第一篇:19.8 直角三角形的性质 教学设计 教案
教学准备
1.教学目标
1、从熟悉的三角尺出发,得出直角三角形两锐角的数量关系;进而推导直角三角形斜边上中线的性质,并能运用这两个性质解决简单的数学问题。
2、在探索直角三角形性质的过程中,体会研究图形性质的方法,体会从特殊到一般的研究策略;结合动手操作,体会图形变换的思想方法。
3、通过图形变换,感受数学问题的灵活性;通过对实际问题的解决,感受数学知识的实用性,激发浓厚的学习兴趣。
2.教学重点/难点
重点:直角三角形斜边上的中线性质定理的推导 难点:添设辅助线进行几何证明
3.教学用具 4.标签
教学过程 【教学过程设计】
一、新课导入
观察你身边的三角尺,这两个直角三角形的两个锐角有什么数量关系?为什么? 【设计说明】:从学生熟悉的直角三角尺入手,得到直角三角形两个锐角之间的数量关系。对七年级的学生而言不难理解,只需加以归纳,不需花力气。
二、探索新知
性质 1:直角三角形的两个锐角互余。你能用数学符号来表示吗? 符号表示:
RT△ABC,∵∠C=90°,∴∠A+∠B=90°(∠A与∠B互余)请同学们完成练习:(书面)
(1)在直角三角形中,有一个锐角为46°,那么另一个锐角度数为_________;(2)在Rt△ABC中,∠C=90°,∠A-∠B=30°,那么∠A=________,∠B=_________;
(3)如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的高,图中与∠A互余的角有_________,与∠B互余的角有_________;与∠A相等的角有_________,∠B相等的角有_________。
学生完成后,教师检查完成情况。其中第3题需展开。
在上图中,我添加一个条件∠B=45°,你认为图中各锐角是多少度?请你画出现在的图形的形状。这时线段CD与斜边有怎样的关系?(垂直、平分且等于斜边的一半)
结论:等腰直角三角形斜边上的中线等于斜边的一半。如果是一般三角形具有这个性质吗?直角三角形斜边上的中线等于斜边的一半吗?(有的学生会运用直尺测量去找到答案)量一量:用尺规测量,但我们论证一个命题,需要用严密的推理方法来说明。命题证明:直角三角形斜边上的中线等于斜边的一半。
已知:在Rt△ABC中,∠ACB=90°,CD是斜边AB的中线,求证:CD=1/2AB 首先让学生思考一会儿,会发现直接证明比较困难,这时教师加以引导,当遇到中线时,可以倍长中线法,把需证明的结论转化为证明线段相等。然后让学生小组合作讨论解题方法。当各小组找到解题方法后,请一位学生进行板书。性质2:直角三角形斜边上的中线等于斜边的一半.你能用数学符号来表示吗? 符号表示: RT△ABC,∵∠C=90°,CD是中线(D是AB的中点)∴CD=1/2 AB
【设计说明】通过等腰直角三角形这个特殊的直角三角形斜边上中线与斜边的等量关系的研究,转入到对任意直角三角形斜边上的中线与斜边的等量关系的思考,引导学生体会从“特殊到一般”的解决问题的策略,同时又帮助学生对任意直角三角形斜边上中线与斜边等量关系形成猜想,更注重解题策略的渗透。对于添设辅助线这一难点,由于在“证明举例”的学习中已有接触,教师稍加点拨后难点较易突破。
三、尝试应用
请同学们完成下面练习:
1、如图,在△ABC中,∠ACB=90°,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB=_________。
2、动手操作:请同学们拿出制作好的两个直角三角形(斜边相等但不全等),将他们的斜边拼在一起,你有几种拼法?(学生动手并进行展示)
在上图中已知∠ACB=∠ADB=90°,E是AB的中点,F是CD的中点,猜想 EF和CD又怎样的位置关系?并加以证明。
小组合作完成,并任选一个图形加以证明。(每组不可都选一个图形)【设计说明】这个例题是性质2的运用,学生对拼图很感兴趣,通过自己的操作,引起对问题的思考:当直角三角形出现斜边中点时,学生会想到添加中线,这也是常见的添线方法,通过小组成员的合作,可以抓住两个图形的特征,同时体验图形变换思想,展现几何图形的奥妙和美感。
3、拓展:徐汇区政府为了方便居民的生活,计划在三个住宅小区之间修建一个购物中心,三个小区恰巧处于一个直角三角形的三个顶点上请你规划一下,问该购物中心应建于何处,才能使它到三个小区的距离相等?
