第一篇:[初中数学]八年级数学上册全一册教案(78份) 华东师大版26
13.2.3 边角边
【教学目标】
1.使学生掌握SAS的内容,会运用SAS来判定两个三角形全等;
2.通过判定全等三角形的判定的学习,使学生初步认识事物之间的因果关系与相互制约关系,学习分析事物本质的方法;
3.经历如何总结出全等三角形判定方法,体会如何探讨、实践、总结,培养学生的合作能力.【重点难点】
1.难点:三角形全等的判定:SAS; 2.重点:对全等三角形的判定的理解和运用.【教学过程】
一、复习
1.什么叫全等图形?什么叫做全等三角形?
(能够完全重合的两个图形叫做全等形,能够完全重合的两个三角形叫做全等三角形).2.将全等的△ABC与△DEF重合,再沿BC方向将△DEF推移如图位置,问线段AD与BE数量关系怎样?BC与EF位置关系怎样?为什么?
[ ADBE,BC∥EF ∵ △ABC≌△DEF ∴ ABDE
∴ ABDBDEDB ∴ ADBE 又∵ △ABC≌△DEF ∴ ABCDEF ∴ BC∥EF ] 3.已知:如图,ABAD,ACAE,BCDE,EAC30,求DAB的大小.[ABAD,ACAE,BCDE ∴ △ACB≌△AED ∴ CABEAD
ADBCEADBCFE
∴ CABEABEADEAB ∴ CAEDAB ∴DAB30]
二、新授
1.引入;上一节课,我们已经知道两个三角形满足三个条件的三条边对应相等和三个角对应相等的情况.情况如何呢?
(三条边对应相等两个三角形;三个角对应相等的两个三角形不一定全等)如果两个三角形有两条边和一个角分别对应相等,这两个三角形会全等吗?-------这就是本节课我们要探讨的课题.2.问题1:如果已知一个三角形的两边及一角,那么有几种可能的情况呢?
(应该有两种情况:一种是角夹在两条边的中间,形成两边夹一角;另一情况是角不夹在两边的中间,形成两边一对角.)
每一种情况下得到的三角形都全等吗? 3.做一做
(1)如果“两边及一角”条件中的角是两边的夹角,比如三角形两条边分别为2.5cm和3cm,它们的夹角为45,你能画出这个三角形吗?你画的与同伴画的一定全等吗?
换两条线段和一个角试试,你发现了什么?
同学们各抒己见后总结:发现对于已知的两条线段和一个角,以该角为夹角,所画的三角形都是全等的.这就是判别三角形全等的另外一种简便的方法:
如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.简写成“边角边”或简记为(S.A.S.)
你能用相似三角形的判定法来解释这种“SAS”判定三角形全等的方法吗?
(一个角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,夹这个角的两边对应相等,这两个三角形的形状、大小都相同,即为全等三角形)
(2)如果“两边及一角”条件中的角是其中一边的对角,比如两条边分别为2.5cm和3cm,长度为2.5cm的边所对的角为45,情况会怎样呢? 请画出这个三角形,把你画的三角形与其他同学画的三角形进行比较,由此你发现了什么?
(两边及其中一边的对角对应相等,两个三角形不一定全等.)
4.范例 例1 如图,已知线段AC、BD相交于点E,AE=DE,BE=CE.求证: △ABE ≌ △DCE 解 在△ABE 与△DCE中, ∵AE=DE(已知),∠ AEB= ∠ DEC(对顶角相等),BE=CE(已知), ∴△ABE ≌△DCE(S.A.S.)例2 因铺设电线的需要,要在池塘两侧A、B处各埋设一根电线杆(如图),因无法直接量出A、B两点的距离,现有一足够的米尺。请你设计一种方案,粗略测出A、B两杆之间的距离。
小明的设计方案:先在池塘旁取一个能直接到达A和B处的点C,连结AC并延长至D点,使AC=DC,连结BC并延长至E点,使BC=EC,连结CD,用米尺测出DE的长,这个长度就等于A,B两点的距离。
请你说明理由。
三、巩固练习
四、小结
学生谈收获、体会、疑惑后,进一步总结本节学习了三角形全等的判定的另一种SAS,而两边及其中一边的对角对应相等的两个三角形不一定全等,注意观察图形的特征,找出是否具备满足两个三角形全等的条件.
