排列组合教案10.1-10.2.(全文5篇)

时间:2019-05-12 18:47:46下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《排列组合教案10.1-10.2.》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《排列组合教案10.1-10.2.》。

第一篇:排列组合教案10.1-10.2.

10.2 排列 学法导引

本节特别要注意在什么情况下是用排列的方式来解决问题,凡是有序的时候,就是排列问题,否则就不是排列问 题.知识要点精讲 知识点 1 排列的定义

从 n 个不同的元素中取出 m(m≤ n 个元素,按一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个 排列.知识点 3 全排列公式

n 个不同元素全部取出的一个排列,叫做 n 个不同元素的一个全排列.n 个不同元素的全排列数为

规定 0!=1.解题方法、技巧培养 出题方向 1 优限法

在排列组合问题中,常有这样的元素存在,这些元素受到一些特殊的限制,或者说受到比较多的限制,它们的位置 比较容易确定,因此我们一般先考虑安排它们,然后再安排其他元素.这种处理排列组合问题的方法,叫做优限法.出题方向 2 捆绑法

在一个排列问题中, 如果有的元素要排在一起, 通常把这些元素捆绑成一个元素, 参与排列, 在整体排列结束后, 再来排这几个被捆绑的相邻的元素,这种方法叫做捆绑法.由此可见捆绑法主要用于相邻问题的排列.例 2 有 8本互不相同的书,其中数学书 3本,外文书 2本,其他书 3种,将这些书排成一排放在书架上,那么 数学书恰好排在一起,外文书也排在一起的排法有多少种.[分析 ] 数学书要排在一起,外文书也要排在一起,这是典型的相邻问题,采用捆绑法.出题方向 3 插空法

在排列问题中,常常会遇到某些元素不能相邻的问题,这时我们总是用插空的方法来保证这些元素不相邻,只是 我们在插空当中,首先是把相应的隔板安排好,再进行插空.例 3 3名学生与 3名教师排成一排照相,(1教师均不相邻,有多少种排法;(2学生均不相邻,有多少种排法;(3教师和学生均不相邻,有多少种排法.(2同(1.出题方向 4 排除法

排列的问题有时比较复杂,特别是分类时,所以有时可以从所有的排列中,把不符合的排列剔除,这样的解题方 法叫做排除法.例 4 从 1, 2, 3,…, 8, 9这九个数字中任取 2个作为对数的底数与真数,可以得到多少个不同的对数值? [分析 ] 这里的对数,它的底数与真数是有序的,所以是排列问题.2为底 3的对数与 4为底 9的对数相等;3为底 2的对数与 9为底 4的对数相等;这有 2个重复,要去掉;2为底 4的对数与 3为底 9的对数相等;4为底 2的对数与 9

为底 3的对数相等;这有 2个重复,要去掉;1为真数的对数共 有 8个,都等于 0,要去掉 7个.所以符合条件的对数共有 53个.出题方向 5 顺序一定的问题

例 5(1五人站成一排,甲必须在乙的前面(不一定相邻 的排法有多少种?(210人站成一排,其中甲、乙、丙三人,乙不能站在甲的前面,丙不能站在乙的前面的站法有多少种? 出题方向 6 排列数公式

证毕.易错易混点警示

例 8 为亮化美化城市,现在要把一条路上 7盏路灯全部改装成彩色路灯.如果彩色路灯有红、黄与蓝共三种颜 色,在安装时要求相同颜色的路灯不能相邻,而且每种颜色的路灯至少要有 2盏,有多少不同的安装方法? [错解 ] 从颜色考虑.三种颜色中任一种颜色最多安装 3盏,最少安装 2盏,分类讨论.不妨就选上两盏红色、两盏黄色、三盏蓝灯(这有 3种选法 来讨论.先排三盏蓝灯,只有一种排法,然后插空, 两盏红色的有 1种插空方式, 再把两盏黄色的插进去有 6×5×4=120种插空方式.所以共有 120×3=360种不同的安装方式.[错因分析 ] 错解把同色的灯看成了可以区分的.[正解 ] 安装时要求相同颜色的路灯不能相邻,而且每种颜色的路灯至少要有 2盏,这说明三种颜色的路灯的分 配情况只能是2、2、3盏的形式.先讨论颜色.在选择颜色时有 3种方法,选好了一种颜色后,安装时采用插空的方 式.下面不妨就选上两盏红色、两盏黄色、三盏蓝灯来讨论.先排两盏红色、两盏黄色共四盏灯,如果两盏