【设计说明】:通过本题的解决,将所学的知识学以致用,体会数学知识的实用性,符合教材中数学是有用的设计理念。
四、课堂小结:
1、这节课你学习了直角三角形的哪两条性质定理?
2、在解决具体问题中你有哪些收获?
3、你还想知道直角三角形的哪些性质?
五、课后练习完成自主练习卷
课后习题
《直角三角形性质》课后练习设计 温习课本:
1、根据三角形的内角和等于__________,我们可以知道直角三角形的两锐角____________________;
2、定理2:直角三角形斜边上的中线等于____________________。
一、基本知识:
1、已知RT⊿ABC中,∠B=90°, ∠A=2C,那么∠A=_________。
2、在直角三角形中,如果斜边长10cm,那么斜边上的中线等于_________。
3、如图:∠B=∠C=∠AED=90°,写出图中互余的角。
二、定理应用
1、已知,如图CD、EB分别是△ABC的两边AB、AC上的高,M是BC的中点,且MN⊥DE,N为垂足,求证:N为DE的中点
2、如图,⊿ABC中,∠ABC=90°,E为AC的中点,在图中作点D,使AD∥BE,且∠ADC=90°;在AD上取点F,使FD=BE,分别联结EF、ED、BD,试判断EF与BD之间具有怎样的位置关系。
3、已知:如图,⊿ABC中,∠B=20°,∠C=40°,D是BC上一点,∠BAD=90°,求证:BD=2AC
4、已知,如图在直角三角形⊿ABC中,∠C=90°,AD∥BC,∠CBE=∠ABE 求证:ED=2AB
5、已知:如图,⊿ABC中,AD是BC边上的高,CE是AB边上的中线,DC=BE,DG⊥CE,垂足为G。求证:(1)G是CE的中点;(2)∠B=∠BCE
三、拓展与提高
小明是个爱思考的学生,他认真巩固了所学知识之后,想出了这样一个问题:如果一个三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形吗?你能不能帮助小明解决这个问题并给予证明。
【设计说明】:练习的设计注重层次性,分为对基本知识点的检测和定理的应用,其中定理的应用是检测的重点,练习的选题着重检查学生对基本图形的把握和常规辅助线的添设,设置了提高题,对学有余力的学生提供了思考的空间。
2016-1-29
第二篇:直角三角形的性质教案
直角三角形的性质
(一)【教学目标】:
1、掌握“直角三角形的两个锐角互余”定理。
2、巩固利用添辅助线证明有关几何问题的方法。
【教学重点】:直角三角形斜边上的中线性质定理的应用。
【教学难点】:直角三角形斜边上的中线性质定理的证明思想方法。【教学过程】:
一、引入
复习提问:(1)什么叫直角三角形?
(2)直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?
二、新授
(一)直角三角形性质定理1
请学生看图形:
1、提问:∠A与∠B有何关系?为什么?
2、归纳小结:定理1:直角三角形的两个锐角互余。
3、巩固练习:
练习1:(1)在直角三角形中,有一个锐角为520,那么另一个锐角度数(2)在Rt△ABC中,∠C=900,∠A-∠B =300,那么∠A=,∠B=。
练习2 :在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,(1)与∠B互余的角有(2)与∠A相等的角有
。(3)与∠B相等的角有。
(二)直角三角形性质定理2
1、实验操作:要学生拿出事先准备好的直角三角形的纸片
(l)量一量斜边AB的长度(2)找到斜边的中点,用字母D表示
(3)画出斜边上的中线(4)量一量斜边上的中线的长度
让学生猜想斜边上的中线与斜边长度之间有何关系?
