第一篇:苏教版六年级数学教学设计
“比例的意义”教学设计
王小兵
教学内容:
苏教版义务教育课程标准实验教科书第40页的例3和“练一练”,练习九的第3-7题。
教材分析:
“比例”知识学习前,学生已经理解了比的意义,知道有关平面图形知识,理解了“图形的放大和缩小”的意思,形象地感受“图形的放大和缩小”这种变化能直观形象地显示比例的本质内涵。教材是继续联系图形的放大和缩小理解比例的意义。比例意义的学习,为学习比例的基本性质奠定基础。
例3呈现了放大前后两张照片,让学生分别写出放大前后每张照片长与宽的比,比较两个比之间的关系,借此说明比例的意义;“练一练”让学生运用比例的意义,判断给出的四组比中哪几组比可以组成比例,帮助学生巩固对比例意义的认识。
练习九的第3题要求学生先写出比,再判断能否组成比例,巩固对比例意义的理解;第4写出三张大小不同的长方形剪纸中每张的长和宽的比,并计算比值,再选择其中的两个比组成比例;第5题要求学生先画出缩小后的图形,再分别写出两个长方形长的比和宽的比,以及每盒长方形长和宽的比,各自组成比例;第6题继续要求学生根据比例的意义判断相应的两个比能否组成比例;第7题判断相相关联的两个量中对应数的比能否组成比例,既利于加深对比例意义的理解,又能为以后学习成正比例的量作一些准备。
教学目标:
1.使学生联系图形的放大和缩小理解比例的意义,通过练习进一步理解、掌握比例的意义,并能运用比例的意义判断所给出的比是否成能组成比例。
2.使学生在观察、比较、思考和交流等活动中,感受比例在生活中的应用,进一步发展空间观念。
3.使学生在认识比例的过程中,进一步体会不同领域数学内容的内在联系,增强用数和图形描述现实问题的意识和能力,丰富解决问题的策略,发展对数学的积极情感。
教学重点:理解“比例”的意义。教学难点:判断是否成比例及书写格式。
教学具准备:两幅学校教学楼的图片,一幅长8厘米,宽6厘米,另一幅长24厘米,宽18厘米。
教学流程:
一、联系生活,导入新课
同学们,我们已经学习了按照一定的比将图形放大或缩小,你们知道在我们人体上也有许多有趣的比吗?
例如:将拳头翻滚一周,它的长度与脚的长度的比大约是1:1,身高与胸围长度的比大约是2:1,脚长与身高长度的比大约是1:7,等等。
知道这些有趣的比有什么用处呢?比如你到商店买袜子,只要将袜底在你的拳头上绕一周,就会知道这双袜子是否适合你穿;如果你是一个侦探,只要发现了罪犯的脚印,就能估计出罪犯的身高大约是多少了......这里,实际上是用这些比组成的一个个有趣的比例来计算的。你想知道,什么叫做比例吗?今天我们一起来研究比例的意义。(板书课题:比例的意义)
(设计意图:用学生感兴趣的身体上的许多有趣的比和实际生活中的一些问题联系起来,用形象直观的例子激发学生的求知欲,在跃跃欲试的情绪下进入新课的学习,这可以激起学习的兴趣,使学生带着问题主动地参与新知识的学习。)
二、回顾经验,初学比例。1.呈现图片。
教师呈现两幅学校教学楼的图片,让学生回忆昨天所学的内容,说说你所得到的数学信息。
(学生可能说出的信息:图形的放大和缩小;表述图形的放大和缩小的形式;大小两张图片的数据等)
2.初学比例。
教师根据的学生回答相机板书:
放大前 放大后 长 8厘米 24厘米 宽 6厘米 18厘米
教师谈话:用数据、算式“说话”,再来说说“图形的放大和缩小”。(24:8=3、18:6=3,长和宽的长度同时扩大了3倍;等等。)小结:24:8和18:6的比值是一样的,这两个比可以用“=”连接起来组成一个等式,像这样表示两个比相等的式子我们叫做比例。
教师谈话:放大前后的长和宽也可以用比表示,谁来先说说放大前长和宽的比?放大后呢?
让学生判断能否用等式表示,即能不能组成比例。
(设计意图:引导学生发现比值相等的比,并用等号连接,让学生初步感知比例的意义,沟通了知识间的内在联系,为进一步理解比例的意义做好铺垫。)
三、自学教材,再学比例。
好,下面让我们一起打开课本,看看书上是怎们说的。1.自学教材。
自学教科书第40页的例3。自学要求:带着下面的问题看书 什么叫比例?什么样的比可以组成比例? 2.学生交流。
教师询问:通过自己学习,你又知道了什么?(比例的意义。)
教师引导学生用例3中的数据来说明。3.小结。(1)比例的意义;
(2)判断两个比能否组成比例的方法:看比值是否相等。
(设计意图:让学生通过自学,经过观察比较,进一步抽象概括得出并理解比例的意义,培养学生的自学能力和思维能力。)
三、完成练习,深学比例。
1.一辆汽车上午4小时行驶了320千米,下午3小时行驶了240千米。(1)上午行驶的路程和时间的比是()。(2)下午行驶的路程和时间的比是()。(3)这两个比能组成比例吗?为什么?
两次行驶路程的比和两次行驶时间的比能组成比例吗?
