将证明不等式的问题转化到求函数最值的问题上来。

六、利用函数的凹凸性质证明不等式

证明思路 若f''x0(axb),则函数yfx的图形为凹的,即对任意x1,x2(a,b),有f(fx1fx2x1x2),当且仅当x1x2时成立. 22 8 例

10、设r0,h0,证明rlnrhlnh(rh)ln成立.

分析 将欲证的不等式两边同除以2,变形为

rlnrhlnh(rh)rhln 222rh,且等号仅在rh 时2由上式看出,左边是函数fkklnk在r,h两点处的值的平均值,而右边是它在中点rh处的函数值.这时只需证f''k0即可. 2证明 构造辅助函数

fkklnk(k0),那么就有:

f'k1lnk,f''k故由不等式:

10 成立.kfrfhrhf()

22rlnrhlnh(rh)rhln 222rh也即 rlnrhlnh(rh)ln

2可得

且等号仅在rh 时成立.例

11、已知: 0,0, 332,求证:2.证明 设fyy3,y(0,),则 f'y3y2,f''y6y0 就有fyy3,y(0,)是凸函数

1,y1,y2,211)则f1y12y2f()f(222设12就有如下式子成立: f1y12y2f(2)1fy12fy211ff 22 9 而又因为有

83(2)3f(2),ff33111 ff2222所以

83f(2)11ff1 成立 22故2.小结:通过对导数证明不等式的研究,我可以看出不等式的证明方法很多,但各种方法都不尽相同。我们要充分理解各种方法的应用原理,挖掘导数的各种性质。多做此类难题,不但有利于我们在学习和考试中轻松解决同类问题,更有利于培养我们的数学思维和推理论证能力。因而导数在不等式证明当中的应用很有研究价值。

第三篇:导数在不等式证明中的应用

龙源期刊网 http://.cn

导数在不等式证明中的应用

作者:唐力 张欢

来源:《考试周刊》2013年第09期

摘要: 中学不等式证明,只能用原始的方法,很多证明需要较高技巧,且证明过程太难,应用高等数学中的导数方法来证明不等式,往往能使问题变得简单.关键词: 导数 拉格朗日中值定理 不等式证明

1.拉格朗日中值定理

定理1:如果函数y=f(x)满足:1)在闭区间[a,b]上连续,2)在开区间(a,b)内可导,则在(a,b)内至少有在一点ξ(a

F(b)-f(a)=f′(ξ)(b-a)

由定理1,我们不难得到如下定理2.

第四篇:数学论文-导数在函数中的应用

导数在函数中的应用

【摘 要】新课程利用导数求曲线的切线,判断或论证函数的单调性,函数的极值和最值。导数是分析和解决问题的有效具。

【关键词】导数 函数的切线 单调性 极值和最值

导数(导函数的简称)是一个特殊函数,它的引出和定义始终贯穿着函数思想。新课程增加了导数的内容,随着课改的不断深入,导数知识考查的要求逐渐加强,而且导数已经由前几年只是在解决问题中的辅助地位上升为分析和解决问题时的不可缺少的工具。函数是中学数学研究导数的一个重要载体,函数问题涉及高中数学较多的知识点和数学思想方法。近年好多省的高考题中都出现以函数为载体,通过研究其图像性质,来考查学生的创新能力和探究能力的试题。本人结合教学实践,就导数在函数中的应用作个初步探究。

有关导数在函数中的应用主要类型有:求函数的切线,判断函数的单调性,求函数的极值和最值,利用函数的单调性证明不等式,这些类型成为近两年最闪亮的热点,是高中数学学习的重点之一,预计也是“新课标”下高考的重点。

一、用导数求函数的切线

例1.已知曲线y=x3-3x2-1,过点(1,-3)作其切线,求切线方程。

分析:根据导数的几何意义求解。

解:y′ = 3x2-6x,当x=1时y′=-3,即所求切线的斜率为-3.故所求切线的方程为y+3 =-3(x-1),即为:y =-3x.1、方法提升:函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,y=f(x0))处的切线的斜率。既就是说,曲线y=f(x)在点P(x0,y=f(x0))处的切线的斜率是f′(x0),相应的切线方程为y-y0= f′(x0)(x-x0)。