三、巩固训练:
练习3 :在△ABC中,∠ACB=90 °,CE是AB边上的中线,那么与CE相等的线段有_________,与∠A相等的角有_________,若∠A=35°,那么∠ECB= _________。
练习4: 已知:∠ABC=∠ADC=90O,E是AC中点。求证:(1)ED=EB(2)∠EBD=∠EDB(3)图中有哪些等腰三角形?
练习5: 已知:在△ABC中,BD、CE分别是边AC、AB上的高,M是BC的中点。如果连接DE,取DE的中点O,那么MO 与DE有什么样的关系存在?
四、小结:
这节课主要讲了直角三角形的那两条性质定理?
1、直角三角形的两个锐角互余?
五、布置作业
直角三角形的性质
(二)一、【教学目标】:
1、掌握“直角三角形斜边上的中线等于斜边的一半”定理以及应用。
2、巩固利用添辅助线证明有关几何问题的方法。
3、通过图形的变换,引导学生发现并提出新问题,进行类比联想,促进学生的思维向多层次多方位发散。培养学生的创新精神和创造能力。
4、从生活的实际问题出发,引发学生学习数学的兴趣。从而培养学生发现问题和解决问题能力。
二、【教学重点与难点】:
直角三角形斜边上的中线性质定理的应用。
直角三角形斜边上的中线性质定理的证明思想方法。
三、【教学过程】:
(一)引入:
如果你是设计师:(提出问题)2008年将建造一个地铁站,设计师设想把地铁站的出口建造在离附近的三个公交站点45路、13路、23路的距离相等的位置。而这三个公交站点的位置正好构成一个直角三角形。如果你是设计师你会把地铁站的出口建造在哪里?
(通过实际问题引出直角三角形斜边上的中点和三个顶点之间的长度关系,引发学生的学习兴趣。)
动一动 想一想 猜一猜(实验操作)
请同学们分小组在模型上找出那个点,并说出它的位置。请同学们测量一下这个点到这三个顶点的距离是否符合要求。
通过以上实验请猜想一下,直角三角形斜边上的中线和斜边的长度之间有 什么关系?
(通过动手操作找到那个点,通过测量的结果让学生猜测斜边的中线与斜边的关系。)A
(二)新授:
提出命题:直角三角形斜边上的中线等于斜边的一半 E证明命题:(教师引导,学生讨论,共同完成证明过程)应用定理:
已知:如图,在△ABC中,∠B=∠C,AD是∠BAC的平分线,E、F分别BDAB、AC的中点。求证:DE=DF 分析:可证两条线段分别是两直角三角形的斜边上的中线,再证两斜边相等即可证得。
(上一题我们是两个直角三角形的一条较长直角边重合,现在我们将图形变化使斜边重合,我们可以得到哪些结论?)练习变式:
1、已知:在△ABC中,BD、CE分别是边AC、AB上的高,AF是BC的中点。求证:FD=FE
D练习引申:(1)若连接DE,能得出什么结论? O(2)若O是DE的中点,则MO与DE存在什么结论吗? E上题两个直角三角形共用一条斜边,两个直角三角形位于
BFCFC斜边的同侧。如果共用一条斜边,两个直角三角形位于斜 边的两侧我们又会有哪些结论?
2、已知:∠ABC=∠ADC=90º,E是AC中点。你能得到什么结论?
