第一篇:青岛版数学六年级上册倒数的优秀教学设计
青岛版数学六年级上册倒数的优秀教学设计
[日期:2010-10-15]
来源: 作者:sunshuying
[字体:大 中 小] 教学内容: 倒数。六年级上册P17。
教材简析:倒数是分数的基本知识,是在分数乘法计算的基础上进行教学的,学好倒数不仅可以解决有关实际问题,而且还是后面学习分数除法、分数四则混合运算和应用题的重要基础。教学目标:
1.教学倒数的认识,使学生理解倒数的意义,掌握求一个数倒数的方法。2.能熟练地写出一个数的倒数。
3.结合教学实际培养学生的抽象概括能力。教学重点:理解倒数的意义,掌握求倒数的方法。教学难点 :熟练写出一个数的倒数。教学过程:
一、创设数学情境,激发学生兴趣。
1.在()里填上合适的数。哪个同学和老师比赛,看谁说的快。4/5×()= 1()×10/7 = 1 3 ×()=1()×5/6 = 1 师:你们想知道老师为什么说得这么快吗?这两个因数之间有什么联系吗?相信你们得知后比老师说得还快。
2.同学们认真观察这些算式,你有什么发现? 板书:乘积是1的两个数
3.你能很快说出乘积是1的两个数吗?你为什么说的这么快?有什么窍门? 板书:两个因数的分子和分母交换了位置 4.你能给这样的两个分数起个名吗? 5.板书课题“倒数”
[设计意图] 通过师生比赛这一情境的创设,激发了学生的学习兴趣和强烈的探究欲望。让学生很快说出乘积是1的两个数,并说说有什么窍门,目的是让学生初步感受互为倒数的两个数的特征,即分子、分母交换了位置。让学生给倒数起名,使学生获得了积极的情感经验。
二、探究新知
(一)教学倒数的意义
1.你能根据自己的理解说说怎样的两个数叫互为倒数吗
学生此时回答有两种可能:一种是乘积是1 的两个数互为倒数,一种是分子、分母颠倒位置的两个数互为倒数。
2.注重学生的评价,引出并板书倒数的意义:乘积是1的两个数互为倒数。3.进一步理解意义:在倒数的意义中,你认为哪几个字比较重要?你是怎么理解“互为”一词的?请举例说明。
4.(投影)辨析:下面的说法对吗?为什么?(1)3/2是倒数。()
(2)得数为1的两个数互为倒数。()
[设计意图]让学生根据自己的理解说说怎样的两个数叫互为倒数,并找出概念中的关键词语,举例说明对“互为”一词的理解,处处无不显示出学生是学习活动中的主体,教师是学习活动中的组织者和引导者。
(二)教学倒数的求法 出示例题:找出下列各数的倒数
2/3 7/4 1/5 9 0.4 小组讨论 指名板演 1.提问:
你是怎么找出2/3的倒数的?
生:因为2/3与3/2乘积是1,所以2/3的倒数是2/3。(因为互为倒数的两个数的分子与分母正好调换位置。2/3的分子与分母调换位置后是3/2,所以2/3的倒数是3/2。)2.你是怎么找出7/4的倒数的?
……
3.提问: 我们怎样才能很快地找到一个数的倒数?为什么? 4.讨论:1的倒数是谁?0的倒数呢?(1的倒数是1)师:能说明一下理由吗?
生:因为1与1的乘积还是1。(因为1可以化成1/1,1/2的分子与分母调换位置后还是1/1,即1,所以1的倒数是1。)
师:0的倒数呢?
(1)0的倒数是0。因为1的倒数是1,所以0的倒数是0。(2)因为0与任何数相乘都得0,所以0的倒数是任何数。(3)0的倒数是没有的。因为乘积是1的两个数才互为倒数,而0乘任何数都得0,说明0乘任何数都不得1,所以0没有倒数。
(4)0可以写成0/1,0/1的倒数是1/0。
(5)不对,1/0分母是0,没有意义,所以0是没有倒数的。5.完善求一个数的倒数的方法
(三)学生自行总结求倒数的方法。
板书:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。
(四)教师小结,呼应开头
现在你知道老师为什么填的这么快了吗?
[设计意图]人的思维活动往往由简单到复杂的,小学生更是这样。当学生概括出求一个数的倒数的方法后正沉浸在成功的喜悦之中时,抓住这个时机,提出一个具有新的挑战性的问题,再次激活学生思维,产生论辩,发挥学生的学习主动性和积极性。
三、巩固练习拓展深化 1.下面哪两个数互为倒数?