第二篇:[初中数学]八年级数学上册全一册教案(78份) 华东师大版38
13.3 等腰三角形
1.等腰三角形的性质
【教学目标】
知识与技能
了解等腰三角形、等边三角形的概念,掌握等腰三角形、等边三角形的性质,且能熟练应用其性质求角的度数.过程与方法
经历观察、实验、推理、归纳等活动,探索等腰三角形及等边三角形的性质.情感、态度与价值观
在探索等腰三角形性质的过程中,感受数学逻辑推理的必要性,体会数学在现实生活中的广泛应用,认识到数学无处不在,提高学习数学的兴趣.【重点难点】
重点
等腰、等边三角形的性质.难点
等腰、等边三角形性质的应用.【教学过程】
一、创设情景,导入新课
1.复习提问:向学生们出示几张精美的建筑物图片;问题:轴对称图形的概念?这些图片中有轴对称图形吗? 2.引入新课:再次通过精美的建筑物图片,找出里面的等腰三角形.二、师生互动,探究新知
1.相关概念
等腰三角形、腰、底边、底角、顶角.【教学说明】
以多媒体图片中的等腰三角形让学生找出概念中的相关元素.2.探究等腰三角形的性质 【教师活动】
动动手:让同学们做出一张等腰三角形的半透明的纸片,每个人的等腰三角形的大小和形状可以不一样,把纸片对折,让两腰重合在一起,你能发现什么现象?请你尽可能多的写出结论.【学生活动】
操作、交流、选代表发言.【教师活动】
在学生发言基础上归纳板书.重要性质 性质1:等腰三角形的两底角相等.(简写成“等边对等角”)
性质2:等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合.(简称“三线合一”)【教师活动】 完成下面的练习: 1.△ABC中 ,AB=3,AC=7,则△ABC的周长是
.2.△ABC中,AB=AC,∠A=50°,则∠B=
.3.等腰△ABC中,∠A=40°,则∠B=
.4.△ABC中,D为BC的中点,∠B=40°,求∠BAD的度数.【学生活动】 独立完成,交流讲解.【教学说明】
1.巩固定义,考虑三边关系;2.巩固等角对等边;3.同2.,注意分类,可能学生会写出两种结果,教师讲解,两种情况,三种结果,即70°,40°,100°.强调需要自己画图解题时,一定要三思而后行!4.巩固三线合一,注意其表达规范准确.3.探究等边三角形的性质 【教师活动】
利用等腰三角形的性质,推理等边三角形内角有何关系?是多少度? 【学生活动】 独立完成,交流发言.【教师活动】
板书:等边三角形三个角都相等并且每个角都是60°.【教学说明】
较简单,但可巩固等腰三角形性质,教师可提问等边三角形三线有何关系?
三、随堂练习,巩固新知
如图,在△ABC中 ,AB=AC,D、E在BC上,且AD=AE,则BD=CE吗?为什么 【答案】 BD=CE,原因如下:
过点A作AH⊥BC于H,则AH⊥DE,因为AB=AC,AH⊥BC,所以BH=CH,因为AD=AE,AH⊥DE,所以DH=EH,所以BH-DH=CH-EH,即BD=CE.四、典例精析,拓展新知
【例】
如图,五边形ABCDE中,AB=AE,BC=DE,∠ABC=∠AED,点F为CD的中点,求证:AF⊥CD.证明:连结AC、AD,在△ABC与△AED中, ∵AB=AE,∠ABC=∠AED,BC=DE.∴△ABC≌△AED(S.A.S.), ∴AC=AD,∵F为CD的中点, ∴AF⊥CD(三线合一).【教学说明】
要引导学生,由CF=FD,要证明AF⊥CD,你想到它具备等腰三角形哪个性质的特征?怎么办?