二、用导数判断函数的单调性

例2.求函数y=x3-3x2-1的单调区间。

分析:求出导数y′,令y′>0或y′<0,解出x的取值范围即可。

解:y′= 3x2-6x,由y′>0得3x2-6x﹥0,解得x﹤0或x﹥2。

由y′<0 得3x2-6x﹤0,解得0﹤x<2。

故 所求单调增区间为(-∞,0)∪(2,+∞),单调减区间为(0,2)。

2、方法提升:利用导数判断函数的单调性的步骤是:(1)确定f(x)的定义域;(2)求导数f′(x);(3)在函数f(x)的定义域内解不等式f′(x)>0和f′(x)<0;(4)确定f(x)的单调区间.若在函数式中含字母系数,往往要分类讨论。

三、用导数求函数的极值

例3.求函数f(x)=(1/3)x3-4x+4的极值

解:由 f′(x)=x2-4=0,解得x=2或x=-2.当x变化时,y′、y的变化情况如下:

当x=-2时,y有极大值f(-2)=-(28/3),当x=2时,y有极小值f(2)=-(4/3).3、方法提升:求可导函数极值的步骤是:(1)确定函数定义域,求导数f′(x);(2)求f′(x)= 0的所有实数根;(3)对每个实数根进行检验,判断在每个根(如x0)的左右侧,导函数f′(x)的符号如何变化,如果f′(x)的符号由正变负,则f(x0)是极大值;如果f′(x)的符号由负变正,则f(x0)是极小值.。注意:如果f′(x)= 0的根x = x0的左右侧符号不变,则f(x0)不是极值。

四、用导数求函数的最值

五、证明不等式

5、方法提升:利用导数证明不等式是近年高考中出现的一种热点题型。其方法可以归纳为“构造函数,利用导数研究函数最值”。

总之,导数作为一种工具,在解决数学问题时使用非常方便,尤其是可以利用导数来解决函数的单调性,极值,最值以及切线问题。在导数的应用过程中,要加强对基础知识的理解,重视数学思想方法的应用,达到优化解题思维,简化解题过程的目的,更在于使学生掌握一种科学的语言和工具,进一步加深对函数的深刻理解和直观认识。参考资料:

1、普通高中课程标准实验教科书(北京师范大学出版社)

2、高中数学教学参考

第五篇:导数在证明不等式中的应用

1.【作 者】 杨建辉;布春霞【刊 名】中学生数理化(学研版)【出版日期】201

1【期 号】第11期【页 码】2-3【参考文献格式】杨建辉,布春霞.导数在证明不等式中的应用[J].中学生数理化(学研版),2011,(第11期).2.【作 者】 赵京之【刊 名】中国新技术新产品【出版日期】2010【期 号】第14期【参考文献格式】赵京之.导数在证明不等式中的应用[J].中国新技术新产品,2010,(第14期).【摘 要】不等式与等式一样,在数学问题中都是非常重要的课题,不等式的研究范围更广,难度更大,以函数观点认识不等式,应用导数为工具,不等式的证明将化难为易,迎刃而解,考虑的角度初步有:中值定理,Taylor公式,函数的单调性,最值,以及Jensen不等式。

3.【作 者】 刘伟【刊 名】电大理工【出版日期】2004【期 号】第3期【页 码】13-14【参考文献格式】刘伟.导数在证明不等式中的应用[J].电大理工,2004,(第3期).4.【作 者】 顾庆菏【刊 名】邢台师范高专学报【出版日期】1995【期 号】第1期【页 码】118-120【参考文献格式】顾庆菏.导数在证明不等式中的应用[J].邢台师范高专学报,1995,(第1期).5.【作 者】 刘开生;潘书林【刊 名】天水师范学院学报【出版日期】2000【期 号】第3期【页 码】115-116【参考文献格式】刘开生,潘书林.导数在证明不等式中的应用[J].天水师范学院学报,2000,(第3期).6.【作 者】 陈万鹏;陈万超【刊 名】大学数学【出版日期】1990【期 号】第4期【页 码】67-71【参考文献格式】陈万鹏,陈万超.导数在证明不等式中的应用[J].大学数学,1990,(第4期).7.【作 者】 高燕【刊 名】考试周刊【出版日期】2011【期 号】第60期【页 码】69-70【参考文献格式】高燕.导数在不等式证明中的应用[J].考试周刊,2011,(第60期).8.导数法在证明不等式中的应用【作 者】 【刊 名】版)【出版日期】2011【期 号】第Z1期【页 码】

5【参考文献格式】郝文武.导数法在证明不等式中的应用[J].中学生数理化(高二版),2011,(第Z1期).9.导数在证明不等式中的一些应用【作 者】 甘启才【刊 名】广西师范学院学报(自然科学版)【出版日期】2011【期 号】第S1期【页 码】73-75

