19.2.1矩形教案第二课时

时间:2019-05-12 18:11:12下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《19.2.1矩形教案第二课时》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《19.2.1矩形教案第二课时》。

第一篇:19.2.1矩形教案第二课时

19.2.1 矩形(二)

一、教学目标:

1.理解并掌握矩形的判定方法.

2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力

二、重点、难点

1.重点:矩形的判定.

2.难点:矩形的判定及性质的综合应用.

三、例题的意图分析

本节课的三个例题都是补充题,例1在的一组判断题是为了让学生加深理解判定矩形的条件,老师们在教学中还可以适当地再增加一些判断的题目;例2是利用矩形知识进行计算;例3是一道矩形的判定题,三个题目从不同的角度出发,来综合应用矩形定义及判定等知识的.

四、课堂引入

1.什么叫做平行四边形?什么叫做矩形? 2.矩形有哪些性质?

3.矩形与平行四边形有什么共同之处?有什么不同之处?

4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?

通过讨论得到矩形的判定方法.

矩形判定方法1:对角钱相等的平行四边形是矩形. 矩形判定方法2:有三个角是直角的四边形是矩形.

(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)

五、例习题分析

例1(补充)下列各句判定矩形的说法是否正确?为什么?

(1)有一个角是直角的四边形是矩形;

(×)

(2)有四个角是直角的四边形是矩形;

(√)

(3)四个角都相等的四边形是矩形;

(√)

(4)对角线相等的四边形是矩形;

(×)

(5)对角线相等且互相垂直的四边形是矩形;

(×)(6)对角线互相平分且相等的四边形是矩形;

(√)(7)对角线相等,且有一个角是直角的四边形是矩形;

(×)(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)

(9)两组对边分别平行,且对角线相等的四边形是矩形.

(√)指出:

(l)所给四边形添加的条件不满足三个的肯定不是矩形;

(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.

例2(补充)已知 ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.

分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.

解:∵

四边形ABCD是平行四边形,∴

AO=11AC,BO=BD. 22∵

AO=BO,∴

AC=BD. ∴ ABCD是矩形(对角线相等的平行四边形是矩形). 在Rt△ABC中,∵

AB=4cm,AC=2AO=8cm,∴

BC=824243(cm).

例3(补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.

分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.

证明:∵ 四边形ABCD是平行四边形,∴

AD∥BC.

∴ ∠DAB+∠ABC=180°.

AE平分∠DAB,BG平分∠ABC,∴ ∠EAB+∠ABG=

1×180°=90°. 2∴ ∠AFB=90°.

同理可证

∠AED=∠BGC=∠CHD=90°.

四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).

六、随堂练习

1.(选择)下列说法正确的是().

(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形

(D)对角互补的平行四边形是矩形

2.已知:如图,在△ABC中,∠C=90°,CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.

七、课后练习

1.工人师傅做铝合金窗框分下面三个步骤进行: ⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH; ⑵ 摆放成如图②的四边形,则这时窗框的形状是

形,根据的数学道理是:

; ⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是

形,根据的数学道理是:

2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.

第二篇:矩形教案

五、教学过程设计

(一)变换图形,形成概念 对于一类几何图形的研究,我们往往按照从一般到特殊的思路进行,比如研究三角形时,我们先研究一般三角形,再将三角形的有关要素特殊化,我们研究了把边特殊化得到的等腰三角形、把角特殊化得到的直角三角形,对于平行四边形的研究,我们也可以按照这个思路进行.

问题1 把平行四边形的一个角特殊化成直角,我们得到一个什么样的图形呢?这个图形我们小学学过吗?你能从这个图形与平行四边形的关系方面给出它的定义吗?

师生活动:教师利用几何画板将平行四边形的一条边绕一个端点旋转,当一个角变为直角时,让学生观察所形成的图形,学生从这个图形与平行四边形的关系方面给出它的定义,教师板书概念:有一个角是直角的平行四边形叫做矩形,也就是长方形.

设计意图:借助几何画板的动态演示,让学生直观感知角的变化带来平行四边形的改变,体会矩形与平行四边形间的关系,自然引出概念.