4/3 5/4 7 3/4 4/5 1/7 2.说出下面各数的倒数。集体讲评(说出是怎么求的)4/11 16/9 35 1/5 3.判断(打手势)(1)1的倒数是1。(2)所有的数都有倒数。(3)a的倒数是1/a.(4)因为0.5×2=1,所以0.5和2互为倒数。4.填空。
3/4 ×()=1 7 ×()=1 2/5 ×()=()× 4 = 6/7 ×()=0.2 ×()=1 [设计意图]通过多种形式的练习,不仅调动了学生的学习兴趣,还加深了对知识的理解,使学生进一步体会倒数的概念,巩固求一个数的倒数的方法,帮助学生建构比较完整的
知识体系。
四、总结反思 评价体验
这节课你都学会了什么?你还有什么疑问?
[设计意图]通过回顾,引导学生对本节课学到的知识和方法进行总结,让学生亲身感受到数学学习是有意义的。
总评:本课以学生自己的举例、观察、比较、分析、抽象和概括为学习的主要方法,获得“倒数”的概念这一知识要点;通过自主探索,合作交流,掌握求不同数的倒数的一般方法和数学的思想方法,发展初步的抽象能力;并使学生在学习和探索的过程中,培养独立思考和与人合作的能力。
第二篇:六年级数学上册《倒数的认识》教学设计
六年级数学上册《倒数的认识》教学设计
教学内容来源:小学六年级数学(上册)第三单元
单元主题:分数除法
课
时:共1课时
授课对象:六年级学生
设
计
者:
六数组
目标确定的依据
1.课程标准相关要求:
2.教材分析:倒数的意义是在学习了分数乘法的基础上进行的,主要是为了后面学习分数除法做准备,这节课的主要内容是:倒数的意义,求倒数的方法。
3.学情分析:从数学发展的源头入手,直逼数学内部,体会数学研究方法的一致性。
学习目标:
1.在说相反的游戏中,通过观察、分析、交流等活动,会说出倒数的意义。
2.通过找朋友的游戏活动,会求一个数的倒数,并能总结出求倒数的方法。
3.在具体情境中,能正确求出一个数的倒数。
评价任务
任务1:课堂提问,能正确理解并说出倒数的意义。(测评目标1)
任务2:课堂提问,总结出求倒数的方法。
(测评目标2)
任务3:课堂练习与检测,正确求一个数的倒数。
(测评目标3)
教学过程
教与学的活动
评价要点
环节一:精设导入善始
课前谈话:
师:今天老师将以好朋友的身份和大家共同完成今天的内容,大家说好吗?(好)。那老师是你们的朋友,你们是……,那我们(互相是朋友)。下面咱们开始上课。
我们学过的数字是不是也有这样的效果?我们也来试一试。请同学们来看:卡片出示
师:,,生:回答。
问题1:我们颠倒过来的数字与原来的数字之间有什么关系?(分子和分母颠倒了位置)
如果把颠倒过来的数字与原来的数字相乘,你发现了什么?(两个数的乘积是1)
会从生活中发现问题,提出问题
环节二:明确目标善思
1.在说相反的游戏中,通过观察、分析、交流等活动,会说出倒数的意义。
2.通过找朋友的游戏活动,会求一个数的倒数,并能总结出求倒数的方法。
3.在具体情境中,能正确求出一个数的倒数。
明确目标激起学生探究学习的欲望。
环节三:合作探究善学
问题2:如果把颠倒过来的数字与原来的数字相乘,你发现了什么?
请看大屏幕:
课件出示这几组算式,×
×
×
预设1:乘积都是1
2:分子、分母交换了位置。
师:像这样乘积是1的两个数互为倒数。
教师板书:乘积是1的两个数互为倒数。
问题3:你们还能再举出这样的例子吗?同桌互举。(一)什么是倒数?
问题4:这个概念中,你认为哪个词最关键?为什么?
先自己思考,再小组交流。
问题5:为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?“互为”是什么意思呢?你是怎样理解这两个字?
预设1:“互为”是指两个数的关系。
2:“互为”说明这两个数的关系是相互依存的。
同学们说得很好。倒数是表示两个数之间的关系,它们是相互依存的,所以必须说清一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。
师:例如:和的乘积是1,我们就说的倒数是,的倒数是,和互为倒数(生齐说),我们就不能单独说是倒数。
师:和的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。
学生活动
小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。
(二)怎样求一个数的倒数?
我们一起再来做个游戏----(找朋友)
谁和谁互为倒数,就是谁和谁是好朋友。明白吗?好,开始!