五、运用新知,深化理解
【例】
△ABC中,AB=AC,D是BA延长线上的一点,E在AC上,且AD=AE,求证:DE⊥BC.证明:作AF⊥BC于F,∵AD=AE,∴∠D=∠1, ∵AB=AC,∴∠2=∠3, ∴∠2+∠3=∠D+∠1=2∠D, ∴∠1=∠2,∴AF∥DE,∴DE⊥BC.【教学说明】
让学生体会作辅助线是构造“三线合一”的基本图形的方法.六、师生互动,课堂小结
这节课你学到了什么?有什么收获?有何困惑?与同伴交流,在学生交流发言的基础上教师进行归纳总结.【教学反思】
本节课知识结构的安排以“问题情景——获取新知——应用与拓展”的模式展开,符合八年级学生的认知规律.本节课力求体现“学会学习,为终身学习做准备”的理念,努力实现学生的主体地位,使数学教学成为一种过程教学,让学生在活动中获得知识,形成能力.整堂课以问题为思维主线,引导学生观察、探索、归纳、论证,充分体现探索的快乐与成功的乐趣.2.等腰三角形的判定
【教学目标】
知识与技能
通过动手操作探索并掌握识别一个三角形是等腰三角形和等边三角形的方法.过程与方法
理解并掌握“等角对等边”,体会与“等边对等角”的互逆关系,能够利用三角形的识别方法去解决问题.情感、态度与价值观
提高学生的动手能力,学会数学说理,发展初步的演绎推理能力,进一步体会等腰三角形的对称美.【重点难点】
重点
理解并掌握识别等腰三角形和等边三角形的方法.难点
对边、角关系互相转化的理解及运用.【教学过程】
一、创设情境,导入新课
我们学过等腰三角形两底角相等,反过来,有两个角相等的三角形是等腰三角形吗?同学们画一画,量一量,你有什么结论,请表达.二、师生互动,探究新知
1.等腰三角形的判定 【教师活动】
如何证明AB=AC→AB、AC所在的两个三角形全等→作AD⊥BC.【学生活动】 完成证明过程.【教学说明】
可作AD⊥BC,AD平分∠BAC.目的:构造两个三角形全等,可顺便问一下:可取AB的中点吗?(不行,边边角)
【教师活动】
教师归纳:如果一个三角形有两个角相等,那么它们所对的边也相等.(简写成“等角对等边”).那么证明一个三角形有几条途径? 【学生活动】
证边所在三角形有两个角相等;证边所在的两个三角形全等.2.等边三角形的判定 【教师活动】
由等腰三角形的判定方法可以直接得到等边三角形的判定吗? 【学生活动】
探索——交流——发言.【教师活动】
归纳:三个角相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形(分两种情况分析).三、随堂练习,巩固新知
在△ABC中,已知∠A=50°,∠B=65°,你能判断△ABC的形状吗?为什么? 【答案】
因为∠C=180°-∠A-∠B,又∠A=50°,∠B=65°, 所以∠C=180°-50°-65°=65°,所以∠C=∠B,所以△ABC是一个等腰三角形.四、典例精析,拓展新知
【例】
如图,OB=OC,∠ABO=∠ACO,求证:AB=AC.【分析】
连结BC,BO=OC⇒∠OBC=∠OCB⇒∠ABC=∠ACB⇒AB=AC 证明:连结BC,∵OB=OC, ∴∠OBC=∠OCB,又∵∠ABC=∠ACB,∴∠ABC=∠ACB, ∴AB=AC.【教学说明】
可能会出现连结OA,证明△ABO≌△ACO,教师指出犯了“边边角”错误.灵活作辅助线构造等腰三角形的基本图形,教师强调构造等腰三角形几种情况“角平分线”+“平行线”⇒等腰三角形;“角平分线”+“垂线”⇒等腰三角形.五、运用新知,深化理解
△ABC中,AD平分∠FAC,AD∥BC,AE是中线,求证:AE⊥AD.【答案】 略
【教学说明】
本题是典例探索的变式训练,旨在强化等腰三角形判定与性质的综合运用,注意运用两头凑的解题思想.六、师生互动,课堂小结
这节课你学习了什么?有什么收获?有何困惑?与同伴交流,教师在学生发言的基础上归纳总结.【教学反思】
本节课通过学生操作、观察、发现、论证得出等腰三角形的判定方法,进而利用等腰三角形的判定方法研究得出等边三角形的判定方法,知识上层层推进,方法上相互映衬,符合学生的认知规律,提高了课堂效率.本节课中等腰三角形的基本图形是学生解题的关键,教师积极引导学生归纳,不断升华学生的认知层次,提升解题能力,让学生感受解题成功的喜悦.