红色、两 盏黄色分别两两相邻,有 2种排法,则蓝色的有 3种排法,共 6种安装方法;如果两盏红色、两盏黄色分别两两不相 邻,有 2种排法,再把蓝色的安排下去有 10种安装方法,所以有 20种不同的安装方法.如果恰有一种颜色的相邻, 则有 2×6=12种不同的方法.综上共有 3×38=114种不同的安装方法.综合应用创新 【综合能力升级】

本节内容独立性强,综合题仅限于与方程的小综合及计数方面的综合,学习时,要注意化归思想,分类思想在解 综合题中的作用.例 9 由四个不同的数字 1, 4, 5, x(x≠ 0 组成没有重复数字的所有的四位数的各位数字之和为 288,求 x 的值.即 24x +120+96+24=288, 解得:x =2.想一想 从2、3、4、5、6这五个数中每次取出三个数组成三位数,求所有这些三位数的和

例 10 用 0, 1, 2, 3, 4, 5六个数字可以组成多少个没有重复数字的:(1五位数?(2六位偶数?(3能被 25整除的四位数?(4大于 201345的自然数? 10.3 组合 学法导引

学习本节的一个最重要方面是一定要分清排列问题还是组合问题,区分方法是,你只要在你求得的一种情况中, 把元素的位置交换一下,如果是一个新的符合的情况,就是排列问题,否则就是组合问题.知识要点精讲 知识点 1 组合的定义

从 n 个不同的元素中取出 m(m≤ n 个元素并成一组,叫做从 n 个不同元素中取出 m 个元素的一个组合.知识点 3 组合与排列的区别与联系(1排列是有序的,组合是无序的.(2从 n 个不同的元素中取出 m(m≤ n 个元素的排列, 可以看成先从这 n 个不同的元素中取出 m(m≤ n 个元素的组 合后,再将这 m 个元素作全排列得到.即: 解题方法、技巧培养

排列组合问题,大部分都可以归结为某种模式,因此在排列组合的学习过程中,重视模式化思维方式的学习,一 方面在于模式化思维方式在解决排列组合问题中的直接使用,能使我们尽快地、准确地把握问题的本质,形成良好的 解决问题的思维习惯;另一方面在于对学生数学思维训练的价值和潜在的智力素质的发展与形成的重大影响.出题方向 1 分解与合成模式

分解与合成模式是排列组合问题中的一种最基本的解题思维模式.当我们把一个问题分解成几个过程(或者是分 解成几个子问题 ,逐一解决,然后再依据问题分解后的结构形式将问题合成,从而得到原问题的解,这样的思考问题 的思维方式叫做分解与合成的解题模式.例 1 30030能被多少个不同的偶数整除? [解 ] 先把 30030分解成质因数的乘积形式 30030=2×3×5×7×11×13, 依题意就是要求所有偶数因数的个数, 而要得到偶数因数, 必须先取定 2, 再认其余五个质因数中任取若干个(每个因数最多取一次 组成乘积, 显然, 这样的 乘积的个数,即 30030的偶数因数的个数为

点拨 本题求因数的个数的方法仅适用于这个数的质因数互不相同,即质因数的次数都是 1的情况,其他的情况 参见 10.1节相关例题.例 2(1利用正方体的 8个顶点可构成多少个三棱锥?(2利用正方体的 8个顶点可以连成多少对异面直线?(2每一个三棱锥上有 3对异面直线,而正方体的 8个顶点可构成 58个三棱锥,∴ 正方体的 8个顶点可以连成 58×3=174对异面直线.点拨 上述两例题解题过程均是利用分解与合成的模式进行处理.例 1中是对解题结构进行分解,利用分类计数 原理,把两个过程合成;在例 2(2中我们是对解题过程进行分解,利用分步计数原理把两类合成.这种合成方式上的 不同,在解题过程中要特别注意区分.出题方向 2 映射模式