和
6和
和
0
问题6:互为倒数的两个数有什么特点呢?
生说原因。说不出的同桌交流讨论解决。
师:那6它可是没有分子和分母呀?
预设:把6看成是分母是1的分数,再把分子分母调换位置。
说的太好了!找到朋友的学生可以下去了。
问题7:1和0怎么找不到朋友呢?为什么?
师:咦,同学们也帮他们想想,为什么他们没找到朋友?1的倒数是多少?
0的倒数呢?
预设1:1的倒数是1,0的倒数0。
2:不对,0没有。
师:为什么?
:
预设1:因为0和任何数相乘都得0,不可能得1。
师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、……把这此分数的分子分母调换位置后......预设:分母就为0了,而分母不可以为0。
问题8:求一个数倒数的方法是什么?
师:刚才这几组同学回答的方法很好,特别是第一组和第三组,说出了两种方法:
1、两个数的乘积是12、分子、分母颠倒位置。
师:那这两种方法哪种相比较,哪种方法更能直接的看出来求一个数的倒数呢?
分子、分母颠倒位置。那求一个数的倒数的方法是什么呢?
预设1:求一个数的倒数(0除外),只要把分子分母调换位置。
这样就行吗?不行,还要把零除外。
问题9:求一个数的倒数格式应该怎样写?
师:那我们求一个数的倒数格式应该怎样写?谁能大胆的说一下自己的想法?
如果生说出的倒数是3。就表扬这位同学说的格式非常正确,你太棒了!
如果学生说出=3,老师就要纠正,写出正确的格式。
板书求倒数的格式:的倒数是3。
强调一定要记住,不要用等号。
1.会说出倒数的意义
2.会求一个数的倒数
环节四:拓展延伸善用
1、填空:
(1)8的倒数是()的倒数是()。
(2)13×()
=
()
×
=12、判断,并说出原因。
(1)
a的倒数是。
()
(2)一个数的倒数一定比这个数小
.()
(3)
因为6
×
=1,所以
是倒数
.()
3、我会写出下列各数的倒数:
0.6
会正确求一个数的倒数
环节五:回顾总结善终
1、小结:今天我们学习了什么?
你的收获是什么?
2、还有什么问题吗?(没有)
3、学了倒数有什么用呢?
大家课后可去思考一下。
至少能说出一方面的收获。
附:
课后作业:
课后反思:
第三篇:人教版六年级数学上册《倒数的认识》优秀教学设计
人 教 版 六 年 级 数 学 上 册
《倒数的认识》教学设计
一、教学内容:人教版六年级数学上册第28页例1和例2
二、教学目标:
1、知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出一个数的倒数。
2、能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。
3、情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。
三、教学重难点:
重点:认识倒数并掌握求倒数的方法。难点:小数与整数求倒数的方法。
四、教学过程 :
一、歌曲引入,揭示课题
1、师播放歌曲《童年》
2、师:同学们我们现在是六年级的同学,我们的童年生活即将结束,在这段时间中我们不仅学到了知识还收获了友谊,你们能不能用“xxx是我最好的朋友”把你们在班级中最好的朋友介绍给老师?
生介绍好朋友。
师:为什么他(她)是你的朋友? 生答略
3、我发现;师出示四组分数
师:这几组数字每一组中的两个数都是朋友,观察它们为什么能做朋友?
生: 相乘的两个分数的分子和分母位置是颠倒的。师:如果把每组中的两个分数相乘你又会发现什么? 生: 每组算式的乘积都是1。
师:今天我们就来学习乘积是1的两个数。师出示课题《倒数的认识》
二、探索交流,解决问题。
1、学习倒数的意义
出示倒数的意义:乘积是1的两个数互为倒数。师:你认为这句话中那些字词比较重要? 生1: 乘积是1 生2;两个数 生3:互为
2、练习:我要为你找朋友
出示习题,找一找哪两个数互为倒数? 汇报找的结果,并说说怎样找的? 生1:看两个分数的乘积是不是1;
生2;看两个分数的分子与分母是否分别颠倒了位置。
讨论一下这两种方法哪一种方法比较快?(第二种方法,可以直接观察得到。)
3、教学例1 和例2 通过具体实例总结归纳找倒数的方法。(1)找分数的倒数:交换分子与分母的位置。
(2)找整数的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。
看一看,例1中的哪些数据没有找到倒数? 生: 1,0 师:1和0有没有倒数?如果有,是多少? 小组讨论、汇报。(1)关于1的倒数。
因为1×1=1,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。也可以这样推导: 1的倒数是1。(2)关于0的倒数。
因为0与任何数相乘都不等于1,所以0没有倒数。也可以这样推导:分母不能为0,所以0没有倒数。
三、巩固应用,内化提高
1.完成“做一做”。先独立做,再全班交流。2.练习六第2题。
用多媒体或投影逐题出示,学生判断,并说明理由。3.同桌进行互说倒数活动(练习六第3题)。最后,让我们轻松一下。我们来看看语文中有趣的“倒数”现象。(课件显示)
如汉字“吴——吞”,“杏——呆”;很有趣吧!