追问1:小学中学习过的长方形是矩形吗?正方形是矩形吗? 追问2:生活中存在这样的图形吗?试举例说明. 师生活动:学生回答、举例,教师出示图片补充.

设计意图:建立小学学习的长方形与矩形间的联系;让学生感知生活矩形无处不在,激发学生的学习兴趣.

(二)探究性质,深化认知

问题2 生活中有大量的矩形存在,是由于矩形不仅具有平行四边形的性质,而且还有一般平行四边形不具有的特殊性质.回忆我们探究平行四边形性质的思路,你认为应从哪些方面探究矩形的性质呢?

追问1:如图1,矩形ABCD的边、角、对角线方面是否有不同于一般平行四边形的特殊性质?你能得出有关性质猜想吗?

师生活动:教师利用几何画板再次演示由平行四边形转化为矩形的过程,学生从边、角、对角线方面进行思考、讨论、交流,得出猜想.教师利用几何画板的测量功能,初步验证学生的猜想.

猜想1:矩形的四个角都是直角;猜想2:矩形的对角线相等. 设计意图:借助动态演示,学生易于发现边、角、对角线方面与平行四边形不同的性质,用几何画板进行初步验证,增添了学生的成就感,也激发了进一步求证的欲望.

追问2:你能证明这些猜想吗? 师生活动:猜想1的证明学生结合定义口头完成.猜想2的证明方法较多,利用勾股定理、三角形全等、构造等腰三角形利用等腰三角形的三线合一都可进行证明.鼓励学生尝试不同的证明方法.

设计意图:让学生进一步体会证明的必要性,完整地体会几何研究的“观察——猜想——证明”过程;进一步培养学生的发散性思维.

追问3:矩形是轴对称图形吗?如果是,指出它的对称轴. 追问4:为什么矩形的被子和床单可以反复折叠仍然是矩形?请你用一张矩形纸片做模拟实验,并说明原因.

师生活动:学生利用折叠矩形纸片动手感知,并指出两条对称轴. 设计意图:引导学生从轴对称方面进一步领会矩形的特殊性.

追问4:在图1的矩形中有哪些三角形?它们分别是什么三角形?它们之间有什么关系?

师生活动:学生找出其中的直角三角形与等腰三角形,并说出全等的三角形,面积相等的三角形.

设计意图:让学生在学习了矩形的性质后对矩形有一个整体感知.

问题3 在前面的学习中,我们通过构造平行四边形,把三角形中的问题转化为平行四边形的性质得到三角形的中位线定理;平行四边形特殊化成矩形后,三角形也特殊化成直角三角形,你能结合图2,发现直角三角形ABC的一些特殊性质吗?

师生活动:学生讨论交流,得到性质:直角三角形斜边上的中线等于斜边的一半. 设计意图:进一步体会利用特殊平行四边形研究特殊三角形的策略,得到直角三角形斜边上中线的性质.

追问:如图3,在直角三角形草地上修两条互相交叉的小路BO,EF,路口端点处E,F,O分别为三角形草地的三边中点,小路BO,EF的长度相等吗?请说明理由.

师生活动:学生思考、回答,教师适时点拨. 设计意图:把利用平行四边形研究出的三角形的两个性质放在一起应用,及时巩固新知,同时体会这两个性质的应用价值.

(三)运用性质,解决问题

例1 如图4,矩形ABCD的对角线AC,BD相交于点O,的对角形线的长. ,.求矩形

追问1:你还能得到哪些线段的长度和哪些角的度数?

追问2:若在例1的条件下,过点A作AE⊥BD于点E,求DE的长. 师生活动:引导学生分析矩形ABCD的对角线的性质,以及

给其中的三角形带来的变化.

设计意图:运用矩形的性质解决问题,进一步体会矩形中的角、线段、三角形之间的关系.

(四)归纳小结,反思提高

师生一起回顾本节课所学的主要内容,并请学生回答以下问题: 1.矩形的概念是什么?矩形有哪些性质?它是轴对称图形吗? 2.由矩形的性质可以得到直角三角形的什么性质?

3.小学我们已接触过矩形(长方形),这节课我们是从哪方面对矩形下定义的?我们是如何探究矩形的性质的?

