高考数学专题复习 专题七 立体几何教案 文

时间:2019-05-12 18:20:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高考数学专题复习 专题七 立体几何教案 文》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高考数学专题复习 专题七 立体几何教案 文》。

第一篇:高考数学专题复习 专题七 立体几何教案 文

专题七 立体几何

自查网络

核心背记

一、空间几何体的结构特征

(一)多面体

1.棱柱可以看成是一个多边形(包含图形所围成的平面部分)上各点都沿同一个方向移动____所形成的几何体.

2.主要结构特征:棱柱有两个面互相平行,而其余 的交线都互相平行,其余的这些面都是四边形.

3.侧棱和底面____的棱柱叫做直棱柱,底面为 的直棱柱叫做正棱柱. 4.有一个面是多边形,而其余各面都 的三角形的多面体叫做棱锥.

5.如果棱锥的底面是 一,它的顶点又在过 且与底面垂直的直线上,则这个棱锥叫做正棱锥,正棱锥各侧面都是 一的等腰三角形,这些等腰三角形____都相等,叫做棱锥的斜高.

6.棱锥被 一的平面所截,截面和底面间的部分叫做棱台.一—— 7.由正棱锥截得的棱台叫做正棱台.正棱台各侧面都是全等的等腰梯形,这些 一叫做棱台的斜高.正棱台中两底面中心连线,相应的边心距和 .组成一个直角梯形;两底面中心连线,和两底面相应的外接圆半径组成一个直角梯形.

(二)旋转体

1.分别以

一、直角梯形中——、——____所在的直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体叫做圆柱、圆锥、圆台.旋转轴叫做所围成的几何体的轴;在轴上的这条边叫做这个几何体的高;垂直于轴的边旋转而成的 叫做这个几何体的底面;不垂直于轴的边旋转而成的 叫做这个几何体的侧面,无论旋转到什么位置,这条边都叫做侧面的母线,’ 2.-个半圆绕着____所在的直线旋转一周所形成的曲面叫球面,球面所围成的几何体称为 1

球.球面也可以看做空间中到一个定点的距离等于定长的点的集合.

3.球的截面性质:球的截面是 ;球心和截面(不过球心)圆心的连线 于截面;设球的半径为R,截面圆的半径为r,球心到截面圆的距离d就是球心0到截面圆心0i的距离,它们的关系是 一.

4.球的大圆、小圆:球面被 的平面截得的圆叫做球的大圆;球面被 的平面截得的圆叫做球的小圆.

(三)投影

1.当图形中的直线或线段不平行于投射线时,平行投影具有如下性质:①直线或线段的平行投影是____;②平行直线的平行投影是 ;③平行于投射面的线段,它的投影与这条线段 ;④与投射面平行的平面图形,它的投影与这个图形 ;⑤在同一直线或平行线上,两条线段的平行投影的比等于____. 2.-个. 把一个图形照射在一个平面上,这个图形的影子就是它在这个平面上的中心投影.空间图形经过中心投影后,直线还是直线,但是平行线可能变成____.

3.在物体的平行投影中,如果投射线与投射面____,则称这样的平行投影为正投影. 4.除了平行投影的性质正投影还具备如下性质:

直于投射面的直线或线段的正投影是 .②于投射霹的平面图形的正投影是

(四)斜二测画法与三视图

1.斜二测画法的作图规则可以简记为:水平方向方向长度 竖直方向线,变为 方线,长度

2.投射面与视图:通常,总是选取三个____的平面作为投射面,来得到三个投影图.一个投射面水平放 置,叫做水平投射面,投射到水平投射面内的图形叫做,一个投射面放置在正前方,这个投射面叫做直立投射面.投射到直立投射面内的圆形叫做 和直立、水平两个投射面都垂直的投射面叫做侧立投射l面.投射到侧立投射面内的圆形叫做

3.三视图定义:将空间图形向水平投射面,直立投射 面、侧立投射面作正投影.然后把这个投影按一定的布局放 在一个平面内,这样构成的图形叫做空闷图形的三视图.

4.三视图的画法要求;三视图的主视图、俯视图、左视图分别是从物体的 看到的物体的正投影围成的平面图形.

5.一个物体的三视图的排列规则是:俯视图放在 的下面,长度与 一样;左视图放在主视图的,高度与____一样,宽度与——的宽度—样为了便于记忆.通常说:“长对正 高平齐、宽相等”或“主左一样高、主俯—样长、左俯—样宽

6.画三视图时应注意:被挡住的轮廓要画成瘦线,尺寸线用细实线标出;φ表示直径,R表示半径;单位不注明按mm计,二、空间几何体的表面积与体积

(一)柱、锥、台的表面积公式

1.设直棱柱的高为b,底面多边形的周长为c,则直棱柱侧面面积计算公式为——.设圆柱的底面半径为r 周长为C,侧面母线长为l,则圆柱的侧面积是____. 2.设正棱锥的底面边长为a,底面周长为C,斜高为h,则正n梭锥的侧面积计算公式为一·如果圆锥底面半径为r,周长为C,侧面母线长为l,那么圆锥的侧面积是一.

3.如果设正棱台下底面边长为a、周长为C,上底面边长为a'、周长为C'斜高为h',则正竹棱台的侧面积公式为____ .如果圆台的上下底面半径分为r',r,周长为C,C,侧面母线长为l,那么圆台的侧面积是

(二)柱、锥、台的体积公式

1.棱柱的底面面积为S,高为h,则体积为——’

底面半径为r,高是h的圆柱体的体积计算公式是—一.

2.若一个棱锥的底面面积为S.高为h,那么它的体积公式为____.若圆锥的底面圆的半径为r,高为h,则体积为____.

3.若台体(棱台、圆台)上、下底面面积分别为S,S,高为h,则台体的体积公式为一,若圆台的上、下底面半径分别为r,r,高为h.则圆台的体积公式为

(三)球的表面积与体积公式设球的半径为R.则球的表面积计算公式为-.即球面面积等于它的大圆面积的____.球的体积公 式为

三、平面的基本性质与推论

(一)平面的定义平面是一个不加定义,只需理解的最基本的原始概 念.在生活中平静的水面、镜面、书桌面都给我们平面的印 象,立体几何中的平面就是由此抽象出来的.平面是处处平直的面,它是向四面八方 一的.无大小、厚薄之 分,它是不可度量的.

(二)平面的基本性质及推论 1.平面的基本性质 1:如果一条直线上的两点在一个平面内,那么这条直线上的 都在这个平面内,这 时我们说:直线在平面内或平面____直线.

2.平面的基本性质2:经过____的三点,有且只 有一个平面,即:____的三点确定一个平面.

3.推论1:经过一条直线和____一点,有且只 有一个平面. 4.推论2:经过两条 直线有且只有一个平面. 5.推论3:经过两条 直线有且只有一个平面.

6.面面相交:如果两个平面有一条公共直线,则称之 为两平面相交,这条公共直线也叫做两个平面的交线.平面口与p相交,交线是Z,符号表示为 .

7.平面的基本性质3:如果不重合的两个平面有一个公共点,那么它们 一条经过 一的公共直线.

(三)异面直线

1._ ___的直线叫做异面直线.

2.异面直线的判定:与一平面相交于一点的直线与平面内一 的直线是异面直线,用符号表示为:若ABn口-B,B垂z,Zc口,则直线AB与直线z是异面直线.

四、空间中的平行关系

(一)平面的基本性质4与等角定理

1.平面的基本性质4:平行子同一直线的两条直线____.符号表示为:若直线矗∥6.c∥6,那么——.