第三篇:[初中数学]2017年春八年级数学下册全一册教案(94份) 华东师大版62
18.1.1平行四边形的性质(一)
一、教学目标:
1. 理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.
2. 会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证. 3. 培养学生发现问题、解决问题的能力及逻辑推理能力.
二、重点、难点
1. 重点:平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用. 2. 难点:运用平行四边形的性质进行有关的论证和计算.
三、例题的意图分析
例1是教材P93的例1,它是平行四边形性质的实际应用,题目比较简单,其目的就是让学生能运用平行四边形的性质进行有关的计算,讲课时,可以让学生来解答.例2是补充的一道几何证明题,即让学生学会运用平行四边形的性质进行有关的论证,又让学生从较简单的几何论证开始,提高学生的推理论证能力和逻辑思维能力,学会演绎几何论证的方法.此题应让学生自己进行推理论证.
四、课堂引入
1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?
平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗? 你能总结出平行四边形的定义吗?
(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“
”来表示.
如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.
①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);
②∵四边形ABCD是平行四边形∴AB//DC,AD//BC(性质).
注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)
2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.
让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?
(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.
(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)
(2)猜想平行四边形的对边相等、对角相等. 下面证明这个结论的正确性.
已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.
分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.
(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)
证明:连接AC,∵ AB∥CD,AD∥BC,∴
∠1=∠3,∠2=∠4. 又 AC=CA,∴
△ABC≌△CDA(ASA). ∴ AB=CD,CB=AD,∠B=∠D. 又 ∠1+∠4=∠2+∠3,∴
∠BAD=∠BCD. 由此得到:
平行四边形性质1 平行四边形的对边相等.平行四边形性质2平行四边形的对角相等.
五、例习题分析
例1(教材P93例1)
例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.
分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.
证明略.
六、随堂练习1.填空:
(1)在ABCD中,∠A=50,则∠B= 度,∠C= 度,∠D= 度.
(2)如果ABCD中,∠A—∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度.(3)如果ABCD的周长为28cm,且AB:BC=2∶5,那么AB= cm,BC= cm,CD= cm,CD= cm.
2.如图4.3-9,在ABCD中,AC为对角线,BE⊥AC,DF⊥AC,E、F为垂足,求证:BE=DF.
七、课后练习
1.(选择)在下列图形的性质中,平行四边形不一定具有的是().(A)对角相等(B)对角互补(C)邻角互补(D)内角和是360
2.在ABCD中,如果EF∥AD,GH∥CD,EF与GH相交与点O,那么图中的平行四边形一共有().
(A)4个(B)5个(C)8个(D)9个
3.如图,AD∥BC,AE∥CD,BD平分∠ABC,求证AB=CE.
18.1.1平行四边形的性质(二)
一、教学目标:
1. 理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质. 2. 能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题. 3. 培养学生的推理论证能力和逻辑思维能力.
二、重点、难点
1. 重点:平行四边形对角线互相平分的性质,以及性质的应用. 2. 难点:综合运用平行四边形的性质进行有关的论证和计算.