设计意图:问题(1)(2)引导学生回顾本节课的知识,问题(3)帮助学生梳理特殊的平行四边形采用属加种差的下定义方法,体会矩形与平行四边形的联系,以及矩形性质的探究角度(边、角、对角线三个方面)和探究思路(观察——猜想——证明),为后续其他特殊平行四边形的探究作好铺垫.

(五)布置作业

教科书第53页练习第1,2题;习题18.2第9题.

六、目标检测设计

1.矩形具有而平行四边形不一定具有的性质是()

A.内角和是360度

B.对角相等 C.对边平行且相等

D.对角线相等 设计意图:考查矩形的性质,明确矩形与一般平行四边形的区别与联系. 2.在Rt△ABC中,AB=5,BC=12,D是AC边上的中点,连接BD,则BD长为

设计意图:考查直角三角形斜边上中线的性质.

3.如图,在矩形ABCD中,AE∥BD,且交CB的延长线于点E.求证:

设计意图:考查矩形的性质的综合运用,由于证法不唯一,可训练学生的发散性思维.

4.如图,矩形ABCD的对角线AC,BD相交于点O,AE⊥BD于E,cm.

(1)求∠BOC的度数;(2)求△DOC的周长.

设计意图:主要考查三角形全等,直角三角形、等边三角形、矩形的性质的综合运用.,

第三篇:矩形教案

18.2.1 矩形(一)教学目标:

1.掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系.

2.会初步运用矩形的概念和性质来解决有关问题.

3.渗透运动联系、从量变到质变的观点. 重点、难点

1.重点:矩形的性质.

2.难点:矩形的性质的灵活应用. 教学过程

一、课堂引入

1.通过PPT展示生活中一些平行四边形的实际应用图片(推拉门,活动衣架,篱笆、井架等),想一想:这里面应用了平行四边形的什么性质?

2.思考:拿一个活动的平行四边形教具,轻轻拉动一个点,观察不管怎么拉,它还是一个平行四边形吗?为什么?

3.再次演示平行四边形的移动过程,当移动到一个角是直角时停止,让学生观察这是什么图形?(小学学过的长方形)引出本课题及矩形定义.

矩形定义:有一个角是直角的平行四边形叫做矩形(通常也叫长方形).

矩形是我们最常见的图形之一,例如书桌面、教科书的封面等都有矩形形象.

【探究】在一个平行四边形活动框架上,用两根橡皮筋分别套在相对的两个顶点上(作出对角线),拉动一对不相邻的顶点,改变平行四边形的形状.

① 随着∠α的变化,两条对角线的长度分别是怎样变化的?

② 当∠α是直角时,平行四边形变成矩形,此时它的其他内角是什么样的角?它的两条对角线的长度有什么关系?

操作,思考、交流、归纳后得到矩形的性质. 矩形性质

1矩形的四个角都是直角. 矩形性质

2矩形的对角线相等.

如图,在矩形ABCD中,AC,BD相交于点O,由性质2有AO=BO=CO=DO=

11AC=BD.因此可以得到直角三角形的22一个性质:直角三角形斜边上的中线等于斜边的一半.

二、例习题分析

例1(教材P53例1)已知:如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=4cm,求矩形对角线的长.

分析:因为矩形是特殊的平行四边形,所以它具有对角线相等且互相平分的特殊性质,根据矩形的这个特性和已知,可得△OAB是等边三角形,因此对角线的长度可求.

解:∵ 四边形ABCD是矩形,∴ AC与BD相等且互相平分. ∴ OA=OB. 又

∠AOB=60°,∴

△OAB是等边三角形.

矩形的对角线长AC=BD = 2OA=2×4=8(cm).

例2(补充)已知:如图,矩形 ABCD,AB长8 cm,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.

分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.

略解:设AD=xcm,则对角线长(x+4)cm,在Rt△ABD中,由勾股定理:x282(x4)2,解得x=6. 则 AD=6cm.

(2)“直角三角形斜边上的高”是一个基本图形,利用面积公式,可得到两直角边、斜边及斜边上的高的一个基本关系式: AE×DB= AD×AB,解得 AE= 4.8cm.

例3(补充)已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC. 求证:CE=EF.

分析:CE,EF分别是BC,AE等线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.

证明:∵

四边形ABCD是矩形,∴

∠B=90°,且AD∥BC.