2.等角定理:如果一个角的p边与另一个角的两边分别对应平行,并且一,那么这两个角相等.

(二)空间四边形顺次连接____ 的四点A.B,C.D所梅成的图形叫做空闻四边形.其中,四个点A,B,C.D,每个点都Ⅱq它的____ .所连接的相邻顶点fa-的线段叫做它的____.连接不相邻的顶点的线段叫做空间四边形的____.

(三)直线与平面平行

1.直线a和平面口只有一个公共点A,叫做 直线与平面____.这个公共点A叫做直线与平面的交点.记作____.

2.直线a与平面a没有公共点,叫做直线与平面平行.记作一 一.

3.判定定理:如果____的一条直线和——的一条直线平行,那么这条直线与这个平面平行. 4.性质定理:如果一条直线与一个平面平行,____ 的平面和这个平面相交,那么这条直线就和两平面的交线平行.

(四)平面与平面平行

1.两不重合平面有公共点就叫两平面相交,记作口n卢2 Z.若两个平面 一,则称这两个平面为平行平面,“平面口平行于平面p"可以记作“口∥∥.

2.平面与平面平行的判定定理;如果一个平面内有两条 一直线都平行于另一个平面,那么这两个平面平行.3.推论:如果—个平面内有两条____直线分别平行于另—个平面内的两条直线,则这两个平面平行.

4.性质定理:如果两个____平面同时与第三个平面相交,那么它们的交线平行.符号语言表示为:口//p,a(l y=a,pffy=b净_,.。__._一.

5.两个平面平行,其中一个平面内的 一直线平行于另一个平面. 五,空间中的垂直关系

(一)直线与平面垂直

1.如果两条直线相交于一点或经过平移后相交于一点,并且交角为 一,则称这两条直线互相垂直.

2.直线与平面垂直的定义:如果一条直线Z和一个平面口相交于点O,并且Z和这个平面内过点0的直线都垂直,则该直线垂直于这个平面.这条直线叫做平面的——,这个平面叫做直线的____,交点叫做__-。_.。.-。-..-.。_一.

3.点到平面的距离:垂线上任意一点到____间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的距离.

4.判定定理:如果一条直线与平面内的两条直线垂直,则这条直线与这个平面垂直. 5.推论:如果在两条__— 直线中,有一条直线垂直于平面,那么另一条直线也垂直于这个平面。‘

6.性质定理:如果两条直线垂直予同一个平面,那么这两条直线—__-7.如果一条直线垂直于一个平面,那么这条直线就垂直于这个平面内的—一直线.

(二)平面与平面垂直

1*如果两个相交平面的一与第三个平面垂直,又这两个平面与第三个平面相交所得的两条直线互相____.就称这p个平面互相垂直.

2.如果-个平面过另一个平面的一,则这两个平面互相垂直.

3.如果两个平面互相垂直,那么在—一垂直予它们____

二、的直线垂直于另一个平面. 4.如果p个平面互相垂直,那么经过第一个平面内的 一点垂直于第二AI平面的直线在——平面内.

参考答案

一、(一)1.相同的距离 2.每相邻两个面 3.垂直正多边形 4.有一个公共顶点

5.正多边形底面中心全等底边上的高 6.平行于底面

7.等腰梯形的高斜高侧援

(=)1.矩形的一条边 直焦三角形的一条直角边垂直于底边的腰圆面曲面

(=)1.所有点经过

2.不在同一直线上不共线 3.直线外. . 4.相交 5.平行 6.a 7.有且只有这个点 ’

(三)1.既不平行也不相交 2.不经过该点

四、(一)1.互相平行a//c2.方向相同

(二)不共面顶点边对角线

(三)1.相交ana=A 2.a//a3.不在一个平面内平面内4.经过这条直线

(四)1.没有公共点2.相交3.相交4.平行a//b 5.任意

五、(一)1-直角2.任何垂线垂面垂足3.垂足4.相交5.平行6.平行7.任意条

(二)1.交线垂直2.一条垂线3._AI平面内交线4.第一个

规律探究

1.在正棱锥中,要利用四个直角三角形(高、斜高及底 面边心距组成一个直角三角形,高、侧棱与底面外接圆的 半径组成一个直角三角形,底面的边心距、外接圆半径及 底边一半组成一个直角三角形,侧棱、斜高与底边一半组 成一个直角三角形)进行有关计算. 2.在正棱台中,要充分利用三个直角梯形(高、斜高及上 下底面的边心距组成一个直角梯形,侧棱、斜高及上下底边 的一半组成—个直角梯形,侧梭、高及上下底面外接圆半径组成—个直角梯形)、两个直角三角形(上下底面的边心距,外接圆半径和边的一半)进行有关计算.

3.解与直观图有关的问题时,应熟练掌握斜二测画法的规则,关键是确定宣观图的顶点或其他关键点.因此,尽量把顶点或其他关键点放在轴上或与轴平行的直线上.

4.学习三视图应会选取投射面,正确放置三视图中三个图的位置,掌握三视图之间的联系和规律:正俯长对正,正侧高平齐,俯侧宽相同.

5.棱柱、棱锥、棱台等多面体的表面积可以分别求各面面积,再求和.对于直棱柱、正棱锥、正棱台也可直接利用公式,6.圆柱、圆锥、圆台侧面积就是其侧面展开图的面积,要熟记公式.

7.有关旋转体的问题或球与多面体的切、接问题,特别要注意应用轴截面. 8.有关体积的问题,要注意“等积变换”“分割求和” “拼补求差”等解题思路.

9.结合模型,在理解的基础上熟练掌握柱、锥、台的表面积公式和体积公式.

10.球的体积公式和表面积公式是用无限分割的极限思想推导出来的.主要是记忆、掌握公式.

11.求柱、锥、台体的表面积就是求它们的侧面积和底面积之和,对于圆柱、圆锥、圆台,已知上、下底面半径和母线长可以用表面积公式直接求出;对于棱柱、棱锥、棱台没有一般计算公式,可以直接根据条件求各个面的面积.

12.求柱、锥、台体的体积时,根据体积公式,需要具备已知底面积和高两个重要条件,底面积一般可由底 面边长或半径求出,但当高不知道时,求高比较困难,一般要转化勾平面几何知识求出高.

13.证明直线共面可通过先证明其中的两条直线确定一个平面,再证明其余的直线都在这个平面内;也可以利用共面向量定理来证明.证明空间几点共面,可先取不共线的三点确定—个平面,再证明其他的点都在这个平面内’ 14.理解“有且只有一个”的含义,它强调存在性和唯一性两个方面,也称为“确定”平面. 15.求证三点及三点以上的点共线,主要是依据平面的基本性质3,只要证明这些点都是两个平面的公共点' 那么它们都在这两个平面的交线上;求证三条直线或三条以上的直线共点的一般方法是:首先证明其中两条直线交于一点,再证明其余各直线都经过这点-16.平面的基本性质2及其推论是空间中确定平面的依据,也是证明两个平面重合的依据,还为立体几何问题转化为平面几何问题提供了理论依据和具体办法.

17.直线和平面平行时,注意把直线和平面的位置关系转化为直线和直线的位置关系,直线 6

和平面平行的性质定理在应用时,要特别注意“一条直线平行于一个平面,就平行于这个平面的一切直线”的错误结论.

18.以求角为背景考查两个平行平面间的性质,也可以是已知角利用转化和降维的思想方法求锵其他几何参量.19.线面平行和面面平行的判定和性质 20.转化思想方法:直线与平面平行的判定定理和性质定理的实质就是线线平行与线面平行的转化.