直角三角形的性质
(三)ADEC
B重点:直角三角形的性质定理 难点:
1.性质定理的证明方法.2.性质定理及其推论在解题中的应用.讲一讲
例1:已知,Rt△ABC中,∠ACB=90°,AB=8cm,D为AB中点,DE⊥AC于E,∠A=30°,求BC,CD和DE的长
分析:由30°的锐角所对的直角边为斜边的一半,BC可求,由直角三角形斜边中线的性质可求CD.在Rt△ADE中,有∠A=30°,则DE可求.解:在Rt△ABC中
∵∠ACB=90 ∠A=30°∴BCAB
∵AB=8 ∴BC=4
∵D为AB中点,CD为中线
∴CDAB4
∵DE⊥AC,∴∠AED=90°
在Rt△ADE中,DEAD,ADAB
221
∴DEAB2
例2:已知:△ABC中,AB=AC=BC(△ABC为等边三角形)D为BC边上的中
1点,DE⊥AC于E.求证:CEAC.4
分析:CE在Rt△DEC中,可知是CD的一半,又D为中点,故CD为BC上的一半,因此可证.证明:∵DE⊥AC于E,∴∠DEC=90°(垂直定义)
∵△ABC为等边三角形,∴AC=BC ∠C=60°
∵在Rt△EDC中,∠C=60°,∴∠EDC=90°-60°=30°
∴ECCD ∵D为BC中点,∴DCBC ∴DCAC
221AC.4
例3:已知:如图AD∥BC,且BD⊥CD,BD=CD,AC=BC.求证:AB=BO.分析:证AB=BD只需证明∠BAO=∠BOA
由已知中等腰直角三角形的性质,可知DFBC。由此,建立起AE与AC
2之间的关系,故可求题目中的角度,利用角度相等得证.证明:作DF⊥BC于F,AE⊥BC于E
∵△BDC中,∠BDC=90°,BD=CD 1 ∴DFBC
∵BC=AC ∴DFAC
∵DF=AE ∴AEAC
∴∠ACB=30°
∵∠CAB=∠ABC,∴∠CAB=∠ABC=75°
∴∠OBA=30°
∴∠AOB=75°
∴∠BAO=∠BOA ∴AB=BO 练一练
1.△ABC中,∠BAC=2∠B,AB=2AC,AE平分∠CAB。求证:AE=2CE。∴CE
2.已知,Rt△ABC中,∠ACB=90°,CD⊥AB,CE为AB边上的中线,且∠BCD=3∠DCA。
求证:DE=DC。
3.如图:AB=AC,AD⊥BC于D,AF=FD,AE∥BC且交BF的延长线于E,若AD=9,BC=12,求BE的长。
4.在△ABC中,∠ACB=90°,D是AB边的中点,点F在AC边上,DE与CF平行且相等。
求证:AE=DF。
第三篇:直角三角形的性质教案
直角三角形的性质教案
本资料为woRD文档,请点击下载地址下载全文下载地址直角三角形的性质
【知识与技能】
(1)掌握直角三角形的性质定理,并能灵活运用.(2)继续学习几何证明的分析方法,懂得推理过程中的因果关系.知道数学内容中普遍存在的运动、变化、相互联系和相互转化的规律.【过程与方法】
(1)经历探索直角三角形性质的过程,体会研究图形性质的方法.(2)培养在自主探索和合作交流中构建知识的能力.(3)培养识图的能力,提高分析和解决问题的能力,学会转化的数学思想方法.【情感态度】
使学生对逻辑思维产生兴趣,在积极参与定理的学习活动中,不断增强主体意识、综合意识.【教学重点】
直角三角形斜边上的中线性质定理的应用.【教学难点】
直角三角形斜边上的中线性质定理的证明思想方法.一、情境导入,初步认识
复习:直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质?
学生回答:(1)在直角三角形中,两个锐角互余;
(2)在直角三角形中,两条直角边的平方和等于斜边的平方(勾股定理).二、思考探究,获取新知
除了刚才同学们回答的性质外,直角三角形还具备哪些特殊性质?现在我们一起探索!
.实验操作:要学生拿出事先准备好的直角三角形的纸片.(1)量一量边AB的长度;
(2)找到斜边的中点,用字母D表示,画出斜边上的中线;
(3)量一量斜边上的中线的长度.让学生猜想斜边上的中线与斜边长度之间的关系.2.提出命题:
直角三角形斜边上的中线等于斜边的一半.3.证明命题:
你能否用演绎推理证明这一猜想?