∠1=∠2. ∵

DF⊥AE,∴

∠AFD=90°.

∠B=∠AFD.又 AD=AE,∴

△ABE≌△DFA(AAS). ∴

AF=BE. ∴

EF=EC.

此题还可以连接DE,证明△DEF≌△DEC,得到EF=EC.

三、随堂练习1.(填空)

(1)矩形的定义中有两个条件:一是

,二是

(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为

、、、.

(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为

cm,cm,cm,cm. 2.(选择)

(1)下列说法错误的是().

(A)矩形的对角线互相平分

(B)矩形的对角线相等

(C)有一个角是直角的四边形是矩形

(D)有一个角是直角的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有().(A)2对

(B)4对

(C)6对

(D)8对 3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.

四、课后练习1.(选择)矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为().

(A)12cm

(B)10cm

(C)7.5cm

(D)5cm 2.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.

3.已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.

4.如图,矩形ABCD中,AB=2BC,且AB=AE,求证:∠CBE的度数.

五、小结

六、板书

七、教后记:

18.2.1 矩形(二)教学目标:

1.理解并掌握矩形的判定方法.

2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力 重点、难点

1.重点:矩形的判定.

2.难点:矩形的判定及性质的综合应用. 教学过程

一、课堂引入

1.什么叫做平行四边形?什么叫做矩形? 2.矩形有哪些性质?

3.矩形与平行四边形有什么共同之处?有什么不同之处?

4.事例引入:小华想要做一个矩形像框送给妈妈做生日礼物,于是找来两根长度相等的短木条和两根长度相等的长木条制作,你有什么办法可以检测他做的是矩形像框吗?看看谁的方法可行?

通过讨论得到矩形的判定方法.

矩形判定方法1:对角钱相等的平行四边形是矩形. 矩形判定方法2:有三个角是直角的四边形是矩形.

(指出:判定一个四边形是矩形,知道三个角是直角,条件就够了.因为由四边形内角和可知,这时第四个角一定是直角.)

二、例习题分析

例1(补充)下列各句判定矩形的说法是否正确?为什么?

(1)有一个角是直角的四边形是矩形;

(×)

(2)有四个角是直角的四边形是矩形;

(√)

(3)四个角都相等的四边形是矩形;

(√)

(4)对角线相等的四边形是矩形;

(×)

(5)对角线相等且互相垂直的四边形是矩形;

(×)

(6)对角线互相平分且相等的四边形是矩形;

(√)(7)对角线相等,且有一个角是直角的四边形是矩形;

(×)(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;(√)

(9)两组对边分别平行,且对角线相等的四边形是矩形.

(√)指出:

(l)所给四边形添加的条件不满足三个的肯定不是矩形;

(2)所给四边形添加的条件是三个独立条件,但若与判定方法不同,则需要利用定义和判定方法证明或举反例,才能下结论.

例2(补充)已知 ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.

分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.

解:∵

四边形ABCD是平行四边形,∴

AO=11AC,BO=BD. 22∵

AO=BO,∴

AC=BD. ∴ ABCD是矩形(对角线相等的平行四边形是矩形). 在Rt△ABC中,∵

AB=4cm,AC=2AO=8cm,∴

BC=824243(cm).

例3(补充)已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH是矩形.

分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.

证明:∵ 四边形ABCD是平行四边形,∴

AD∥BC.

∴ ∠DAB+∠ABC=180°.

AE平分∠DAB,BG平分∠ABC,∴ ∠EAB+∠ABG=

1×180°=90°. 2∴ ∠AFB=90°.

同理可证

∠AED=∠BGC=∠CHD=90°.

四边形EFGH是平行四边形(有三个角是直角的四边形是矩形).

三、随堂练习1.(选择)下列说法正确的是().

(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形

(D)对角互补的平行四边形是矩形 2.已知:如图,在△ABC中,∠C=90°,CD为中线,延长CD到点E,使得 DE=CD.连结AE,BE,则四边形ACBE为矩形.

四、课后练习

1.工人师傅做铝合金窗框分下面三个步骤进行: ⑴ 先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH; ⑵ 摆放成如图②的四边形,则这时窗框的形状是

形,根据的数学道理是:

; ⑶ 将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是

形,根据的数学道理是:

2.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.