21.要能够灵活地作出辅助线或辅助平面来解题.对 此需强调两点;第一,辅助线、辅助面不能随意作,要有理 论根据;第二,辅助线或辅助面有什么性质,一定要以某一 性质定理为依据,决不能凭主观臆断,否则谬误难免.

22.直线与平面垂直,只需这条直线垂直于这个平面 内的两条相交直线,至于这两条相交直线是否和已知直线 有公共点,这无关紧要.

23.三垂线定理及其逆定理是立体几何中的重要定 理,复习运用时要注意:

①弄清定理中所指明的三种垂线,②定理中的直线a-定在某直线的射影所在的平面a内,因此要熟练地掌握直线n在不同位置时的情况.

24.在证明两平面垂直时,一般先从现有直线的平面 中寻找平面的垂线,若这样的直线图中没有明确给出,则 可通过作辅助线来解决,而作辅助线则应有理论根据,并 有利于证明,不能随意添加,如有平面垂直时,一般要用性 质定理,在一个面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直. 25.线面垂直的判定和性质:①依定义,所成角为90。,②判定定理;③性质定理;④其他结论,如,如果两条平行 线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.

26.应用三垂线定理的难点主要是对非水平放置的图 形的辨认,在解证中可按照“一定平面,二定垂线,三找斜 线,射影可见,直线随便”的原则去认定图形.其关键是转化,即把已知的线线垂直转化为所需的线线垂直’也就是斜线和它在平面内的射影的转化,因此,寻找斜线、射影非常重要.

实际应用

3.如图,已知四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AClBD,垂足为H,PH是四棱锥的高.(I)证明.平面PAC_1_平面PBD:,(Ⅱ)若AB-厢,/APB一/ADB= 60。,求四棱锥 P-ABCD的体积.

参考答案 1.【答案lD【命题立意】本题考查几何体的直观图和三视图的有关知识,考查学生的空间想象能力.【解题思路】由已知条件和直观图(斜二测)可知D正确. 2.【答案】D【命题立意】本题考查空间想象能力及平行与垂直关系的推理与论证.【解题思路】A错,平行直线的平行投影仍可平行;B错'平行于同~直线的两平面可平行或相交;c错,垂直于同一平面的两平面可平行或相交;D正确,空间想象易知垂直于同一平面的两直线平行,

第二篇:XX届高考数学立体几何复习教案

XX届高考数学立体几何复习教案

本资料为woRD文档,请点击下载地址下载全文下载地址

立体几何总复习

一、基本符号表示..点A在线m上:Am;

2.点A在面上:A

3.直线m在面内:m

4.直线m与面交于点A:m

=A;

5.面与面相交于直线m:=m;

二、点A到面的距离.(第一步:作面的垂线)

①作法:过点A作Ao

于o,连结线段Ao,即所求。

②求法:

(一)直接法;

(二)等体法(等积法包括:等体积法和等面积法);

(三)换点法。

如图,三棱锥中,PA⊥AB,PA⊥Ac,AB⊥Ac,PA=Ac=2,AB=1,m为Pc的中点。

(II)求点A到平面PBc的距离.(例2)四棱锥P—ABcD中,PA⊥底面ABcD,AB//cD,AD=cD=1,∠BAD=120°,PA=,∠AcB=

90°。(III)求点B到平面PcD的距离。

(例3)如图,直三棱柱中,Ac⊥cB,D是棱的中点。(I)求点B到平面的距离.三、两条异面直线m与n所成角.①作法:平移,让它们相交.(若mn,则可证出mn所在的平面)

②求法:常用到余弦定理.③两条异面直线所成角的范围:

;任意两

条异面直线所成角的范围:

.如图,在中,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.(II)当为的中点时,求异面直线与所成角的大小;

四、线m与面所成角.(第一步:作面的垂线)

①作法:在线m上任取一点P(异于A),作Po

于o,连结Ao,则Ao为斜线PA在面内的摄影,m与面所成的角。

②求法:一般根据直角三角形来解。

③线面角的范围:

.已知正四棱柱中,AB=2。(II)求直线与侧面所成的角的正切值.如图,在中,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.(III)求与平面所成角的最大值. 五、二面角(注:若所求的二面角为直二面角,一般转化为求它的补角—锐角).(一)定义法:

①作法:在棱c上取一“好”点P,在两个半平面内分别作c的垂线(射线)m、n,则角即二面角—c—的平面角。

②求法:一般根据余弦定理。

(二)三垂线法:(第一步:作面的垂线)

①作法:在面或面内找一合适的点A,作Ao

于o,过A作ABc于B,则Bo为斜线AB在面内的射影,为二面角—c—的平面角。

三垂线法的步骤:

1、作面的垂线;

2、作棱的垂线,并连结另一边(平面角的顶点在棱上);

3、计算。

②求法:一般根据直角三角形来解。

③二面角的取值范围:

.如图,三棱锥中,PA⊥AB,PA⊥Ac,AB⊥Ac,PA=Ac=2,AB=1,m为Pc的中点。

(III)求二面角的正切值。

(例2)已知正四棱柱中,AB=2。(III)求二面角的正切值。

(例3)四棱锥P—ABcD中,PA⊥底面ABcD,AB//cD,AD=cD=1,∠BAD=120°,PA=,∠AcB=

90°。(II)求二面角D—Pc—A的大小;

(例4)已知:四棱锥P—ABcD的底面ABcD是边长为1的正方形,PD⊥底面ABcD,且PD=1。(III)求二面角B—PA—c的余弦值.(例5)如图,直三棱柱中,Ac⊥cB,D是棱的中点。(II)求二面角的大小。

六、三垂线定理.(第一步:作面的垂线)

.定理:PA为斜线,Po

于o,oA为射影,m,AomPAm.2.逆定理:PA为斜线,Po

于o,oA为射影,m,PAm

Aom.已知正四棱柱中,AB=2。(I)求证:.七、线面平行()..定义:

2.判定定理:

3.性质定理:

(例1)已知:四棱锥P—ABcD的底面ABcD是边长为1的正方形,PD⊥底面ABcD,且PD=1。(I)求证:Bc//平面PAD.八、线面垂直()..定义:

2.判定定理:

3.性质定理:

(例1)四棱锥P—ABcD中,PA⊥底面ABcD,AB//cD,AD=cD=1,∠BAD=120°,PA=,∠AcB=

90°。(I)求证:Bc⊥平面PAc;

(例2)已知:四棱锥P—ABcD的底面ABcD是边长为1的正方形,PD⊥底面ABcD,且PD=1。(II)若E、F分别为PB、AD的中点,求证:EF⊥平面PBc.九、面面平行()..定义:

2.判定定理:

3.性质定理:

十、面面垂直()..定义:

2.判定定理:

3.性质定理:

如图,三棱锥中,PA⊥AB,PA⊥Ac,AB⊥Ac,PA=Ac=2,AB=1,m为Pc的中点。

(I)求证:平面PcB⊥平面mAB.如图,在中,斜边.可以通过以直线为轴旋转得到,且二面角是直二面角.动点的斜边上.(I)求证:平面平面;

十一、有关对角线..平行四边形:

对角线平分.2.菱形:

对角线垂直且平分.3.矩形:

对角线相等且平分.4.正方形:

对角线相等且垂直且平分.十二、平移的方法..三角形(或梯形)的中位线:

且等于底边(上下两底之和)的一半.2.平行四边形:对边

且相等.3.等比例线段:

十三、重要辅助线的添加方法..见到中点,考虑:①中位线;②

;③

.2.见到平行四边形(菱形、矩形、正方形同理),考虑:①连结对角线;②对边平行且相等.十四、求三角形面积的通用方法.十五、三棱锥的任何一个面都可以作为底面,方便使用等体法.十六、立体几何解题策略(附加:在做立体几何大题时,后以文经常用到前一问的结论,平时注意)..由已知想性质;

2.由结论想判定;

3.由需要做辅助线或辅助平面.十七、有关棱柱.棱柱——————————直棱柱—————————正棱柱..两底面平行;

+1.侧棱垂直于底面

+1.底面是正多边形

2.侧棱平行

十八、有关棱锥.棱锥——————————正棱锥..一面一点一连;

+1.底面是正多边形;

2.顶点在底面的射影正好是底面正多边形的中心.