接下来请同学们欣赏一幅对联的上联:“客上天然居,居然天上客 ”,这幅对联出自乾隆皇帝之手。清代的北京有个酒楼叫“天然居”,一次,乾隆到那儿吃饭,触景生情,以酒楼为题写了对联,上联就是这句:客上天然居,居然天上客。后来民间有人对出了绝妙的下联:僧游云隐寺,寺隐云游僧。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。在人类的社会发展过程中,有很多的现象有着惊人的相似,只要我们善于观察,做一个有心人,我们也能发现其中有趣的相似现象。
四、课堂小结
小结:今天我们学习了什么?以这些话开头:让我感到高兴的是,让我感到自豪的是,让我感到开心的是,来对本节课的内容进行小结。
第四篇:人教版六年级上册数学《倒数的认识》教学设计
人教版六年级上册数学《倒数的认识》教学设计
通城县隽水镇南门小学
黎承德
教材分析:
本课的内容是2013教育部审定义务教育教材人教版六年级上册数学第三单元中的“倒数的认识”,它是在分数乘法计算的基础上进行教学的,是进一步学习分数除法的一个重要概念。教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。教学目标:
(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。
(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。教学重点:知道倒数的意义和会求一个数的倒数。教学难点:
1、0的倒数的求法。教具准备:多媒体课件 教学过程:
一、激趣引入
1、猜谜语:五四三二一(打一数学名词)(倒数)
2、创设情境:课件出示—找朋友。
师:你是我的朋友,我是你的朋友。互相成为了朋友。谁能告诉大家,你是怎样理解“互相成为朋友”这句话的?
二、揭示课题,探究新知
(一)揭示倒数的意义
我们也给数字来找找朋友吧!你能找出乘积是1的两个数吗?(出示课件)请看大屏幕,先计算,再观察这些算式,同桌互相说一说它们有什么规律?(学生自学,经历自主探索总结的过程,并独立完成)。
请同学们按照要求逐一完成,看谁是认真仔细的人,既能准确的计算,又能发现其中的秘密。
师:同学们,在以前我们看来非常简单的乘积是1的两个数,研究起来有如此大的发现,那么,像符合这种规律的两个数叫什么数呢?谁能给这种数取个名字?(生取名字)板书课题:倒数的认识
师:那么根据刚才的计算结果与发现的规律你能说出什么叫倒数吗?(生答)师板书:乘积是1的两个数互为倒数。
你认为哪些字或词比较重要?你是如何理解“互为”的?你能用举例子的方法来说明吗?(生答)
师小结:刚才我们认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。就像我们新课之前的找朋友,我们互相成为了好朋友,就是说你是我的朋友,我是你的朋友。
(二)小组探究求一个倒数的方法
1.出示例题1课件:下面哪两个数互为倒数?