已知,如图,在Rt△ABc中,∠AcB=90°,cD是斜边AB上的中线.求证:cD=AB.【分析】可“倍长中线”,延长cD至点E,使DE=cD,易证四边形AcBE是矩形,所以
cE=AB=2cD.思考还有其他方法来证明吗?还可作如下的辅助线.4.应用:
例如图,在Rt△AcB中,∠AcB=90°,∠A=30°.求证:Bc=AB
【分析】构造斜边上的中线,作斜边上的中线cD,易证△BDc为等边三角形,所以Bc=BD=AB.【归纳结论】直角三角形中,30°角所对的直角边等于斜边的一半.三、运用新知,深化理解
.如图,cD是Rt△ABc斜边上的中线,cD=4,则AB=______.2.三角形三个角度度数比为1∶2∶3,它的最大边长是4cm,那么它的最小边长为______cm.3.如图,在△ABc中,AD是高,cE是中线,Dc=BE,DG⊥cE,G为垂足.求证:(1)G是cE的中点;
(2)∠B=2∠BcE.第3题图
第4题图
4.如图,△ABc中,AB=Ac,∠c=30°,AB⊥AD,AD=2cm,求Bc的长.【答案】
.8
2.2
3.证明:(1)连接DE.∵在Rt△ADB中,DE=AB,又∵BE=AB,Dc=BE,∴Dc=DE.∵DG⊥cE,∴G为cE的中点.(2)∵BE=ED=Dc,∴∠B=∠EDB,∠EDB=2∠BcE,∴∠B=2∠BcE.4.6cm
【教学说明】可由学生小组讨论完成,教师归纳.四、师生互动,课堂小结
.直角三角形斜边上的中线等于斜边的一半.2.直角三角形中,30°角所对的直角边等于斜边的一半.3.有斜边上的中点,要考虑构造斜边上的中线或中位线..布置作业:从教材相应练习和“习题24.2”中选取.2.完成练习册中本课时练习.本课从复习已学过的直角三角形的性质入手,通过实验操作、猜想、证明探究直角三角形斜边上的中线性质定理,培养学生识图的能力,提高分析和解决问题的能力,在积极参与定理的学习活动中,不断增强主体意识和综合意识.
第四篇:含30度角的直角三角形的性质教案
含30度角的直角三角形的教学及反思
教学目标
(一)教学知识点
1.探索──发现──猜想──证明直角三角形中有一个角为30°的性质.
2.有一个角为30°的直角三角形的性质的简单应用.
(二)能力训练要求
1.经历“探索──发现──猜想──证明”的过程,•引导学生体会合情推理与演绎推理的相互依赖和相互补充的辩证关系.
2.培养学生用规范的数学语言进行表达的习惯和能力.
(三)情感与价值观要求 教学重点
1.鼓励学生积极参与数学活动,激发学生的好奇心和求知欲. 2.体验数学活动中的探索与创新、感受数学的严谨性. 含30°角的直角三角形的性质定理的发现与证明. 教学难点
1.含30°角的直角三角形性质定理的探索与证明.
2.引导学生全面、周到地思考问题. 教学方法:探索发现法.
教具准备两个全等的含30°角的三角尺; 教学过程
一、提出问题,创设情境
我们学习过直角三角形,今天我们先来看一个特殊的直角三角形,看它具有什么性质.大家可能已猜到,我让大家准备好的含30°角的直角三角形,•它有什么不同于一般的直角三角形的性质呢?
问题:用两个全等的含30°角的直角三角尺,你能拼出一个怎样的三角形?•能拼出一个等边三角形吗?说说你的理由.
由此你能想到,在直角三角形中,30°角所对的直角边与斜边有怎样的大小关系?你能证明你的结论吗?