第三篇:2013届高考数学第一轮立体几何初步专项复习教案

§3 三视图

【课时目标】 1.初步认识简单几何体的三视图.2.会画出空间几何体的三视图并会由空间几何体的三视图画出空间几何体.

1.空间几何体的三视图是指__________、__________、__________.

2.三视图的排列规则是__________放在主视图的下方,长度与主视图一样,__________放在主视图的右面,高度与主视图一样,宽度与俯视图的宽度一样.

3.三视图的主视图、俯视图、左视图分别是从________、__________、________观察同一个几何体,画出空间几何体的图形.

一、选择题

1.下列说法正确的是()A.任何几何体的三视图都与其摆放的位置有关 B.任何几何体的三视图都与其摆放的位置无关 C.有的几何体的三视图与其摆放的位置无关 D.正方体的三视图一定是三个全等的正方形

2.如图所示的一个几何体,哪一个是该几何体的俯视图()

3.如图所示,下列几何体各自的三视图中,有且仅有两个视图相同的是()

A.①②

B.①③

C.①④

D.②④ 4.一个长方体去掉一个小长方体,所得几何体的主视图与左视图分别如图所示,则该几何体的俯视图为()

5.实物图如图所示.无论怎样摆放物体,如图所示中不可能为其主视图的是()

6.一个长方体去掉一角的直观图如图所示,关于它的三视图,下列画法正确的是()

二、填空题

7.根据如图所示俯视图,找出对应的物体.

(1)对应________;(2)对应________;(3)对应________;(4)对应________;(5)对应________.

8.若一个三棱柱的三视图如图所示,则这个三棱柱的高(两底面之间的距离)和底面边长分别是________和________.

9.用小正方体搭成一个几何体,如图是它的主视图和左视图,搭成这个几何体的小正方体的个数最多为________个.

三、解答题

10.在下面图形中,图(b)是图(a)中实物画出的主视图和俯视图,你认为正确吗?如果不正确,请找出错误并改正,然后画出左视图(尺寸不作严格要求).

11.如图是截去一角的长方体,画出它的三视图.

能力提升

12.如图,螺栓是棱柱和圆柱的组合体,画出它的三视图.

13.用小立方体搭成一个几何体,使它的主视图和俯视图如图所示,搭建这样的几何体,最多要几个小立方体?最少要几个小立方体?

在绘制三视图时,要注意以下三点:

1.若两相邻物体的表面相交,表面的交线是它们的原分界线,在三视图中,分界线和可见轮廓都用实线画出,不可见轮廓用虚线画出.

2.一个物体的三视图的排列规则是:俯视图放在主视图的下面,长度和主视图一样.左视图放在主视图的右面,高度和主视图一样,宽度和俯视图一样,简记为“长对正,高平齐,宽相等”.

3.在画物体的三视图时应注意观察角度,角度不同,往往画出的三视图不同.

§3 三视图

答案

知识梳理

1.主视图 左视图 俯视图 2.俯视图 左视图

3.正前方 正上方 左侧 作业设计

1.C [球的三视图与其摆放位置无关.] 2.C

3.D [在各自的三视图中,①正方体的三个视图都相同;②圆锥有两个视图相同;③三棱台的三个视图都不同;④正四棱锥有两个视图相同.] 4.C

[由三视图中的正、左视图得到几何体的直观图如图所示,所以该几何体的俯视图为C.] 5.D [A图可看做该物体槽向前时的主视图,B图可看做槽向下时的主视图,C图可看做槽向后时的主视图.] 6.A

7.(1)D(2)A(3)E(4)C(5)B 8.2 4 解析 三棱柱的高同左视图的高,左视图的宽度恰为底面正三角形的高,故底边长为4.

9.7 10.解 图(a)是由两个长方体组合而成的,主视图正确,俯视图错误,俯视图应该画出不可见轮廓线(用虚线表示),左视图轮廓是一个矩形,有一条可视的交线(用实线表示),正确画法如图所示.

11.解 该图形的三视图如图所示.

12.解 该物体是由一个正六棱柱和一个圆柱组合而成的,主视图反映正六棱柱的三个侧面和圆柱侧面,左视图反映正六棱柱的两个侧面和圆柱侧面,俯视图反映该物体投影后是一个正六边形和一个圆(中心重合).它的三视图如图所示.

13.解 由于主视图中每列的层数即是俯视图中该列的最大数字,因此,用的立方块数最多的情况是每个方框都用该列的最大数字,即如图①所示,此种情况共用小立方块17块.

而搭建这样的几何体用方块数最少的情况是每列只要有一个最大的数字,其他方框内的数字可减少到最少的1,即如图②所示,这样的摆法只需小立方块11块.

第四篇:高考数学专题复习专题二 不等式教案 文

2013年高考数学(文)复习

专题二不等式

自查网络

核心背记

一,不等关系与不等式的证明 1-_________叫做不等式.

2.对于任意两个实数a和6,在a=6,a>b,a

(1)性质1:________,称为不等式的对称性,(2)性质2. 一,称为不等式的传递性.(3)性质3:________________ ①推论1:____,称为不等式的移项法则. ②推论2:____(同向不等式可以相加).

(4)性质4;________(不等式两边同乘非零数值). ①推论1.____ ②推论2:____ ③推论3:____ 二,基本不等式与不等式的证明

(一)实数大小比较与运算性质之间的关系

四、不等式的应用

1.应用基本不等式解决实际问题

用基本不等式知识解决实际问题是不等式应用的一个重要内容,常出现在选择与填空题中,属中档题.

(1)理解题意,确定量与量之间的关系;

(2)建立相应的不等式关系,把实际问题抽象(或转化)为不等式问题;(3)回归到实际问题,得出满足实际要求的结论. 2.不等式与函数交汇的命题

用不等式知识解决函数问题是不等式应用的一个重要内容,也是高考的—个热点和难点,常以压轴题的形式出现

3.不等式与解析几何、数列等知识交汇的命题 不等式与解析几何、数列的综合问题在近年的高考中时有出现,近两年更是以压轴题形式出现,因此不等式与数列的综合问题是高考的重点,也是难点. 五、二元一次不等式组与简单线性规划问题

(一)二元一次不等式表示平面区域 1.-般地,二元一次不等式Ax+By+C>O在平面直角坐标系中表示直线Ax+By+C=O的某一侧的所有点组成的平面区域(半平面)____边界直线,不等式Ax+By+C≥O所表示的平面区域(半平面)边界直线.

2.对于直线Ax+By+C=O同一侧的所有点o,y),使得Ax+By+C的值符号相同,也就是同一半平面的点,其坐标适合____;而位于另一个半平面内的点,其坐标适合____3.可在直线Az-+B y+C—O的某一侧任取一点,一般取特殊点(x。,y。),从Ax。+By。+C的____来判断Az-+By+C>O(或Ax+By+C

4.由几个不等式组成的不等式组所表示的平面区域,是各个不等式所表示的平面区域的____.