三、例题的意图分析
本节课安排了两个例题,例1是一道补充题,它是性质3的直接运用,然后对例1进行了引申,可以根据学生的实际情况选讲,并归纳结论:过平行四边形对角线的交点作直线交对边或对边的延长线,所得的对应线段相等.例1与后面的三个图形是一组重要的基本图形,熟悉它的性质对解答复杂问题是很有帮助的.
例2是教材P94的例2,这是复习巩固小学学过的平行四边形面积计算.这个例题比小学计算平行四边形面积的题加深了一步,需要应用勾股定理,先求得平行四边形一边上的高,然后才能应用公式计算.在以后的解题中,还会遇到需要应用勾股定理来求高或底的问题,在教学中要注意使学生掌握其方法.
四、课堂引入 1.复习提问:
(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:
(2)平行四边形的性质:
①具有一般四边形的性质(内角和是360). ②角:平行四边形的对角相等,邻角互补. 边:平行四边形的对边相等. 2.【探究】:
请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转180,观察它还和EFGH重合吗?你能从子中看出前面所得
到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?
结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.
五、例习题分析
例1(补充)
已知:如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.
求证:OE=OF,AE=CF,BE=DF. 证明:在 ABCD中,AB∥CD,∴ ∠1=∠2.∠3=∠4.
又 OA=OC(平行四边形的对角线互相平分),∴ △AOE≌△COF(ASA).
∴ OE=OF,AE=CF(全等三角形对应边相等). ∵ ABCD,∴ AB=CD(平行四边形对边相等). ∴ AB—AE=CD—CF. 即 BE=FD.
※【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.
解略
例2(教材P94的例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.
分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算
解略(参看教材P94).
六、随堂练习
1.在平行四边形中,周长等于48,① 已知一边长12,求各边的长 ② 已知AB=2BC,求各边的长
③ 已知对角线AC、BD交于点O,△AOD与△AOB的周长的差是10,求各边的长
2.如图,ABCD中,AE⊥BD,∠EAD=60°,AE=2cm,AC+BD=14cm,则△OBC的周长是____ ___cm. 3.ABCD一内角的平分线与边相交并把这条边分成5cm,7cm的两条线段,则ABCD的周长是__ ___cm.
七、课后练习1.判断对错
(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD.()(2)平行四边形两条对角线的交点到一组对边的距离相等.()(3)平行四边形的两组对边分别平行且相等.()(4)平行四边形是轴对称图形.()2.在 ABCD中,AC=
6、BD=4,则AB的范围是__ ______.
3.在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 .
4.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB=15cm,AD=12cm,AC⊥BC,求小路BC,CD,OC的长,并算出绿地的面积.
第四篇:[初中数学]八年级数学下册全一册教案(36份) 人教版25
19.2.2.2一次函数
一、教学目标
1.学会运用待定系数法和数形结合思想求一次函数解析式; 2.能通过函数解决简单的实际问题;
3.使学生在探索、归纳求函数自变量取值范围的过程中,增强数学建模意识。
二、课时安排 1课时
三、教学重点
待定系数法求函数解析式。
四、教学难点
函数解决简单的实际问题。
五、教学过程
(一)新课导入
【过渡】【过渡】上节课,我们学习了一次函数的图象与k和b的关系,并学习了如何简单的画出一次函数的图象,现在,我给大家一个题目,大家画出它的图象吧。
在平面直角坐标系中作出一次函数y= x-5的图形。
【过渡】这个图形,大家都是如何画出来的呢?(学生回答)
【过渡】针对这个问题,我们先将其变式为一次函数的形式,然后根据两点法画出图象就行,相信大家都能准确的画出。那么,我就要问大家一个问题了。如果题目中先给的是图象,我们该如何去求这个函数的解析式呢?反过来已知一个一次函数的图象经过具体的点,你能求出它的解析式