二、导入新课
(让学生经历拼摆三角尺的活动,发现结论,同时引导学生意识到,通过实际操作探索出来的结论,还需要给予证明)
用含30°角的直角三角尺能摆出了如下两个三角形,你能说出这两个图形特征吗? 同学们从不同的角度说明了自己拼成的图(1)是等边三角形.由此你能得出在直角三角形中,30°角所对的直角边与斜边的关系吗?
我们仅凭实际操作得出的结论还需证明,你能证明它吗?请根据图形写出已知、求证和证明过程。已知: 求证: 证明:
这个定理在我们实际生活中有广泛的应用,因为它由角的特殊性,揭示了直角三角形中的直角边与斜边的关系,下面我们就来看两个例题.
1.右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,立柱BD、DE要多长?
2.等腰三角形的底角为15°,腰长为2a,求腰上的高. 已知:如图,在△ABC中,AB=AC=2a,∠ABC=∠ACB=15°,CD是腰AB上的高.
求:CD的长.
三、展示平台
(一)基础部分
Rt△ABC中,∠C=90°,∠B=2∠A,∠B和∠A各是多少度?边AB与BC•之间有什么关系?
(二)拓展提高
1.已知:如图,△ABC中,∠ACB=90°,CD是高,∠A=30°. 求证:BD= AB.
2.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.
3.在三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.写出书知、求证和证明过程。
提示:可以从证明“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”.从辅助线的作法中得到启示. 已知:
求证: 证明:
4.已知,如图,点C为线段AB上一点,△ACM、△CBN是等边三角形.
求证:AN=BM.
5.一个直角三角形房梁如图所示,其中BC⊥AC,∠BAC=30°,AB=10cm,•CB1⊥AB,B1C⊥AC1,垂足分别是B1、C1,那么BC的长是多少?
四、作业:
五、学习反馈:本节课你学会哪些知识,请归纳出来,不少于50字。反思:
本节课我采用从生活中创设情景的激发学生们的学习兴趣,采用拼图形的方法创设问题的情景,引导学生自主探究活动,培养学生类比、猜想、论证的研究方法研究问题,培养学生善于动手、善于观察、善于思考的学习习惯。利用学生的好奇心设疑、解疑,组织活泼互助,有效的教学活动,鼓励学生积极参与,大胆猜想,细心验证。使学生在自主探索和合作交流中理解和掌握本节课的内容。力求在整个探究学习的过程充满师生之间,生生这间的交流和互动,体现教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。
课堂开始通过回顾旧知识,抓信新知识的切入点,使学生进入一种“喜新不厌旧”的境界,使他们有兴趣进入数学课堂,为学习新知识做好准备。接下来让学生动手操作,并细心观察,大胆猜想。在这一环节上,展现给学生一个实物,使学生获得直观感受。并引导学生给出证明,证明自己的猜想的正确性。使学生懂得,即使是通过实践得出的结论,还需理论上给予证明。在性质证明完毕后,缺乏对学生记忆性练习。
习题1、2的设计是为了能让学生把理论知识付诸于实践,检验学生的学习效果,让学生分组练习,训练学生解决实际问题的能力,让学生在合作中交流中完成任务,体会合作学习的乐趣。由学生讲解,我做必要的指导。
在运用符号语言的过程中,学生会出现各种各样的问题与错误,因此在课堂上,我特别重视对学生的表现及时做出评价,给予鼓励。这样既调动了学生的学习兴趣,也培养了学生的符号语言表达能力。
“展示平台”及“拓展提高”部分给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。在这一环节,让学生起来回答问题的时候有点耽误时间。
本节课,我觉得基本上达到了教学目标,在重点的把握,难点的突破上也基本上把握的不错。在教学过程中,学生参与的积极性较高,课堂气氛比较活跃。其中还存在不少问题,我会在以后的教学中,努力提高教学技巧,逐步的完善自己的课堂。
第五篇:直角三角形(二)教学设计
第一章
三角形的证明
2.直角三角形
(二)宜昌市长江中学
李玉平
一、学情分析
学生在学习直角三角形全等判定定理“HL”之前,已经掌握了一般三角形全等的判定方法,在本章的前一阶段的学习过程中接触到了证明三角形全等的推论,在本节课要掌握这个定理的证明以及利用这个定理解决相关问题还是一个较高的要求。
二、教学任务分析
本节课是三角形全等的最后一部分内容,也是很重要的一部分内容,凸显直角三角形的特殊性质。在探索证明直角三角形全等判定定理“HL”的同时,进一步巩固命题的相关知识也是本节课的任务之一。因此本节课的教学目标定位为:
1.知识目标:
①能够证明直角三角形全等的“HL”的判定定理,进一步理解证明的必要性 ②利用“HL’’定理解决实际问题 2.能力目标:
①进一步掌握推理证明的方法,发展演绎推理能力
三、教学过程分析
本节课设计了六个教学环节:第一环节:复习提问;第二环节:引入新课;第三环节:做一做;第四环节:议一议;第五环节:课时小结;第六环节:课后作业。
1:复习提问
1.判断两个三角形全等的方法有哪几种?