对于一个排列组合问题 A ,如果能找到一个问题 B ,使问题 B 与问题 A 在解的个数上存在一个一一映射的关系, 我们就可以通过解决 B 而达到解决 A 的目的.这样的考虑问题的方式,我们把它叫做映射模式.例 3 用 1, 2, 3, 4, 5这五个数字,组成无重复数字的三位数,其中偶数有多少个 ? [分析 ] 根据题意,可知这种三位数的个位数字有五种情况,而这五种情况中,只有两种情况能使这个三位数是 偶数.设问题 A :由 1, 2, 3, 4, 5中取三个排成的所有的三

位数,问题 B :由 1, 2, 3, 4, 5这五个数字中取三个排 成的所有偶数.由于存在这样的一个一一映射,使 A 中 5个三位数与 B 中 2个符合条件的三位偶数对应.想一想 用 0, 1, 2, 3, 4, 5这六个数字,组成无重复数字的三位数,其中偶数有多少个? 例 4 有两组平行线,第一组平行线有 5条,第二组平行线有 6条,第一组平行线与第二组平行线相交,问这两 组平行线能构成多少个平行四边形? 想一想 圆上有 12个点,过每两点连一条直线,这些直线在圆内的交点有多少个 ? 点拨 映射模式在解排列组合问题中,是一种常见的思考问题的方式,例 3与例 4主要是在两类计数问题的结果 上建立了一种对应关系,在其他问题中,我们有时也可从两个问题的关系与结构上找到对应关系,或者还可以从两个 问题的已知条件上去找到某种对应关系,从而顺利解决问题.出题方向 3 叠加模式

设集合 A , B 均为集合 U 的子集,用 P(x表示集合中元素个数,根据容斥原理,可以得到: 我们可以用这个结论处理一些排列组合问题.例 5 甲、乙等五人站成一排,其中甲不站排头,乙不站排尾的排法有多少种 ? [分析 ] 用集合 U 表示五个人的全排列的集合,集合 A 表示甲站排头的所有排列,集合 B 表示乙站排尾的所有排 列,其中 A , B 均为 U 的子集,由容斥原理

即符合条件的排法数是 78.例 6 9名翻译中, 6名会英语, 5名会日语,现要安排 4名翻译英语, 3名翻译日语,共有多少不同的安排方法.点拨 从以上三例我们可以发现,从集合的叠加原理出发,可以解决一系列有关的排列组合问题,同时它能把一 个复杂的问题变得特别的明朗、清晰.我们把这样的解决问题的思维方法叫做叠加模式.出题方向 4 化归模式

在处理复杂的排列组合问题时, 可以把一个问题退化成一个简要的问题, 通过解决这个简要的问题找到解题方法, 从而进一步解决原来的问题.例 7 25人排成 5×5方阵,现从中选 3人,要求 3人不在同一行也不在同一列,不同的选法有多少种.[分析 ] 把这样的一个问题:从 9人排成的 3×3的方阵中, 选出不在同一行也不在同一列的 3人, 有多少选法.这 个问题相对原来的问题简单,只要选出一个人后把这个人所在的行所在的列划掉,然后再继续选就可以了.然后我们再从 5×5的方阵中选出 3行 3列,就可以得到一个 3×3的方阵,再在 3×3的方阵中选 3人,便可得 答案.想一想 把 25人排成 5×5方阵,其中甲、乙二人不相邻(指甲、乙前后、左右、左前、右前、左后、右后均不 相邻 的排法有多少.例 8 如图 10-3-3是某一城市的街区图,由 12个全等的矩形街区构成,其中实线表示街道,问从 A 到 B 的最 短路程有多少种.根据上述情况,我们可以找到原问题的关键所在,这就是:在图 1的每种最短路程的走法中,都必须包含走过 3条 长为 a 的边, 4条长为 b 的边,即应该一共走过七条边.从这个角度来说,又可以把这个问题化归成由 3个 a , 4个 b 共 7个字母的排列有多少的问题.想一想 如果某一城市的街区图如图(10-3-4 ,从 A 到 B 的路程最短的走法有多少 ? 出题方向 5 整体模式与隔板模式