吗?这就是我们今天要学习的问题。
(二)讲授新课
【过渡】在正式上课之前,我们先通过几个简单的问题,来检测一下大家预习的情况。课件展示问题。
1、若一次函数y=-x+b的图象经过点(3,2),则一次函数的解析式为(B)A.y=x+1 B.y=-x+5 C.y=-x-5 D.y=-x+1
22、一次函数y=2mx+m-4的图象经过原点,则m的值为(D)A.0 B.2 C.-2 D.2或-2
3、如图,是某复印店复印收费y(元)与复印面数(8开纸)x(面)的函数图象,那么从图象中可看出,复印超过100面的部分,每面收费(A)
A.0.4元 B.0.45 元
D.0.5元 C.约0.47元
【过渡】现在,我们一起来看一下今天要学习的内容。1.待定系数法
【过渡】如何根据图象,或者是图象上的点来求函数解析式,我们直接根据例题来进行讲解。课本例4。
【过渡】通过对题目的解读,我们知道,既然这两个点是图象上的点,那么,这两个点就必然适合一次函数解析式。根据我们之前学过的二元一次方程。我们就可以解出k、b的值。
课件展示解题过程。
【过渡】我们将一次函数的解析式设出,然后将过直线的两点的坐标代入这个解析式中,这样我们就得到了一个二元一次方程组,接下来要做的就是解这个方程组,我们就能够得到一次函数的解析式中的未知数k、b,自然就得到了我们的解析式。
【过渡】像这种我们先设出解析式,然后求解的方法,我们称之为待定系数法:
先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法,叫做待定系数法。
【过渡】对于我们的一次函数来说,我们一般设为y=kx+b即可。那么待定系数法求解的过程谁
能总结一下呢?
(学生回答)
第一步:设,设出函数的一般形式.(称一次函数的通式)第二步:代,代入解析式得出方程或方程组.第三步:求,通过列方程或方程组求出待定系数k,b的值 第四步:写,写出该函数的解析式.【过渡】简单的总结为四个字:设、代、求、写。
【过渡】通过课堂开始我们的问题,以及刚刚的例4,我们发现不管是从函数解析式到图象,还是从图象或点到解析式,是可以相互转化的。这也体现出数学的基本思想方法:数形结合。
【过渡】在实际问题中,有些问题可能会出现分段问题,如电费的标准等,在这种情况下,函数的图象及解析式就需要按照不同的范围分开考虑,这种函数我们一般称为分段函数。
我们跟着例5的解答来了解一下分段函数的解析式与图象吧。讲解例5.【过渡】从题目中,我们看出,付款金额与种子价格有关,而价格又与购买量有关,因此,我们就需要按照不同的购买量来分析问题。
【过渡】这种按照自变量取值范围的函数为分段函数,它的图象也是由几个组成,但是同样的,我们能从这些图象中得到我们想要的答案。
(三)重难点精讲
1、待定系数法求一次函数解析式一般步骤是:
(1)先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;
(2)将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;
(3)解方程或方程组,求出待定系数的值,进而写出函数解析式。
注意:求正比例函数,只要一对x,y的值就可以,因为它只有一个待定系数;而求一次函数y=kx+b,则需要两组x,y的值。
(四)归纳小结
1、待定系数法求一次函数解析式。
2、利用函数解决实际问题。
3、理解分段函数的意义。
(五)随堂检测
1、若一次函数y=-x+b的图象经过点(3,2),则一次函数的解析式为(B)A.y=x+1 B.y=-x+5 C.y=-x-5 D.y=-x+1
2、若A(-2,3),B(1,0),C(-1,m)三点在同一直线上,则m的值为多少? 解:设一次函数的解析式为y=kx+b,由于三点在同一直线上,所以 3=-2k+b;0=k+b; 解得:k=-1,b=1 一次函数的解析式为y=-x+1,将(-1,m)代入得:m=2。
3、已知一次函数y=(a-1)x+2(a-1)(a≠1)的图象如图所示,已知3OA=2OB,求一次函数的解析式.解:令x=0得,y=2(a-1),由图象可知a-1>0,所以OA=2(a-1),令y=0得,0=(a-1)x+2(a-1),解得x=-2,所以OB=2,又3OA=2OB,可得6(a-1)=4,解得a=,所以一次函数解析式为:y= x+。
4、为加强公民的节水意识,某城市制定了以下用水收费标准:每户每月用水未超过7立方米时,每立方米收费1.0元并加收0.2元的城市污水处理费;超过7立方米的部分每立方米收费1.5元并加收0.4元的城市污水处理费,设某户每月用水量为x(立方米),应交水费为y(元)。
(1)分别写出用水未超过7立方米和多于7立方米时,y与x间的函数关系式;
(2)如果某单位共有用户50户,某月共交水费541.6元,且每户的用水量均未超过10立方米,求这个月用水未超过7立方米的用户最多可能有多少户?