2.已知一条边和斜边,求作一个直角三角形。想一想,怎么画?同学们相互交流。
3、有两边及其中一边的对角对应相等的两个三角形全等吗?如果其中一个角是直角呢?请证明你的结论。
我们曾从折纸的过程中得到启示,作了等腰三角形底边上的中线或顶角的角平分线,运用公理,证明三角形全等,从而得出“等边对等角”。那么我们能否通过作等腰三角形底边的高来证明“等边对等角”.
要求学生完成,一位学生的过程如下: 已知:在△ABC中,AB=AC.
求证:∠B=∠C.
证明:过A作AD⊥BC,垂足为C,∴∠ADB=∠ADC=90° 又∵AB=AC,AD=AD,∴△ABD≌△ACD.
∴∠B=∠C(全等三角形的对应角相等)
在实际的教学过程中,有学生对上述证明方法产生了质疑。质疑点在于“在证明△ABD≌△ACD时,用了“两边及其中一边的对角对相等的两个三角形全等”.而我们在前面学习全等的时候知道,两个三角形,如果有两边及其一边的对角相等,这两个三角形是不一定全等的.可以画图说明.(如图所示在ABD和△ABC中,AB=AB,∠B=∠B,AC=AD,但△ABD与△ABC不全等)” .
也有学生认同上述的证明。
教师顺水推舟,询问能否证明:“在两个直角三角形中,直角所对的边即斜边和一条直角边对应相等的两个直角三角形全等.”,从而引入新课。
2:引入新课
(1).“HL”定理.由师生共析完成
已知:在Rt△ABC和Rt△A′B′C′中,∠C=∠C′=90°,AB=A′B′,BC=B′C′. 求证:Rt△ABC≌Rt△A′B′C′
证明:在Rt△ABC中,AC=AB一BC(勾股定理). 又∵在Rt△ A' B' C'中,A' C' =A'C'=A'B'2一B'C'2(勾股定理).
AB=A'B',BC=B'C',AC=A'C'. ∴Rt△ABC≌Rt△A'B'C'(SSS). 教师用多媒体演示:
定理
斜边和一条直角边对应相等的两个直角三角形全等.
这一定理可以简单地用“斜边、直角边”或“HL”表示.
从而肯定了第一位同学通过作底边的高证明两个三角形全等,从而得到“等边对等角”的证法是正确的.
练习:判断下列命题的真假,并说明理由:
22AA'BCB'C'BEAD1C2(1)两个锐角对应相等的两个直角三角形全等;
(2)斜边及一锐角对应相等的两个直角三角形全等;
(3)两条直角边对应相等的两个直角三角形全等;
(4)一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.
对于(1)、(2)、(3)一般可顺利通过,这里教师将讲解的重心放在了问题(4),学生感觉是真命题,一时有无法直接利用已知的定理支持,教师引导学生证明.