在排列组合问题中有较多的相邻与不相邻的问题, 或者同时也有那么一些可以通过化归的方法转化为相邻与不相 邻的排列问题,可以通过整体模式与隔板模式的思维方式来处理问题,这类问题在考试中是比较常见的.例 9 已知方程 x +y +z +w =100,求:(1这个方程的正整数解的组数;(2这个方程的自然数解的组数.例 10 一条路有 12盏路灯,为节约用电,关掉其中的 3盏,如果不关相邻两盏,有多少不同的关灯的方案.[分析 ] 这也是一个不相邻问题.即被关掉的灯没有任何两盏是相邻的.这样我们可以用隔板模式来处理问题.把 亮着 9盏灯看成隔板,这时要特别注意这里的隔板是无序的.出题方向 6 组合数与组合数的性质

第二篇:排列组合教案

课题:数学广角—搭配

(二)第一课时 简单的排列问题 授课教师:魏亚楠

教学内容:教材101页例1及做一做第1题、第2题、104页练习二十二第1题 教学目标:

1、通过观察、猜测、实验等活动,使学生找出简单事物的排列和组合方式。

2、经历探索简单事物排列组合的过程,培养初步的观察,分析和推理的能力以及有顺序地全面思考问题的意识。

3、在解决实际问题的过程中,体验成功的乐趣,激发学生学习数学的乐趣。教学重点:经历探索简单事物排列组合的过程,学会有序思考的方法。

教学难点:让学生初步感悟简单的排列组合的数学思想方法,用有序思考的方法解决实际问题。

教学过程:

一、探究新知

(一)创设问题情境

师:今天我们要学习的内容是数学广角中的简单排列组合问题。

(二)提出研讨问题

1、回忆下二年级的时候有没有学过两位数的排列组合呢?

要求:无重复、无遗漏

2、现在老师手里有三张卡片1、3、5 请同学们想想怎么将这三个数排列为没有重复的两位数呢?

3、现在老师手里又多了一张卡片“0”请结合刚学过的表示方法,看一看能排列出多少个无重复的两位数呢?

(三)提出研讨要求

师:请大家拿出笔和纸和老师一起验证一下。

(四)暴露学生资源

预设①:01、03、05、10、13、15、30、31、35、50、51、53 共12种 预设②:10、30、50、13、31、15、51、35、53 共9种

预设③:十 个(固定十位法)预设④:十 个(固定个位法)1 0 1 3 1 5 3 0 3 1 3 5 5 0 5 1 5 3 共9种

(五)组织互动研讨 3 5 3 5 1

0 0 0 1 1 3

3 1 5 共9种

同学们我们在上二年级的时候有没有学过两位数的排列组合呢,不记得也没关系,今天老师就带领大家,在回忆一下~

看老师手里有两张卡片,3、5 同学们如果我将这两个数字用“个十”的表示方法进行排列的话,会有几种排列结果呢,在这里老师有一个要求:就是要做到无重复,无遗漏!首先我们可将3放在十位上,那么5就在各位上,这样的组合结果为35。接下来我们将5放在十位上,3放在个位上,那么这样的组合结果为53。通过交换两个数字的位置就可以得到不同的排列结果,这样的方法我们可以将它定义为:交换法。

同学们刚才老师是针对两个数字进行的排列,那同学们想一想如果是三位数字,怎么将他们进行排列,才能做到无重复,无遗漏呢?

现在老师手里有三张卡片 1、3、5,接下来请同学们想想怎么将这三个数排列为没有重复的两位数呢?

我们可以先把其中一个数固定不变,剩下的两个数拿来分别组合。同样我们用“个十”的表示方法进行排列,首先我们可以先将1固定不变,放到十位上,那么就可以将剩下的3、5分别和1进行组合,这样我们就找到了两个十位数13和15。接下来我们再将3固定不变放到十位上,就可以得到31和35两个十位数。最后我们将5固定不变放到十位上也可以得到两个十位数,51和53,这样我们就得到了6个无重复且无遗漏的两位数。分别是13、15、31、35、51、53有没有细心的同学观察到,老师总是将固定不变的数放到十位上呀,那么放到个位上,是不是同样能够得到上面的数字,并且得到的结果是不是一样呢,下面我们就一起来验证一下。综合两种组合结果,我们又可以得到两种排列方法:固定十位法、固定个位。