第页,共 3 页
师:同学们知道了什么是倒数,那你能找出一个数的倒数吗?那好,请完成这道题。
出示课件,请看这里,哪两个数互为倒数?(生找)(生说教师演示)
提问:你用什么好办法这么快就找出了这三组数的倒数?(同桌互相说说看)(找几名学生汇报)
师板书:求倒数的方法:
分数的分子、分母交换位置
同学们想出了找倒数的好方法,那就是分数的分子、分母交换位置,你们把老师想说的都说出来了,太棒了!我们一起来看一看(出示课件)。在这三组数里哪一组不同于其它两组?对,6是整数,像6这样的整数找倒数的方法可以先把整数写成分母是1的分数,再找倒数。
2.师提问:再次出示连线题的课件,本题中的还有哪些数据没有找到倒数?它们有没有倒数?如果有,又是多少呢?同桌讨论说说你的发现。3.出示课件想一想。
我的发现:1的倒数是(1),0(没有)倒数。师提问:(1)为什么1的倒数是1? 生答:(因为1×1=1“根据乘积是1的两个数互为倒数”,所以1的倒数是1)
(2)为什么0没有倒数? 生答:(因为0与任何数相乘都等于0,而不等于1,所以0没有倒数)
4、探讨带分数、小数的倒数的求法。(课件展示)
师:看来像这样的分数与整数它的倒数求法很简单,可是我们学过的不仅仅是分数、整数,还有呢?这些数的倒数又该怎样求呢?请同桌的同学讨论一下。你们有结果了吗?谁愿意到这里把你们组的讨论结果说出来与大家共享(师切换实物投影),小组汇报讨论结果,学生自己用投影展示讨论结果并说明。(师切换投影):老师也把求这一类数的倒数的方法写出来了,一起看看我们想的是否一样呢?(出示课件)。当你给带分数、小于1的小数、大于1的小数找出倒数后你有没有发现什么规律?请你对照大屏幕说说自己的发现: 发现1:带分数的倒数都(小于)本身;发现2:比1 小的小数的倒数都(大于)本身,并且都(大于)1。发现3:比1 大的小数的倒数都(小于)本身,并且都(小于)1。
三、学以致用
1、打开书,课本P28做一做。
2、练一练1-4,巩固题。(课件出示)
3、判断题。(课件出示)
四、全课总结
今天学习了什么?我们一起回顾总结出来好吗? 什么叫倒数?怎样找出一个数的倒数?
师:今天我们认识了倒数,同学们有很多发现,其实在数学中存在很多的规律,只要我们善于观察,勤于动脑,相信大家会创造更多的发现!
五、课堂作业:长江作业本
1、倒数的认识 板书:
倒数的认识
第页,共 3 页
倒数的意义:
乘积是1的两个数互为倒数
找倒数的方法:
分数的分子、分母调换位置
第页,共 3 页
第五篇:人教版六年级数学上册倒数的认识教学设计
《倒数的认识》教学设计
教学目标:
1、理解倒数的意义。
2、掌握求一个数倒数的方法,能熟练准确地写出一个数的倒数。
3、在探索活动中,培养观察、归纳、推理和概括能力。教学重点:求一个数倒数的方法。教学难点:有关1和0倒数的问题。
教学过程:
(一)创设情境,生成问题 出示算式,找特征。
前两天,我们学习了分数乘法,现在就来比一比看谁算得快:(课件)3/8 ×8/3 = 1 7/15 ×15/7 =1 5×1/5 = 1 1/12×12= 1 你发现了什么?
互为倒数的两个数有什么特点?
(二)探索交流,解决问题 1.初步理解倒数的意义。
我们知道 3/8× 8/3= 1,那么我们可以说:“因为 3/8× 8/3= 1 所以3/8 和8/3 互为倒数”
这句话还可以怎么说? 3/8 的倒数是8/3,8/3的倒数是3/8。你能照样子,结合黑板上的例题,说说算式中两数之间的关系吗?(自己小声说说——说给大家听听)
2.判断,加深理解
看来大家对倒数有了初步的认识,接下来老师想看看你们对倒数到底了解多少?
小黑板出示:
a.1/7和7都是倒数。(错)
都认为是错的?为什么?怎么改才正确?(1/7和7互为倒数。)b.1/4 +3/4 =1,所以 1/4和 3/4互为倒数。(错)
都不认同题目的说法?理由?这位同学同样关注了倒数概念中关键的词语 “乘积是1。” c.1/2×4/3 ×3/2 =1,所以 1/
2、4/3、3/2 互为倒数。(错)为什么?这位同学注意了哪个关键词?(“ 两个数”)
看来,对于概念的学习,应该充分关注概念中的关键词语。
3、出示例2:下面哪两个数互为倒数?
3/5 6 7/2 5/3 1/6 1 2/7 0 让学生说一说你是怎样找到倒数的?(学生独立完成后进行交流)小结:求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置即可。
4、想一想:1的倒数是多少?0有倒数吗?为什么? 同学们试着自己研究。(汇报交流)
师生小结:1的倒数是它本身,0没有倒数。(1:乘积为1的两个数互为倒数,所以1的倒数是1。
0:0与任何数相乘都不等于1,所以0没有倒数)
三、巩固应用,内化提高 1、24页的做一做,写出下面各数的倒数。
2、练习六的2、3、4题
大家都知道数学与生活密切联系,其实数学与我们的语文也密切联系着,我们看:
****趣味汉字
吴----吞
呆----杏
上----下 你还能找到这样有趣的汉字吗?
四、回顾整理,反思提升 通过今天的学习,你学会了什么?