(二)基本概念

1.线性约束条件:由z,y的____(或方程)组成的不等式组,是对z与y的____. 2.目标函数:____,如z-2x十y,z=≯+,等 3.线性目标函数;关于x,y的____..

4.可行解:满足____的解(x,y)叫做可行解. 5.可行域:____组成的集合叫可行域. 6.最优解:使目标函数达到____的可行解.

7.线性规划问题:求____在____的最大值或最小值的问题,统称线性规划问题. 参考答案

(二)1.一次不等式限制

2.求最大值或最小值的函数 3.一次函数 4.线性约束条件 5.所有可行解 6.最大值或最小值

7.线性目标函数线性约束条件 规律探究

1.不等式的性质是证明不等式、解不等式、求函数的定义域等问题的依据,必须牢固掌握并会进行推导.

2.应用基本不等式求最值时必须注意“一正、二定、三相等”,一正即必须各项均为正数;二定就是积定则和有最小值,和定则积有最大值;三相等就是必须验证等号成立的条件,这是最容易出错的地方.

4.要学会构造不等式求解或构造函数求函数最值的方法,求最值时要注意等号成立的条件,避免不必要的错误.

5.加强分类讨论思想的复习,加强函数与方程思想在不等式中的应用训练. 实际应用

参考答案 1.【答案lC 【命题立意】本题考查线性规划,利用线性规划的一般方法求目标函数的最值. 【解题思路】画出可行域如图所示,根据图形,显然兰 P一一z平移到点A(6,o)时,目标函数取得最大值,此时大值z-6.所以选择c 【易错点】解决本题需要注意三条直线斜率之间的关系,否则容易出现错误.

2.【答案】3 【命题立意】本题考查利用基本不等式求解最值

【举一反三】在利用基本不等式求解最值时,要注意其三个条件缺一不可,即一正(各项为正值)、二定(和或积为定值)、三相等(即取得等号时变量是否在定义域限制范围之内). 3.【答案】27 【命题立意】本题考查了不等式之间的关系及代数式的最值探究问题,考查了整体思想的应用

第五篇:高考数学回归课本教案:立体几何

高考数学回归课本教案

立体几何

一、基础知识

公理1 一条直线。上如果有两个不同的点在平面。内.则这条直线在这个平面内,记作:aa.

公理2 两个平面如果有一个公共点,则有且只有一条通过这个点的公共直线,即若P∈α∩β,则存在唯一的直线m,使得α∩β=m,且P∈m。

公理3 过不在同一条直线上的三个点有且只有一个平面。即不共线的三点确定一个平面. 推论l 直线与直线外一点确定一个平面. 推论2 两条相交直线确定一个平面. 推论3 两条平行直线确定一个平面.

公理4 在空间内,平行于同一直线的两条直线平行.

定义1 异面直线及成角:不同在任何一个平面内的两条直线叫做异面直线.过空间任意一点分别作两条异面直线的平行线,这两条直线所成的角中,不超过900的角叫做两条异面直线成角.与两条异面直线都垂直相交的直线叫做异面直线的公垂线,公垂线夹在两条异面直线之间的线段长度叫做两条异面直线之间的距离.

定义2 直线与平面的位置关系有两种;直线在平面内和直线在平面外.直线与平面相交和直线与平面平行(直线与平面没有公共点叫做直线与平面平行)统称直线在平面外.

定义3 直线与平面垂直:如果直线与平面内的每一条直线都垂直,则直线与这个平面垂直. 定理1 如果一条直线与平面内的两条相交直线都垂直,则直线与平面垂直.

定理2 两条直线垂直于同一个平面,则这两条直线平行.

定理3 若两条平行线中的一条与一个平面垂直,则另一条也和这个平面垂直.

定理4 平面外一点到平面的垂线段的长度叫做点到平面的距离,若一条直线与平面平行,则直线上每一点到平面的距离都相等,这个距离叫做直线与平面的距离.

定义5 一条直线与平面相交但不垂直的直线叫做平面的斜线.由斜线上每一点向平面引垂线,垂足叫这个点在平面上的射影.所有这样的射影在一条直线上,这条直线叫做斜线在平面内的射影.斜线与它的射影所成的锐角叫做斜线与平面所成的角. 结论1 斜线与平面成角是斜线与平面内所有直线成角中最小的角.

定理4(三垂线定理)若d为平面。的一条斜线,b为它在平面a内的射影,c为平面a内的一条直线,若cb,则ca.逆定理:若ca,则cb.

定理5 直线d是平面a外一条直线,若它与平面内一条直线b平行,则它与平面a平行 定理6 若直线。与平面α平行,平面β经过直线a且与平面a交于直线6,则a//b. 结论2 若直线。与平面α和平面β都平行,且平面α与平面β相交于b,则a//b.

定理7(等角定理)如果一个角的两边和另一个角的两边分别平行且方向相同,则两个角相等.

定义6 平面与平面的位置关系有两种:平行或相交.没有公共点即平行,否则即相交. 定理8 平面a内有两条相交直线a,b都与平面β平行,则α//β.定理9 平面α与平面β平行,平面γ∩α=a,γ∩β=b,则a//b.

定义7(二面角),经过同一条直线m的两个半平面α,β(包括直线m,称为二面角的棱)所组成的图形叫二面角,记作α—m—β,也可记为A—m一B,α—AB—β等.过棱上任意一点P在两个半平面内分别作棱的垂线AP,BP,则∠APB(≤900)叫做二面角的平面角. 它的取值范围是[0,π]. 特别地,若∠APB=900,则称为直二面角,此时平面与平面的位置关系称为垂直,即αβ.定理10 如果一个平面经过另一个平面的垂线,则这两个平面垂直.

定理11 如果两个平面垂直,过第一个平面内的一点作另一个平面的垂线在第一个平面内. 定理12 如果两个平面垂直,过第一个子面内的一点作交线的垂线与另一个平面垂直. 定义8 有两个面互相平行而其余的面都是平行四边形,并且每相邻两个平行四边形的公共边(称为侧棱)都互相平行,由这些面所围成的几何体叫做棱柱.两个互相平行的面叫做底面.如果底面是平行四边形则叫做平行六面体;侧棱与底面垂直的棱柱叫直棱柱;底面是正多边形的直棱柱叫做正棱柱.底面是矩形的直棱柱叫做长方体.棱长都相等的正四棱柱叫正方体.

定义9 有一个面是多边形(这个面称为底面),其余各面是一个有公共顶点的三角形的多面体叫棱锥.底面是正多边形,顶点在底面的射影是底面的中心的棱锥叫正棱锥. 定理13(凸多面体的欧拉定理)设多面体的顶点数为V,棱数为E,面数为F,则 V+F-E=2.

定义10 空间中到一个定点的距离等于定长的点的轨迹是一个球面.球面所围成的几何体叫做球.定长叫做球的半径,定点叫做球心.

定理14 如果球心到平面的距离d小于半径R,那么平面与球相交所得的截面是圆面,圆心与球心的连线与截面垂直.设截面半径为r,则d2+r2=R2.过球心的截面圆周叫做球大圆.经过球面两点的球大圆夹在两点间劣弧的长度叫两点间球面距离.

定义11(经度和纬度)用平行于赤道平面的平面去截地球所得到的截面四周叫做纬线.纬线上任意一点与球心的连线与赤道平面所成的角叫做这点的纬度.用经过南极和北极的平面去截地球所得到的截面半圆周(以两极为端点)叫做经线,经线所在的平面与本初子午线所在的半平面所成的二面角叫做经度,根据位置不同又分东经和西经. 定理15(祖

原理)夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.定理16(三面角定理)从空间一点出发的不在同一个平面内的三条射线共组成三个角.其中任意两个角之和大于另一个,三个角之和小于3600.