接下来老师要考考你们了,现在老师手里又多出了一张卡片0 1 3 5 请结合咱们以上学过的三种方法将这四张卡片用“个十”的表示方法,看一看能排列出多少个无重复的两位数呢。

四、课堂小结

同学们,这节课大家一起发现排列组合问题的一些规律。我们在解决此类问题的时候一定要做到有序、全面思考,做到不重复不遗漏。排列的问题在生活中有着广泛的应用,还有更多的规律我们没有发现,老师相信你们,一定会动脑筋找到和解决这些数学问题的规律。

板书设计:

简单的排列问题

0不能作最高位

有序、全面

第三篇:《排列组合》教案

《排列组合》教学设计

上泉小学赵泽旻

一、教学目标

知识目标:通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。

能力目标:经历探索简单事物排列与组合规律的过程,培养学生有顺序地、全面思考问题的意识。

情感价值观目标:让学生感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学解决问题的意识。

二、教学重难点

教学重点:经历探索简单事物排列与组合规律的过程。突破方法:通过创设情境,自主探究突破重点。教学难点:初步理解简单事物排列与组合的不同。突破方法:通过合作交流、探讨突破难点。

三、教学准备

课件、数字卡片、数位表格

四、教学方法与手段

1.从生活情景出发,结合学生感兴趣的动画故事为学生创设探究学习的情境。

2.采用观察法、操作法、探究法、讲授法、演示法等教学方法,通过让学生动手操作、独立思考和开展小组合作交流活动,完善自己的想法,努力构建学生独特的学习方式。

3.通过灵活、有趣的练习,如:握手、拍照等游戏,提高学生解决问题的能力,同时寻求解决问题的多种办法。

五、教学过程

(一)创设情境,激发兴趣

1.故事导入:灰太狼抓走了美羊羊,为了阻止喜洋洋来救,设置了门锁密码,要想闯关成功,要了解一个知识—搭配,揭示课题。2.猜一猜 第一关的密码是由1、2两个数字组成的两位数,个位上的数字比十位上的数字大,这个密码可能是多少?

(二)动手操作,探索新知 1.过渡谈话,引出例 1 灰太狼增加了难度,在第二关设置了超级密码锁,密码是 1、2 和 3 组成的两位数,每个两位数的十位数和个位数不能一样,能组成几个两位数?”(课件出示例 1)2.尝试学习,自主探究

(1)引导理清题意:你都知道了什么

(2)指导学法:你有什么办法解决这个问题?

(3)动手操作:分发3张数字卡片,任意选取其中两张摆一摆,组成不同的两位数。鼓励学生动脑,找规律去摆,比一比谁摆的数多而不重复。

3.小组交流,展示成果

(1)小组交流:学生自主摆完后,小组交流讨论,探讨排列的方法。

(2)展示成果:指名上黑板展示。4.交流摆法,总结规律

① 交换位置:有顺序的从这 3 个数字中选择 2 个数字,组成两位数,再把位置交换,又组成另外一个两位数

② 固定十位:先确定十位,再将个位变动。③ 固定个位:先确定个位,再将十位变动。小结:以上这些办法很有规律,他们的好处:不重复,不遗漏,有顺序。

5.区分排列和组合

握手游戏:每两个人握一次手,3个人握几次手?

这些与顺序有关的问题,我们叫排列。与顺序无关的问题,我们叫组合。

(三)应用拓展,深化方法 1.任务一:比一比谁最快。

2.任务二:购物小超市,买一个拼音本,可以怎样付钱? 3.任务三:涂颜色(教材 97页“ 做一做”)

学生独立思考,动手完成涂色。4.任务四:搭配衣服。

5.组词:“读、好、书”一共有几种读法?

(四)总结延伸,畅谈感受

今天这节课有趣吗?同学们在数学广角里学到了什么?你有什么收获?以后在解决这类问题时应注意什么?

(五)课后作业

拍照游戏,3个人站一起拍照有几种站法?4个人呢?