五、小结

六、板书

七、教后记:

第四篇:2.1整式(第1课时)教案(定稿)

2.1 整式(第1课时)教学设计

知识技能:会用含有字母的式子表示数量关系,理解字母表示数的意义;理解并掌握单项式及单项式系数、次数的概念.过程方法:初步培养学生观察、分析、抽象、概括等思维能力和应用意识;通过小组讨论、合作学习等方式,经历概念的形成过程培养学生自主探索知识和合作交流能力.情感态度:通过解决实际问题,感受数学来源于生活又运用于生活.重 点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.难 点:正确理解单项式的概念,掌握单项式的特征.教学过程 导入新课:

踏上初中数学学习的列车,同学们已经完成了有理数学习的旅程,初步体会到数的扩展使许多问题的解决变的更方便而简单。今天我们将开始新的旅程,我将带你们走进代数世界,学习数和字母一起运算,你们将发现数和字母一起运算会使问题的解决更加简单。就让我们开始新的的学习之旅吧。

一、情景引入

【图片欣赏】首先欣赏图片:世界之最-青藏铁路。

举世瞩目的青藏铁路于2006年7月1日建成通车,实现了几代中国人梦寐以求的愿望,青藏铁路是世界上海拔最高、线路最长的高原铁路,它还是世界上穿越冻土里程最长,高原时速最快的铁路。(共有 九个世界之最)请同学们思考老师提出的第一个问题。

【问题1】青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题: 列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

【设计意图】教师提出问题,学生思考回答,知道用式子可以表示生活中的实际问题.二、自主探究、合作交流

【过渡】像这样用含字母的式子表示实际意义的例子有很多,请思考老师提出的第二个问题。

【问题2】用含字母的式子填空(独立完成),并观察列出的式子有什么共同特点(小组可交流讨论)

1、边长为a的正方体的表面积是__,体积是__.2、铅笔的单价是x元,圆珠笔的单价是铅笔的2.5倍,则圆珠笔的单价是___元。

3、底边长为a,高为h的三角形的面积();

4、数n的相反数是__。

5、半径为r的圆的周长是____。

【设计意图】学生自己独立完成,教师找一生说答案并请学生说出所列代数式的意义。

【过渡】同学们独立完成的很棒,下面请同学们观察所列代数式包含哪些运算,有何共同运算特征?小组内交流一下你们的结论。

6a2、a3、2.5x、1ah、n、2r 2由小组讨论后,经小组推荐人员回答,教师适当点拨。

三、尝试应用

例1:列代数式:

(1)每包书有12册,n包书有()册;

(2)一辆汽车的速度是v千米∕小时,它t小时行驶的路程为__千米。

(3)一个长方体的长和宽都是a,高是h,它的体积是();(4)一台电视机原价a元,现按原价的9折出售,这台电视机现在的售价为()元;

(5)一个长方形的长是0.9,宽是a,这个长方形的面积是().

【解题反思】用字母表示数后,同一个式子在不同的问题中可以表示不同的含义。例如,在问题(4)、(5)中,所填的结果都是0.9a,一个是表示电视机的售价,一个表示长方形的面积,你还能赋予0.9a一个含义吗? 【过渡】这节课的学习任务同学们完成的很好,现在同学们回顾一下通过本节课的学习你有哪些收获?做题时应该注意哪些问题?

四、课堂练习:课本56页 练习1、2、3、4 【过渡】通过检测发现绝大多数同学都掌握的很好,祝贺你们顺利完成本节课的

五、课堂小结

六、布置作业

习题2.1:课本59页:、2、604

页:7 1

第五篇:2.1整式(第一课时)公开课教案[范文模版]

2.1整式(第一课时)