定理17(面积公式)若一个球的半径为R,则它的表面积为S球面=4πR2。若一个圆锥的母线长为l,底面半径为r,则它的侧面积S侧=πrl.4定理18(体积公式)半径为R的球的体积为V球=3R3;若棱柱(或圆柱)的底面积为s,高h,则它的体积为V=sh;若棱锥(或圆锥)的底面积为s,高为h,则它的体积为1sh.V=3

定理19 如图12-1所示,四面体ABCD中,记∠BDC=α,∠ADC=β,∠ADB=γ,∠BAC=A,∠ABC=B,∠ACB=C。DH平面ABC于H。

(1)射影定理:SΔABD•cosФ=SΔABH,其中二面角D—AB—H为Ф。

sinsinsinBsin.(2)正弦定理:sinAsinC(3)余弦定理:cosα=cosβcosγ+sinβsinγcosA.cosA=-cosBcosC+sinBsinCcosα.V13DH•SΔABC

2(4)四面体的体积公式1abc1coscos22=6cos2coscoscos

aa1dsin162(其中d是a1, a之间的距离,是它们的夹角)

3aSΔABD•SΔACD•sinθ(其中θ为二面角B—AD—C的平面角)。

二、方法与例题 1.公理的应用。

例1 直线a,b,c都与直线d相交,且a//b,c//b,求证:a,b,c,d共面。

[证明] 设d与a,b,c分别交于A,B,C,因为b与d相交,两者确定一个平面,设为a.又因为a//b,所以两者也确定一个平面,记为β。因为A∈α,所以A∈β,因为B∈b,所以B∈β,所以dβ.又过b,d的平面是唯一的,所以α,β是同一个平面,所以aα.同理cα.即a,b,c,d共面。

例2 长方体有一个截面是正六边形是它为正方体的什么条件?

[解] 充要条件。先证充分性,设图12-2中PQRSTK是长方体ABCD-A1B1C1D1的正六边形截面,延长PQ,SR设交点为O,因为直线SR平面CC1D1D,又O∈直线SR,所以O∈平面CC1D1D,又因为直线PQ平面A1B1C1D1,又O∈直线PQ,所以O∈平面A1B1C1D1。所以O∈直线C1D1,由正六边形性质知,∠ORQ=∠OQR=600,所以ΔORQ

CRSRRO为正三角形,因为CD//C1D1,所以

C1R=1。所以R是CC1中点,同理Q是B1C1的中点,又ΔORC1≌ΔOQC1,所以C1R=C1Q,所以CC1=C1B1,同理CD=CC1,所以该长方体为正方体。充分性得证。必要性留给读者自己证明。2.异面直线的相关问题。

例3 正方体的12条棱互为异面直线的有多少对?

[解] 每条棱与另外的四条棱成异面直线,重复计数一共有异面直线12×4=48对,而每一

48对异面直线被计算两次,因此一共有224对。

例4 见图12-3,正方体,ABCD—A1B1C1D1棱长为1,求面对角线A1C1与AB1所成的角。

[解] 连结AC,B1C,因为A1A边形,所以A1C1////B1B

//C1C,所以A1A

//C1C,所以A1ACC1为平行四AC。

所以AC与AB1所成的角即为A1C1与AB1所成的角,由正方体的性质AB1=B1C=AC,所以∠B1AC=600。所以A1C1与AB1所成角为600。

3.平行与垂直的论证。

例5 A,B,C,D是空间四点,且四边形ABCD四个角都是直角,求证:四边形ABCD是矩形。

[证明] 若ABCD是平行四边形,则它是矩形;若ABCD不共面,设过A,B,C的平面为α,过D作DD1α于D1,见图12-4,连结AD1,CD1,因为ABAD1,又因为DD1平面α,又ABα,所以DD1AB,所以AB平面ADD1,所以ABAD1。同理BCCD1,所以ABCD1为矩形,所以∠AD1C=900,但AD1

例6 一个四面体有两个底面上的高线相交。证明:它的另两条高线也相交。

[证明] 见图12-5,设四面体ABCD的高线AE与BF相交于O,因为AE平面BCD,所以AECD,BF平面ACD,所以BFCD,所以CD平面ABO,所以CDAB。设四面体另两条高分别为CM,DN,连结CN,因为DN平面ABC,所以DNAB,又ABCD,所以AB平面CDN,所以ABCN。设CN交AB于P,连结PD,作CM'PD于M',因为AB平面CDN,所以ABCM',所以CM'平面ABD,即CM'为四面体的高,所以CM'与CM重合,所以CM,DN为ΔPCD的两条高,所以两者相交。例7 在矩形ABCD中,AD=2AB,E是AD中点,沿BE将ΔABE折起,并使AC=AD,见图12-6。求证:平面ABE平面BCDE。

[证明] 取BE中点O,CD中点M,连结AO,OM,OD,OC,则OM//BC,又CDBC,所以OMCD。又因为AC=AD,所以AMCD,所以CD平面AOM,所以AOCD。又因为AB=AE,所以AOBE。因为ED≠BC,所以BE与CD不平行,所以BE与CD是两条相交直线。所以AO平面BC-DE。又直线AO平面ABE。所以平面ABE平面BCDE。

4.直线与平面成角问题。

例8 见图12-7,正方形ABCD中,E,F分别是AB,CD的中点,G为BF的中点,将正方形沿EF折成1200的二面角,求AG和平面EBCF所成的角。

//22221[解]设边长AB=2,因为EF

AD,又ADAB。所以EFAB,所以BG=2BF125,又AEEF,BEEF,所以∠AEB=1200。过A作AMBE于M,则∠AEM=600,112,AM=AEsin600=2ME=2AE232.由余弦定理MG2=BM2+BG2-2BM•BGcos∠53519533222344252MBG= =2,所以MG=

2.因为EFAE,EFBE,所以EF平面AEB,所以EFAM,又AMBE,所以AM平面BCE。所以

3264。所以AG与平面EBCF∠AGM为AG与平面EBCF所成的角。而tan∠AGM=2arctan64.所成的角为例9 见图12-8,OA是平面α的一条斜角,ABα于B,C在α内,且ACOC,∠AOC=α,∠AOB=β,∠BOC=γ。证明:cosα=cosβ•cosγ.[证明] 因为ABα,ACOC,所以由三垂线定理,BCOC,所以OAcosβ=OB,OBcosγ=OC,又RtΔOAC中,OAcosα=OC,所以OAcosβcosγ=OAcosα,所以cosα=cosβ•cosγ.5.二面角问题。

例10 见图12-9,设S为平面ABC外一点,∠ASB=450,∠CSB=600,二面角A—SB—C为直角二面角,求∠ASC的余弦值。

[解] 作CMSB于M,MNAS于N,连结CN,因为二面角A—SB—C为直二面角,所以平面ASB平面BSC。又CMSB,所以CM平面ASB,又MNAS,所以由三垂线定理的逆定理有CNAS,所以SC•cos∠CSN=SN=SC•cos∠CSM•cos∠ASB,所以cos

2∠ASC=cos450cos600=4。

例11 见图12-10,已知直角ΔABC的两条直角边AC=2,BC=3,P为斜边AB上一点,沿CP将此三角形折成直二面角A—CP—B,当AB=

7时,求二面角P—AC—B的大小。

[解] 过P作PDAC于D,作PECP交BC于E,连结DE,因为A—CP—B为直二面角,即平面ACP平面CPB,所以PE平面ACP,又PDCA,所以由三垂线定理知DEAC,所以∠PDE为二面角P—AC—B的平面角。设∠BCP=θ,则cos∠ECD=cosθ