已知:R△ABC和Rt△A'B ' C',∠C=∠C'=90°,BC=B'C',BD、B'D'分别是AC、A'C'边上的中线且BD—B'D'(如图).
求证:Rt△ABC≌Rt△A'B'C'. 证明:在Rt△BDC和Rt△B'D'C'中,∵BD=B'D',BC=B'C', ∴Rt△BDC≌Rt△B 'D 'C '(HL定理). CD=C'D'.
又∵AC=2CD,A 'C '=2C 'D ',∴AC=A'C'. ∴在Rt△ABC和Rt△A 'B 'C '中,∵BC=B'C ',∠C=∠C '=90°,AC=A'C ',∴Rt△ABC≌CORt△A'B'C(SAS).
通过上述师生共同活动,学生板书推理过程之后可发动学生去纠错,教师最后再总结。3:做一做
问题
你能用三角尺平分一个已知角吗? 请同学们用手中的三角尺操作完成,并在小组内交流,用自己的语言清楚表达自己的想法.
(设计做一做的目的为了让学生体会数学结论在实际中的应用,教学中就要求学生能用数学的语言清楚地表达自己的想法,并能按要求将推理证明过程写出来。)
4:议一议
如图,已知∠ACB=∠BDA=90°,要使△ACB≌BDA,还需要什么条件?把它们分别写出来.
这是一个开放性问题,答案不唯一,需要我们灵活地运用公理和已学过的定理,观察图形,积极思考,并在独立思考的基础上,通过同学之间的交流,获得各种不同的答案.
(教师一定要提供时间和空间,让同学们认真思考,勇于向困难提出挑战)5: 例题学习
如图,在△ABC≌△A'B'C'中,CD,C'D'分
ADA'D'BCB'C'CC'3
ADBA'D'B'别分别是高,并且AC=A'C',CD=C'D'.∠ACB=∠A'C'B'.
求证:△ABC≌△A'B'C'.
分析:要证△ABC≌△A'B'C',由已知中找到条件:一组边AC=A'C',一组角∠ACB=∠A'C'B'.如果寻求∠A=∠A',就可用ASA证明全等;也可以寻求么∠B=∠B',这样就有AAS;还可寻求BC=B'C',那么就可根据SAS.……注意到题目中,通有CD、C'D'是三角形的高,CD=C'D'.观察图形,这里有三对三角形应该是全等的,且题目中具备了HL定理的条件,可证的Rt△ADC≌Rt△A'D'C',因此证明∠A=∠A' 就可行.
证明:∵CD、C'D'分别是△ABC△A'B'C'的高(已知),∴∠ADC=∠A'D'C'=90°. 在Rt△ADC和Rt△A'D'C'中,AC=A'C'(已知),CD=C'D'(已知),∴Rt△ADC≌Rt△A'D'C'(HL). ∠A=∠A',(全等三角形的对应角相等). 在△ABC和△A'B'C'中,∠A=∠A'(已证),AC=A'C'(已知),∠ACB=∠A'C'B'(已知),∴△ABC≌△A'B'C'(ASA). 6:课时小结
本节课我们讨论了在一般三角形中两边及其一边对角对应相等的两个三角形不一定全等.而当一边的对角是直角时,这两个三角形是全等的,从而得出判定直角三角形全等的特殊方法——HL定理,并用此定理安排了一系列具体的、开放性的问题,不仅进一步掌握了推理证明的方法,而且发展了同学们演绎推理的能力.同学们这一节课的表现,很值得继续发扬广大.
7:课后作业
习题1.6第3、4、5题
四、教学反思
本节HL定理的证明学生掌握得比较好,定理的应用方面尤其是“议一议”中的该题灵活性较强,给教师和学生发挥的余地较大,该题是一个开放题,结论和方法并不惟一,所以 学生积极性非常高,作为教师要充分利用好这个资源,可以达到一题多解,举一反三的效果。