七(10)班 仰平立

一、教学目标

1.知识与技能:理解代数式的概念,进一步理解字母表示数的意义,会用含有字母的式子表示实际问题中的数量关系。

2.过程与方法:经历用含有字母的式子表示实际问题数量关系的过程,体会从具体到抽象的认识过程,发展符号意识。

3.情感态度与价值观:初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

二、教学重难点

1.教学重点:进一步理解字母表示数的意义,正确分析实际问题中的数量关系并用含有字母的式子表示数量关系,感受其中“抽象”的数学思想。

2.教学难点:正确分析实际问题中的数量关系,用式子表示数量关系。

三、教学方法

教法:引导与自主探究相结合。学法:自主与合作交流。

四、教学过程

(一)、创设情境,引入课题。

大屏幕展示图片,并提出问题1并解决,引出本节课课题。

(二)、合作交流,解读探究 探究点一:代数式的概念

【做一做】问题2:用数学式子表示:(1)比有理数a小3的数;(2)某人每秒走2米,t秒钟所走的距离;(3)b的-2与5的和;(4)有理数x的立方数的一半与1的差; 31(5)与x的和等于10 的数。

【观察】做一做和问题中的式子有什么共同点?

【归纳】代数式:是用基本运算符号(如: +、—、×、÷、乘方)把数和表示数的字母连接而成的式子。单独的一个数或一个表示数的字母也是代数式

【练一练】出示例1让学生进一步理解代数试的概念。

探究点二:含字母式子的书写要求

【做一做】以例题的形式讲解含字母的式的书写要求

(1)数与数相乘仍用“×”号,数与字母相乘时,通常应省略乘号;数与字母相乘时数字在前;

2.字母和字母相乘时,乘号可以省略不写;3.后面接单位的相加(或相减)式子要用括号括起来;4.除法运算写成分数形式;5.带分数与字母相乘时,带分数要写成假分数的形式;6.相同的因式,要写成乘方的形式;【辩一辩】下列代数式哪些书写不规范,请改正过来

(三)、应用迁移、巩固提高 例2.写一写

【归纳】列式就是把实际问题中与数量有关的语句,用含有数、字母和运算符号的式子表示出来,也就是把文字语言转化为符号语言

(四):反思评价,自我完善

在这节课中:你感受最深的是什么?你感到最困难的是什么? 你都学会了什么?

(五):作业设计,各有发展

课本59页,习题2.1,T1、T2

下载19.2.1矩形教案第二课时word格式文档
下载19.2.1矩形教案第二课时.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    第二课时教案

    第二课时.求一个小数的近似数 【温故互查】 把下面各数改写成用万作单位的数,说说你是怎样想的。(请二人小组完成温故互 【自学检测】 查内容。要求:二人小组互讲,组员给组长复......

    矩形的教案

    教学目标 18.2特殊的平行四边形 《矩形的性质》的教学设计 知识与能力:掌握矩形的概念和性质,理解矩形与平行四边形的区别与联系;会初步运用矩形的概念和性质来解决有关问题. 过......

    矩形教案(五篇材料)

    《矩形》教案 教学目标: 1.掌握矩形的概念、性质和判别条件. 2.提高对矩形的性质和判别在实际生活中的应用能力. 教学重点、难点: 教学重点:本节课的重点是矩形的性质和常用判别方......

    3.5矩形教案

    怀文中学2012——2013学年度第一学期教学设计 初 二 数 学 (3.5 矩形的性质) 主备:胡娜 审核:陈秀珍 时间:2012-11-11 学习目标: 1.探索并掌握矩形的有关性质,领会矩形的内涵. 2.......

    3.5矩形教案

    3.5矩形、菱形、正方形(2)教案 主备人: 张传美审核 : 李芳 时间: 20091105 教学目标 1、理解掌握矩形的判定条件. 提高学生应用矩形的判定解决问题的能力 2、经历探索矩形的判定......

    矩形教案2

    18.2.2矩形教案(二) 一、教学目的: 1.理解并掌握矩形的判定方法. 2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分析能力 二、重点、难点 1.重......

    1矩形教案[合集]

    矩形 一、教学对象:初三学生 二、教学时间:一课时 三、教学目标: 1.理解并掌握矩形的判定方法. 2.使学生能应用矩形定义、判定等知识,解决简单的证明题和计算题,进一步培养学生的分......

    22.4矩形教案

    22.4矩形 编写:李志刚 审核:初二数学组 一、教学目标: 1.知识与能力:理解矩形的概念,掌握矩形的性质和判定,能够运用矩形的概念、性质、判定及相关知识解决实际问题; 2.过程与方法:......