232272•cos(900-θ)=sinθcosθ,由余弦定理cos∠ACB=

223112,所以sinθcosθ=2,2所以sin2θ=1.又0<2θ<π,所以θ=4,设CP=a,则PD=2a,PE=a.所以tan∠PE2.PDE=PD

2。所以二面角P—AC—B的大小为arctan6.距离问题。

例12 正方体ABCD—A1B1C1D1的棱长为a,求对角线AC与BC1的距离。

[解] 以B为原点,建立直角坐标系如图12-11所示。设P,Q分别是BC1,CA上的点,BP13BC1,CQ13CA且,各点、各向量的坐标分别为A(a,0,0),B(0,0,0),C(0,a,0),13CA13BC1BC13BA13BC13BC13BB113BC13BA13BB1PQBQBPBC1111113(a,a,a)PQBC1PQCA|PQ|a3333a×a+3a×a=0, 3a3,所以,所以1×a-3a×a=0.所以PQBC1,PQCA。所以PQ为AC与BC1的公垂线段,所以两者3a.距离为3

例13 如图12-12所示,在三棱维S—ABC中,底面是边长为42的正三角形,棱SC的长为2,且垂直于底面,E,D分别是BC,AB的中点,求CD与SE间的距离。

[分析] 取BD中点F,则EF//CD,从而CD//平面SEF,要求CD与SE间的距离就转化为求点C到平面SEF间的距离。

[解] 设此距离为h,则由体积公式

13SCSCEFVSCEF13hSSEF.h233.计算可得SΔSEF=3,SCEF3.所以

7.凸多面体的欧拉公式。

例14 一个凸多面体有32个面,每个面或是三角形或是五边形,对于V个顶点每个顶点均有T个三角形面和P个五边形面相交,求100P+10T+V。

[解] 因F=32,所以32-E+V=2,所以E=V+30。因为T+P个面相交于每个顶点,每个顶点出发有T+P条棱,所以2E=V(T+P).由此得V(T+P)=2(V+30),即V(T+P-2)=60.由于每个三

VTVP角形面有三条棱,故三角形面有3个,类似地,五边形有5个,又因为每个面或者是三

PTV5=32,角形或者是五边形,所以3由此可得3T+5P=16,它的唯一正整数解为T=P=2,代入V(T+P-2)=60得V=30,所以100P+10T+V250。

8.与球有关的问题。

例15 圆柱直径为4R,高为22R,问圆柱内最多能装半径为R的球多少个?

[解] 最底层恰好能放两个球,设为球O1和球O2,两者相切,同时与圆柱相切,在球O1与球O2上放球O3与球O4,使O1O2与O3O4相垂直,且这4个球任两个相外切,同样在球O3与球O4上放球O5与球O6,……直到不能再放为止。先计算过O3O4与过O1O2的两平行面与圆柱底面的截面间距离为

(3R)R222R。设共装K层,则(22-2)R<2R(K-1)+2R≤22R,解得K=15,因此最多装30个。9.四面体中的问题。

例16 已知三棱锥S—ABC的底面是正三角形,A点在侧面SBC上的射影H是ΔSBC的垂心,二面角H—AB—C的平面角等于300,SA=23。求三棱锥S—ABC的体积。[解] 由题设,AH平面SBC,作BHSC于E,由三垂线定理可知SCAE,SCAB,故SC平面ABE。设S在平面ABC内射影为O,则SO平面ABC,由三垂线定理的逆定理知,COAB于F。同理,BOAC,所以O为ΔABC垂心。又因为ΔABC是等边三角形,故O为ΔABC的中心,从而SA=SB=SC=23,因为CFAB,CF是EF在平面ABC上的射影,又由三垂线定理知,EFAB,所以∠EFC是二面角H—AB—C的平面角,122333故∠EFC=300,所以OC=SCcos600=

13,SO=3tan600=3,又OC=3AB,所

93以AB=3OC=3。所以VS—ABC=34×32×3=4。

例17 设d是任意四面体的相对棱间距离的最小值,h是四面体的最小高的长,求证:2d>h.[证明] 不妨设A到面BCD的高线长AH=h,AC与BD间的距离为d,作AFBD于点F,CNBD于点N,则CN//HF,在面BCD内作矩形CNFE,连AE,因为BD//CE,所以BD//平面ACE,所以BD到面ACE的距离为BD与AC间的距离d。在ΔAEF中,AH为边EF上的高,AE边上的高FG=d,作EMAF于M,则由EC//平面ABD知,EM为点C到面ABD的距离(因EM面ABD),于是EM≥AH=h。在RtΔEMF与RtΔAHF中,由EM

hAHFGAEEFAFEFEF≥AH得EF≥AF。又因为ΔAEH∽ΔFEG,所以d≤2。所以2d>h.注:在前面例题中除用到教材中的公理、定理外,还用到了向量法、体积法、射影法,请读者在解题中认真总结。

三、基础训练题

1.正三角形ABC的边长为4,到A,B,C的距离都是1的平面有__________个.2.空间中有四个点E,F,G,H,命题甲:E,F,G,H不共面;命题乙:直线EF和GH不相交,则甲是乙的__________条件。

3.动点P从棱长为a的正方体的一个顶点出发,沿棱运动,每条棱至多经过一次,则点P运动的最大距离为__________。

4.正方体ABCD—A1B1C1D1中,E,F分别是面ADD1A1、面ABCD的中心,G为棱CC1中点,直线C1E,GF与AB所成的角分别是α,β。则α+β=__________。

5.若a,b为两条异面直线,过空间一点O与a,b都平行的平面有__________个。

6.CD是直角ΔABC斜边AB上的高,BD=2AD,将ΔACD绕CD旋转使二面角A—CD—B为600,则异面直线AC与BD所成的角为__________。

17.已知PA平面ABC,AB是⊙O的直径,C是圆周上一点且AC=2AB,则二面角A—PC—B的大小为__________。

8.平面α上有一个ΔABC,∠ABC=1050,AC=2(6使得SA=SB=SC=

2),平面α两侧各有一点S,T,41,TA=TB=TC=5,则ST=_____________.9.在三棱锥S—ABC中,SA底面ABC,二面角A—SB—C为直二面角,若∠BSC=450,SB=a,则经过A,B,C,S的球的半径为_____________.10.空间某点到棱长为1的正四面体顶点距离之和的最小值为_____________.11.异面直线a,b满足a//α,b//β,b//α,a//β,求证:α//β。

12.四面体SABC中,SA,SB,SC两两垂直,S0,S1,S2,S3分别表示ΔABC,ΔSBC,ΔSCA,ΔSAB的面积,求证:

S0S1S2S3.2222

13.正三棱柱ABC—A1B1C1中,E在棱BB1上,截面A1EC侧面AA1C1C,(1)求证:BE=EB1;(2)若AA1=A1B1,求二面角EC-A1-B1C1的平面角。