【参考文献格式】甘启才.导数在证明不等式中的一些应用[J].广西师范学院学报(自然科学版),2011,(第S1期).10.【作 者】 王莉闻【刊 名】考试周刊【出版日期】2011【期 号】第82期【参考文献格式】王莉闻.导数在不等式证明中的应用[J].考试周刊,2011,(第82期).【摘 要】导数知识是高等数学中极其重要的部分,它的内容、思想和应用贯穿于整个高等数学的教学之中.利用导数证明不等式是一种行之有效的好方法,它能使不等式的证明化难为易,迎刃而解.在不等式证明的种种方法中,它占有重要的一席之地.本文将从利用函数的单调性,利用函数的最值(或极值)

11.【作 者】 王翠丽【刊 名】数学之友【出版日期】2011【期 号】第6期【页 码】84,86【参考文献格式】王翠丽.导数在不等式证明中的应用[J].数学之友,2011,(第6期).12.【作 者】 王强;申玉芹【刊 名】中学数学【出版日期】2012【期 号】第9期【页 码】6【参考文献格式】王强,申玉芹.导数在不等式中的应用[J].中学数学,2012,(第9期).13.【作 者】 朱帝【刊 名】数理化学习【出版日期】2008【期 号】第3期【页 码】2-4【参考文献格式】朱帝.导数在证明不等式中的应用[J].数理化学习,2008,(第3期).14.【作 者】 王伟珠【刊 名】佳木斯教育学院学报【出版日期】2010【期 号】第6期【参考文献格式】王伟珠.导数在不等式证明中的应用[J].佳木斯教育学院学报,2010,(第6期).15.【作 者】 张根荣;李连方【刊 名】中学数学研究【出版日期】2010【期 号】第11期【页 码】24-25【参考文献格式】张根荣,李连方.导数在不等式证明中的应用[J].中学数学研究,2010,(第11期).【摘 要】“问题是数学的心脏”,数学学习的核心就应该是培养解决数学问题的能力.正如波利亚指出的:“掌握数学就是意味着善于解题.”“中学数学首要的任务就是加强解题的训练”.在数学教学中,例题、习题的解答过程是学生建构知识的重要基础,是学生学习不可缺少的重要组成部分.因此在课堂教学有限的45分钟内,如何发挥例题的功能,16.【作 者】 张萍【刊 名】西部大开发:中旬刊【出版日期】2010【期 号】第7期【页 码】176-177【参考文献格式】张萍.导数在证明不等式中的有关应用[J].西部大开发:中旬刊,2010,(第7期).【摘 要】导数是高等数学中最基本最重要的内容之一,用导数的方法证明不等式是不等式证明重要的组成部分,具有较强的灵活性和技巧性。掌握导数在不等式中的证明方法和技巧对学好高等数学有很大帮助。本文将通过举例和说明的方式来阐述不等式证明中导数的一些方法和技巧,提高学生用导数证明不等式的能力.

17.【作 者】 李旭金【刊 名】新作文(教育教学研究)【出版日期】2011【期 号】第11期【页 码】31【参考文献格式】李旭金.导数在不等式中的应用[J].新作文(教育教学研究),2011,(第11期).18.【作 者】 李晋【刊 名】大视野【出版日期】2009【期 号】第3期【页 码】241-243【参考文献格式】李晋.导数在不等式证明中的应用[J].大视野,2009,(第3期).第5期【页 码】24-26【参考文献格式】高芳.导数在不等式证明中的应用[J].商丘职业技术学院学报,2009,(第5期).20.【作 者】 蔡金宝【刊 名】吉林省教育学院学报(学科版)【出版日期】2009

【期 号】第9期【页 码】85-86【参考文献格式】蔡金宝.导数在不等式证明中的应用[J].吉林省教育学院学报(学科版),2009,(第9期).21.浅谈导数在不等式证明问题中的应用【作 者】 姜治国【刊 名】考试(高考 数学版)【出版日期】2009【期 号】第Z5期【页 码】54-56【参考文献格式】姜治国.浅谈导数在不等式证明问题中的应用[J].考试(高考 数学版),2009,(第Z5期).22.导数在不等式中的一些应用【作 者】 陶毅翔【刊 名】宁德师专学报·自然科学版【出版日期】2010【期 号】第2期【页 码】123-124,127【参考文献格式】陶毅翔.导数在不等式中的一些应用[J].宁德师专学报·自然科学版,2010,(第2期).23.【作 者】 陈海兰【刊 名】科技信息【出版日期】2010【期 号】第8期【参考文献格式】陈海兰.导数在不等式中的应用[J].科技信息,2010,(第8期).【摘 要】本文给出了几种用导数来证明不等式的方法,通过这些方法,可以比较简洁,快速地解决一些不等式的证明问题.24.【作 者】 胡林【刊 名】科技咨询导报【出版日期】2007【期 号】第5期