六、板书设计

排列与组合 1、2 —— 12 21 1、2、3 ——12 21 23 32 13 31 12 13 21 23 31 32 21 31 12 32 13 23

第四篇:排列组合教案

排列组合

教学内容: 教学目标:

1、结合日常生活中熟悉的事例,能列举3个事物所有的排列组合结果。

2、通过独立思考,合作交流,逐步感悟数学思想,积累数学经验,了解简单的排列组合思想。

3、初步培养学生有顺序地、比较全面地思考问题的意识。教学重点:在学生已有生活经验下,有条理的列举出所有结果。教学难点:由列举具体结果抽象为数学模式。教学过程:

一、谈话导入

你们能猜到老师的年龄吗? 指名猜一猜

提示:老师的年龄是由9和2两个数字组成的。引导学生说出一定是29岁。

目的:两个数排列,可能有两种结果,根据生活经验老师的年龄一定是29岁。培养学生要根据生活经验作出选择,同时为下面的的三个事物的排列组合做铺垫。

二、探究3个事物的排列组合结果

1、这节课我们要玩一个小游戏,不过在玩游戏之前要先把密码输入进去才能知道游戏的名字和规则。

2、出示课件。

密码是由1、2、3这三个数中的两个组成的,你们能猜到吗?

3、猜密码

(1)你认为密码一定是12吗?

多找几名同学猜密码,得到答案只猜到一个或一部分的密码是不一定正确的。

(2)怎么样才能保证密码一定正确呢?

把所有由这三个数组成的两位数全部找出来。

小组合作,用准备好的数字卡片摆一摆,并作好记录(结果可能有找到6个、5个7个……)一一进行比较,发现有漏掉的,有重复的。

(3)如何才能把所有的可能全部写出来,既不漏掉也不重复呢?

按照一定的顺序来写

学生自己整理答案,全班展示交流,学生说出自己的方法。可以先确定十位,也可以确定各位,还可以两个一组,调换两个数的位置。

(4)输入密码

在输入密码时保证不重复不漏掉,要按照一定的顺序输入。

三、由列举具体结果抽象为教学模式

1、出示游戏规则

密码找到了,我们来看看要玩什么游戏吧!(课件出示:石头、剪刀、布)每个小组三名同学玩一次石头剪刀布的游戏,分出第一名、第二名、第三名并做好记录。

汇报结果

2、提问:谁获得了第一名?假如第一名不变,比赛结果会不会有变化? 再次游戏,第一名不变,分出第二名和第三名。结果有两种,第一名不变,第二名和第三名,调换位置。

3、小组讨论

其他人有没有可能获得第一名?(肯定有)

当1号2号3号同学分别获得第一名的时候,结果会有几种,并全部列举出来。

4、展示结果,并根据结果提问。

(1)你获得第一名的时候结果有几种?分别是什么?(2)1号同学第一名时结果有几种?2号、3号呢?

5、建构模式

每个人获得第一名结果都可能有两种,三名同学一共可能有几种结果呢? 结果是3个2--------(师板书:3×2=6(种))

小结:三人比赛,可能有六种结果。我们先确定一个名次,然后把另外的两

个名次调换位置,就会产生两种不同的结果,三个人就是六种结果。

6、比赛结束拍照

三个人拍照调换三人的位置可能照出出几种不同的照片?

7、将名次转换成数位,形成三个数的排列可以组成6个不同的三位数。说说方法:先确定百位,把每个数分别放在百位上,再调换另外两个数的位置。

也可以先确定十位,或个位。

四、列举现实生活中三个事物排列组合的例子

1、【读书好】本意是读书是一件很好的事。

【读好书】意为读一些有利于自己身心健康的书或值得自己读的书。【好读书】意指嗜好读书,爱读书。

板书设计:

不漏掉

不重复× 2 = 6(种)

第五篇:简单的排列组合教案

二年级上册数学广角《简单的排列问题》教案

课时:第一课时

教材:人教版义务教育课程标准试验教科书二年级上册数学广角《排列和组合》,课本例1。

教学目标:

1、知识与能力:培养学生学习初步的观察、分析能力和有序全面思考问题的意识。

2、过程与方法:通过摆一摆、玩一玩等实践活动,了解有关简单的排列组合的知识。

3、情感、态度与价值观:培养学生大胆猜想、积极思维的学习方法,进一步激发学生学习数学的兴趣。

教学重点:

1、了解简单的排列知识。

2、能应用排列组合的知识解决实际生活中的问题。

教学难点:掌握简单的逻辑推理。

教学准备:数字卡片、课件。

一、创设情境,导入新课

孩子们,你们喜欢看《喜羊羊与灰太狼》吗?