解:(1)未超出7立方米时:y=x×(1+0.2)=1.2x;
超出7立方米时:y=7×1.2+(x-7)×(1.5+0.4)=1.9x-4.9;(2)当某户用水7立方米时,水费8.4元。
当某户用水10立方米时,水费8.4+5.7=14.1元,比7立方米多5.7元。8.4×50=420元,还差541.6-420=121.6元,121.6÷5.7=21.33。
所以需要22户换成10立方米的,不超过7立方米的最多有28户。x最大可取27。
六、板书设计
一次函数
概念 例题 练习
七、作业布置
1.家庭作业:完成本节课的同步练习;
2.预习作业:预习19.2.3《一次函数与方程、不等式》导学案中的“探究案”
八、教学反思
第五篇:华东师大版-八年级数学上册教学计划 (范文)
八年级1班数学上册教学计划
一、学生情况分析:.今年我班共 名学生,其中男生 名,女生 名。总体上看,学生的数学成绩不太理想,在学生的数学知识上看,基本概念,基本计算,以及基本的空间与图形知识都极其欠缺;数学的思维混乱;不能独立思考,大部分学生对数学兴趣低落,多数学生对数学严重丧失信心,谈数学而色变。
二、教材分析:
1、体系结构:
(1)数学内容的引入,采取从实际问题情景境入手的方式,贴近学生的生活实际,选择具有现实背景的素材,建立数学模型,使学生通过问题解决的过程,获得数学概念,掌握解决数学问题的技能和方法。
(2)教材内容的呈现,努力创设学生自主探究的学习情况和机会,适当编排应用性、探索性和开放性的,发挥学生的主动性、留给学生充分的时间与空间,自主探索、促进学生数学思维能力、创造能力的培养与提高,为学生的终身可持续发展奠定良好的基础。
(3)教材内容的编写,把握课程标准,同时又具有弹性,编入一些选学内容,以适应较高程度学生学习的需要,使不同水平的学生都得到发展。
(4)教材内容的叙述、行当介绍数学内容的背景知识与数学史料等,将背景材料与数学内容融为一体,激发学生学习数学的兴趣,引导学生体会数学的文化价值。
(5)现代信息技术的应用在教材中占有适当地位,有利于学生理解概念、自主探索、实践体验。
2、教材体例。
(1)教材的正文中,根据教材内容的实际需要,适当设置了一些相应的栏目。如“观察”、“思考”、“实验”、“想一想”、“试一试”、“做一做”等,给学生适当的思考空间,让学生通过自主探索,获得体验和感受,掌握必要的知识。
(2)结合教材各块内容,安排一些有关的阅读材料,涉及数学史料、数学家故事、实际生活中的问题、数学趣题、知识背景等,扩大学生的知识面,增强学生的应用意识和对数学的兴趣,对学生进行爱国主义和人文主义精神教育。
(3)控制习题总量,降低难度,增加探索、开放、实践类型的习题,按照不同的要求,编制不同水平的练习题,按课时给出随堂练习,每一节设置习题,每章的复习题设程度不一的A、B、C、三组,以满足不同层次的学生的发展需要。
(4)增强了研究性课题学习,给学生更多的发展空间,让学生自己动手,提高解决问题与合作交流的能力。
(5)每一章的开始,设置有展现该章主要内容的导图与导入语,以期激发学生的学习兴趣与求知欲。
三、教学方法及措施:
让学生明确学习目的、端正学习态度,给学生以理想前途教育,培养学生对数学学科的学习兴趣,教给学生学习方法,多与学生勾通,多和学生一起分析问题,培养学生解决问题能力。深入钻研教育教法,精心备课,精心设计教学环节,习题降低教学坡度和教学难度,认真反思自己的教育教学过程。
四、培优、转差措施:
根据学生的不同基础情况分别给予学生不同教学要求,按学生的不同基础布置不同的作业,因材施教。多与差生交流,与差生交朋友,分析弱差生的原因,给差生以信心和关心,尽量给差生降低学生上的坡度;对于优生教师利用课余时间拓宽学生知识面,培养学生分析问题解决问题能力。在教学中适当对知识进行拓展,给优生以充分思索的空间,多让优生自主探索,鼓励优生合作交流。
五、教学目标
第十一章 数的开方
(9课时)
1、让学生经历又一次数系的扩展过程,进一步体验数学发展源于实践,又作用于实际的辩证关系。
2、理解平方根、算术平方根、立方根等概念;认识平方与开平方、立方与开立方间的关系;会用平方、立方的概念求某些数的平方根与立方根,并用根号表示,会用计算器求一个非负数的算术平方根及任意一个数的立方根。
3、了解无理数和实数的概念,知道实数与数轴上的点一一对应。
4、能估计某些无理数的大小,培养学生的数感与估计能力,会进行简单的实数运算。
第十二章
整式的乘除
(28课时)
1、探索并了解正整数幂的运算法则(同底数幂的乘法、幂的乘方、积的乘方、同底数幂的除法),并会运用它们进行计算。
2、探索并了解单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会进行简单的整式乘法运算。
3、会由整式的乘法推导出乘法公式,了解两个乘法公式的几何背景,并能运用公式进行简单的计算。
4、通过从幂的运算到整式的乘法,再到乘法公式的学习,了解乘法公式来源于整式乘法,又运用于整式乘法的辩证过程,并初步认识到事物发展过程中“特殊——一般——特殊”的一般规律。
5、探索并了解单项式除以单项式,多项式除以单项式的法则,并能进行简单的整式除法运算。
6、了解因式分解的意义及其与整式乘法之间的关系,从中体会事物之间可以互相转换的辩证思想。
7、会用提取公因式、公式法(直接用公式不超过两次)进行因式分解。
8、让学生主动参与到一些探索实践过程中去,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的愿望与能力。
9、通过本章一些生活实例的学习,体会数学与生活的密切联系,在一定程度上了解数学的应用价值,提高数学学习兴趣。
第十三章
全等三角形
(22课时)
1、全等三角形主要介绍了三角形全等的性质和判定方法。
2、直角三角形全等的特殊条件。
3、更多的注重学生推理意识的建立和对推理过程的理解。
4、学生在直观认识和简单说明理由的基础上,从几个基本事实出发,比较严格地证明全等三角形的一些性质。
5、探索三角形全等的条件。第十四章
勾股定理
(9课时)
1、经历由情境引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力。
2、体验勾股定理的探索过程,掌握勾股定理,会用勾股定理解决相关问题。
3、掌握勾股定理的逆定理,会运用勾股定理的逆定理解决相关问题。
4、运用勾股定理及其逆定理解决简单的实际问题。
5、感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。
第十五章
数据的收集与表示
(12课时)
1、数据的描述通过对实际问题的讨论,使学生体会数据的作用
2、更好地理解数据表达的信息,发展数感和统计观念,为了更好地理解较大的数据信息
3、本单元首先安排了有关大数的感受与表示的内容,重点是让学生运用身边熟悉的事物,从多种角度对大数
4、进行估计,对于所收集的数据,还要清晰、有效的进行展示,以尽可能的获取有用的信息
5、教材安排了扇形统计图、条形图、折线图、直方图等的认识与制作,不同的统计图表的选择等内容。