【页 码】95-96【参考文献格式】胡林.导数在不等式证明中的应用[J].科技咨询导报,2007,(第5期).25.【作 者】 胡林【刊 名】科技资讯【出版日期】2006【期 号】第36期【页 码】148【参考文献格式】胡林.导数在不等式证明中的应用[J].科技资讯,2006,(第36期).26.【作 者】 周晓农【刊 名】贵阳金筑大学学报【出版日期】2000【期 号】第3期【页 码】107-110+87【参考文献格式】周晓农.导数在不等式证明中的应用[J].贵阳金筑大学学报,2000,(第3期).27.【作 者】 葛江峰【刊 名】中学理科:综合【出版日期】2008【期 号】第9期【页 码】52【参考文献格式】葛江峰.导数在不等式中的应用[J].中学理科:综合,2008,(第9期).【摘 要】新课程试卷将导数与传统的不等式证明有机结合在一起设问,是一种新颖的命题模式,体现导数在分析和解决一些函数性质问题的工具作用,以下介绍几种应用导数证明不等式的方法,供大家参考。

28.【作 者】 梁俊平【刊 名】龙岩师专学报(自然科学版)【出版日期】1997

【期 号】第3期【页 码】167-170【作者单位】不详【参考文献格式】梁俊平.导数在不等式证明中的应用[J].龙岩师专学报(自然科学版),1997,(第3期).期【页 码】48-53【参考文献格式】杨耀池.导数在不等式中的应用[J].数学的实践与认识,1985,(第2期).30.例说应用导数证明不等式【作 者】 冯仕虎【刊 名】数学学习与研究(教研版)【出版日期】2008【期 号】第11期【页 码】109-110【参考文献格式】冯仕虎.例说应用导数证明不等式[J].数学学习与研究(教研版),2008,(第11期).

下载导数在函数及不等关系证明中的应用(精选合集)word格式文档
下载导数在函数及不等关系证明中的应用(精选合集).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    构造函数法在导数中的应用(小编推荐)

    构造函数法在导数中的应用 “作差法”构造 证明不等式或解决不等式恒成立问题都可以利用作差法将不等式右边转化为0,然后构造新函数[F(x)],最后根据新函数[F(x)]的单调性转化为[F......

    《导数在函数中的应用——单调性》教学反思

    本节课是一节新授课,教材所提供的信息很简单,如果直接得出结论学生也能接受。可学生只能进行简单的模仿应用,为了突出知识的发生过程,不把新授课上成习题课。设计思路如下以便教......

    应用导数证明不等式

    应用导数证明不等式常泽武指导教师:任天胜(河西学院数学与统计学院 甘肃张掖 734000)摘要: 不等式在初等数学和高等代数中有广泛的应用,证明方法很多,本文以函数的观点来认识不等......

    导数在研究函数问题中的应用

    龙源期刊网 http://.cn 导数在研究函数问题中的应用 作者:朱季生 来源:《中学教学参考·理科版》2013年第04期 函数是高中数学的重要内容和主干知识,而导数知识在研究函数图象......

    导数在不等式中的应用范文合集

    指导教师:杨晓静 摘要:本文探讨了利用拉格朗日中值定理,函数的单调性,极值,幂级数展开式,凹凸性等进行不等式证明的具体方法,给出了各种方法的适用范围和证明步骤,总结了应用各种方......

    导数在高中数学中的应用

    导数在高中数学中的应用 导数是解决高中数学问题的重要工具之一,很多数学问题如果利用导数的方法来解决,不仅能迅速找到解题的切入点,甚至解决一些原来只是解决不了的问题。而......

    1.3导数在研究函数中的应用 教学设计 教案

    教学准备 1. 教学目标 (1)使学生理解函数的最大值和最小值的概念,能区分最值与极值的概念 (2)使学生掌握用导数求函数最值的方法和步骤 2. 教学重点/难点 【教学重点】: 利用导......

    3.3 导数在研究函数中的应用 教学设计 教案

    教学准备 1. 教学目标 知识与技能 1.正确理解利用导数判断函数的单调性的原理; 2.掌握利用导数判断函数单调性的方法。 过程与方法 通过知识的探究过程培养学生细心观察、......