(边出示课件2和3边讲解故事内容)

师:在这一天,灰太狼抓住了美羊羊,把她关在了狼堡里。灰太狼为了阻止喜羊羊去救美羊羊,他设计一扇“超级密码门”,装在自己的狼堡里。喜羊羊

师:那数字1、2、3一共可以摆出几个两位数啊?

生回答。

师:那同学们还有什么办法能够有顺序,不重复,不遗漏的摆出这些数呢?

如果学生不能及时的回答,进行下一步引入,师:刚刚我们采用的是确定十位的方法,我们还可以怎么做呢?

师:真是不错,还想出了一种新方法啊。真是爱动脑筋的小朋友。那好,有哪位同学可以来讲解一下呢? 师点名。

生:个位选1,十位可以选2或3(老师这是一定要听清楚学生的话语,纠正“和”“或”的概念)师引导

师:嗯,说的可真好。个位是1,十位是2,就组成了两位数21;个位是1,十位是3,就组成了两位数31。(板书:21,31)。不错,个位可以接着选几呢?

生:个位选2,十位可以选1或3; 师:哪组成的两位数是什么呢?

生:12,32。(老师板书:12,32)师:那个位还可以选几啊?

生:个位选3,十位可以选1或2;组成了两位数13,或23(老师板书:13,23)

师:同学们的表现可真好,已经想出了两种可以有顺便,不重复,不遗漏的摆法啊?还有同学能想出别的摆法吗?(师引导。在黑板上,将卡片1,2,3依次摆好)

师:老师第一次选数字1和2,我们组成了两位数12,再把12的个位和十位交换就是21啦,(板书12、21)1还可以和数字3组成两位数,那就是13,交换一下就是31了(板书:

13、31)

师:那数字2和3组成的两位数是什么啊? 生:23,32

师:通过刚才的学习,我们知道了数字1、2、3可以摆出几个数呢?

下载排列组合教案10.1-10.2.(全文5篇)word格式文档
下载排列组合教案10.1-10.2.(全文5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二年级排列组合教案(模版)

    教学目标: 1.通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数。 2.初步学会从数学的角度发现最简单的排列与组合的规律,培养学生有顺序地、全面地思考问题的......

    排列组合教案.(写写帮整理)

    数学广角 《课题一排列组合》教学设计 吉林省抚松县外国语学校 李乃香 教学内容: 《义务教育课程标准实验教科书·数学(二年级上册)》第99页的的内容---排列、组合。 教材分析......

    《数学广角——排列组合》教案5篇

    《数学广角——排列组合》教案 一、教学内容 简单的排列组合 二、教学目标 1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。 2.培养学生有序地、全......

    排列组合应用

    排列组合应用 郸城县才源高中王玉建一教材分析:关于排列组合题,需要较强的逻辑思维能力,是学生最头痛的问题之一,活用两个计数原理需要很强的技巧性,是锻炼学生思维提高分析问题......

    教案01-绪论计数原理排列组合.

    教学对象 计划学时 2 管理系505-13、14、15;经济系205-1、2 授课时间 2006年2月28日;星期二;1—2节 一、概率绪论(用自制的教学软件进行随机游戏演示) 教学内容 二、计数原理——......

    《排列组合》教学反思

    《数学广角——简单的排列组合》教学反思 今天数学大组学习,我为大家展示了二年级上册第八单元《数学广角》的第一课时。小学数学二年级上册第97页的“数学广角”其主要的教......

    排列组合教学反思

    排列组合教学反思1 排列与组合不仅是组合数学的最初步知识和学习概率统计的基础,而且也是日常生活中应用比较广泛的数学知识。在二年级上册教材中,学生已经接触了一点排列与......

    排列组合教学反思

    排列组合教学反思 排列组合教学反思1 组合图形面积是学生学习了长方形、正方形、平行四边形、三角形、梯形的面积的基础上进行教学的,是日常生活经常需要解决的问题。在本节......