四、高考水平训练题

1.三棱柱ABC-A1B1C1中,M为A1B1的中点,N为B1C与BC1的交点,平面AMN交B1PB1C1于P,则PC1=_____________.1332.空间四边形ABCD中,AD=1,BC=3,且ADBC,BD=2BD所成的角为_____________.,AC=2,则AC与3.平面α平面β,αβ=直线AB,点C∈α,点D∈β,∠BAC=450,∠BAD=600,且CDAB,则直线AB与平面ACD所成的角为_____________.4.单位正方体ABCD—A1B1C1D1中,二面角A—BD1—B1大小为_____________.5.如图12-13所示,平行四边形ABCD的顶点A在二面角α—MN—β的棱MN上,点B,C,D都在α上,且AB=2AD,∠DAN=450,∠BAD=600,若◇ABCD在半平面β上射影为为菜,则二面角α—MN—β=_____________.6.已知异面直线a,b成角为θ,点M,A在a上,点N,B在b上,MN为公垂线,且MN=d,MA=m,NB=n。则AB的长度为_____________.7.已知正三棱锥S—ABC侧棱长为4,∠ASB=450,过点A作截面与侧棱SB,SC分别交于M,N,则截面ΔAMN周长的最小值为_____________.8.l1与l2为两条异面直线,l1上两点A,B到l2的距离分别为a,b,二面角A—l2—B大小为θ,则l1与l2之间的距离为_____________.9.在半径为R的球O上一点P引三条两两垂直的弦PA,PB,PC,则PA2+PB2+PC2=_____________.10.过ΔABC的顶点向平面α引垂线AA1,BB1,CC1,点A1,B1,C1∈α,则∠BAC与∠B1A1C1的大小关系是_____________.11.三棱锥A—BCD中∠ACB=∠ADB=900,∠ABC=600,∠BAD=450,二面角A—CD—B为直角二面角。(1)求直线AC与平面ABD所成的角;(2)若M为BC中点,E为BD中点,求AM与CE所成的角;(3)二面角M—AE—B的大小。

12.四棱锥P—ABCD底面是边长为4的正方形,PD底面ABCD,PD=6,M,N分别是PB,AB的中点,(1)求二面角M—DN—C的大小;(2)求异面直线CD与MN的距离。13.三棱锥S—ABC中,侧棱SA,SB,SC两两互相垂直,M为ΔABC的重心,D为AB中点,作与SC平行的直线DP,证明:(1)DP与SM相交;(2)设DP与SM的交点为D',则D'为三棱锥S—ABC外接球球心。

五、联赛一试水平训练题

1.现有边长分别为3,4,5的三角形两个,边长分别为4,5,41的三角形四个,边长分52别为6,4,5的三角形六个,用上述三角形为面,可以拼成_________个四面体。

2.一个六面体的各个面和一个正八面体的各个面都是边长为a的正三角形,这两个多面体

m的内切球的半径之比是一个既约分数n,那么mn=_________。

03.已知三个平面α,β,γ每两个平面之间的夹角都是

2,且=a,b,c,命题甲:的_________条件。

3;命题乙:a,b,c相交于一点。则甲是乙4.棱锥M—ABCD的底面是正方形,且MAAB,如果ΔAMD的面积为1,则能放入这个棱锥的最大球的半径为_________.5.将给定的两个全等的正三棱锥的底面粘在一起,恰得到一个所有二面角都相等的六面体,并且该六面体的最短棱长为2,则最远两个顶点间距离为_________。

6.空间三条直线a,b,c两两成异面直线,那么与a,b,c都相交的直线有_________条。7.一个球与正四面体的六条棱都相切,正四面体棱长为a,这个球的体积为_________。8.由曲线x2=4y,x2=-4y,x=4,x=-4围成的图形绕y轴旋转一周所得旋转体的体积为V1,满足x2+y2≤16,x2+(y-2)2≥4,x2+(y+2)2≥4的点(x,y)组成的图形绕y轴旋转一周所得旋转体的V1体积为V2,则V2_________。

9.顶点为P的圆锥的轴截面是等腰直角三角形,A是底面圆围上的点,B是底面圆内的点,O为底面圆圆心,ABOB,垂足为B,OHPB,垂足为H,且PA=4,C为PA的中点,则当三棱锥C—HPC体积最大时,OB=_________。

10.OA,OB,OC是三个互相垂直的单位向量,π是过点O的一个平面,A',B',C'分别是A,B,C在π上的射影,对任意的平面π,由OA'OB'OC'构成的集合为_________。11.设空间被分为5个不交的非空集合,证明:一定有一个平面,它至少与其中的四个集合有公共点。

12.在四面体ABCD中,∠BDC=900,D到平面ABC的垂线的垂足S是ΔABC的垂心,试证:(AB+BC+CA)2≤6(AD2+BD2+CD2),并说明等号成立时是一个什么四面体?

13.过正四面体ABCD的高AH作一平面,与四面体的三个侧面交于三条直线,这三条直线与四面体的底面夹角为α,β,γ,求tan2α+tan2β+tan2γ之值。

六、联赛二试水平训练题

1.能否在棱长为1的正方体形状的盒子里放入三个彼此至多有一个公共点的棱长为1的正四面体?

cosPAQ1.2

2222.P,Q是正四面体A—BCD内任意两点,求证:已知锐角,试确定∠APC+∠BPD的最大值和最小值。3.P,A,B,C,D是空间五个不同的点,∠APB=∠BPC=∠CPD=∠DPA=θ,这里θ为4.空间是否存在有限点集M,使得对M中的任意两点A,B,可以在M中另取两点C,D,使直线AB和CD互相平行但不重合。

5.四面体ABCD的四条高AA1,BB1,CC1,DD1相交于H点(A1,B1,C1,D1分别为垂足)。三条高上的内点A2,B2,C2满足AA2:AA=BB2:B2B1=CC2:C2C1=2:1。证明:H,A2,B2,C2,D1在同一个球面上。

6.设平面α,β,γ,δ与四面体ABCD的外接球面分别切于点A,B,C,D。证明:如果平面α与β的交线与直线CD共面,则γ与δ的交线与直线AB共面。

下载高考数学专题复习 专题七 立体几何教案 文word格式文档
下载高考数学专题复习 专题七 立体几何教案 文.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    立体几何复习(★)

    一、线线平行的证明方法 1、利用平行四边形。2、利用三角形或梯形的中位线。 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行。......

    立体几何2018高考

    2018年06月11日青冈一中的高中数学组卷 一.选择题(共11小题) 1.中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图......

    高三数学总复习立体几何复习

    高三数学总复习立体几何复习一、基本知识回顾 重要的几何位置关系;平行与垂直。主要包括线线、线面、面面三种情况。证明的基本思路:一般情况下,利用判定定理。而构造满......

    2011届高考数学立体几何证明题

    空间直线、平面的平行与垂直问题一、“线线平行”与“线面平行”的转化问题,“线面平行”与“面面平行”的转化问题知识点:一)位置关系:平行:没有公共点.相交:至少有一个公共点,必有......

    2018年高考二轮复习专题——立体几何(文科)

    专题五空间中的平行与垂直 类型一 空间线面位置关系的判断 [典例1] 已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则 知识梳理:1、平面中的平行有哪......

    高考复习专题---立体几何垂直关系证明

    5.(2006年福建卷)如图,四面体ABCD中,O、E分别是BD、BC的中点,CACBCDBD2,ABAD (I)求证:AO平面BCD;BE4. ( 2006年湖南卷)如图4,已知两个正四棱锥P-ABCD与Q-ABCD的高分别为1和2,AB=4.(Ⅰ)......

    第九章_立体几何总复习教案

    第九章 直线、平面、简单几何体学法指导: 1.必须明确本章内容的复习目标: (1)准确理解和系统掌握空间直线和平面的各种位置关系(特别是平行与垂直的位置关系),能够运用概念、公理、......

    2018年高考数学复习:立体几何易错易混考点5篇

    2018年高考数学复习:立体几何易错易混考点 立体几何 56.你掌握了空间图形在平面上的直观画法吗?(斜二测画法)。 57.线面平行和面面平行的定义、判定和性质定理你掌握了吗?......