先独立填空,再说说组成比例的理由,写出判断比例的方法和书写格式。2.哪几组的两个比可以组成比例?把组成的比例写下来。(1)10:12和25:30(2)2:8和9:27(3)0.9:3和1/5:1/15(4)1/4:1/8和1/8:1/16 用规范的判断比例的书写格式判断能否组成比例,学生板演,矫正。3.完成练习九第4题。
先理解题目的意思,比如“每张长方形剪纸长和宽的比”的意思,在独立完成后,同桌交流。
4.完成练习九第5题。
先画图,注意理解句子的意思,独立完成,反馈矫正。
(设计意图:教学比例的意义后,及时组织有层次、有坡度的练习,能够使学生更好地掌握本节课的内容,为下节课学习比例的基本性质做了渗透。)
5.作业
练习九第6、7题。
四、课堂总结 谈谈本节课的收获。
(设计意图:课堂总结是一节课必不可少的重要组成部分,谈谈自己的收获实际上是总结自己的学习方法、思路历程,是提炼数学思想的必然途径。)
第二篇:苏教牌语文六年级上册《钱学森》教学设计
苏教牌语文六年级上册《钱学森》教学设计
教学要求:
1.能正确、流利、有感情地朗读课文。
2.会写本课5个生字,理解由生字组成的词语。
3.从人物语言体会人物思想感情,培养学生热爱祖国的思想感情。4.学习并领悟本文的写作手法和记叙顺序。重点、难点:
试从写法角度指导阅读,走近人物精神世界。教学准备:
课前搜集有关钱学森的资料。课件 教学过程:
一、(出示)颁奖词
“在他心里,国为重,家为轻,科学最重,名利最轻。
五年归国路,十年两弹成。他是知识的宝藏,是科学的旗帜,是中华民族知识分子的典范。”
1.读这段文字,猜“他”是谁? 2.“钱学森”(板书)。3.生谈谈对他了解,师小结。4.齐读课题。
二、检查生字新词。1.听写含生字的词语。额头赴美留学富裕诚恳贡献 重点指导“裕”(巧记字形、字意)2.对照屏幕同桌互相批改听写的词语。
三、初读课文。
1.自读课文,读出你最想读的一段或最有把握的一节。2.简要说说本文主要写了一件什么事?
四、探究语言,体会情感。
1.回顾写人文章的共同点(如语言描写、动作描写,写人的经历等)。
2.画出文中钱学森的语言,在最打动你的地方写下批注。3.交流。
预想:(出示):他说:“我是中国人。我现在所做的一切,都是在作准备,为的是回到祖国后能为人民多做点事。”
①你从这句话中读出了什么?(补充)想想现在钱学森他在哪?生活怎么样?他想回到那儿?
②齐读这一节,最让你心头一颤的字眼是什么?(出示:第4节)钱学森诚恳地说:“我们日夜盼望的,就是祖国能够从黑暗走向光明,这一天终于来到了。祖国现在是很穷,但需要我们大家──祖国的儿女们共同创造。”
①比较两段话,扣住“我”“我们”细小差别言外深意。②假如你也是一名留学生,听了钱学森诚恳的话,你会怎么想? ③男女生分别读这两节。4.小结读书法。
5.找出其他人物的语言描写,有何用意?(对比呈现,衬托写法)。
五、记叙顺序──例叙又妙用。
1.画出文中表示时间的词语,再读第1节,想想时间的顺序,课文的第1自然段应放在哪里?为什么要放在文章的开头?
(倒叙又可以设置悬念,激起读者的阅读兴趣)。
2.再读第1节,(出示第1节)“想到前方……而是火箭的舱壁!”
六、回读颁奖词。
七、学后谈谈你对钱学森这个人怎么看?
八、作业。
借鉴本文写法,写一个自己熟悉的人。教学设想
金秋九月,我有幸来到淠河之滨,大别山下,目睹新秀风采,聆听名家点评。小语专家高林生老师回望当前阅读教育误区,细说阅读教学目标体系。南湖一小潘校长执教精品课例《钱学森》则是对我在震惊之余,重新认识阅读教学,并在实践操作力求做到以下几点:
首先夯实基础,扎实阅读。
小语专家崔峦说过:小学语文姓小,干什么事?读好书,写好字,听得清楚,说得明白,写得通顺,这叫“基础”。我组织学生当堂听写,反馈学生字词掌握情况,设计不同形式朗读,能根据语境写一段话。听、说、读、写,每一环节落在实处,扎扎实实地学习语文。这是语文的必修课,也是形成语文素养重要途径。这在秀“新”出“奇”年代里永不过时的旧招,虽老套但实在有效。
其次要明确阅读的年段目标,从写法角度读文章。
《钱学森》一文是六年级上册的一篇课文,高年级阅读教学目标:“抓结构揣摩文章的表达顺序,注意不同文体的写法,更要有篇章意识。”我在设计《钱学森》一文时,这篇写人的文章有它的独特性。它在叙述中采用倒叙手法,让人印象深刻,文中主要采用语言描写人物形象,使用衬托表现手法,我没有从零点开始,试以习作角度,根据以往写作经验进行阅读,让习作指导阅读,而在阅读后巩固习作方法,让阅读与习作进行长线结合。
以上两点是我在参加华东三省六市小语协作交流活动中最大的感触。由于本人能力有限,在实际操作中漏洞百出,但我希望传递给大家的是对阅读课一个新认识,一个新的阅读视角,让阅读手段化更清晰,每个阶段的语文学习应该找准自己的定位,有的放矢。
第三篇:苏教国标六年级数学应用题每日一练
1、一件工程,甲队单独干10天完成,乙队单独干的时间比甲队多1/2,两队合干,需要多少天完成?
2、完成一项工程,甲队单独做需要18天,乙队单独做需要24天。如果两队合做8天后。余下的工程由甲队单独做,还需要做几天才能完成?
3、一件工作,甲单独做10小时完成,乙单独做15小时完成,如果甲先做4小时,剩下的由乙做,还需几小时完成?
4、一项工程,甲队单独做要12天,乙队单独做要15天。甲队先做3天后,余下的由两队合做,还要多少天完成?
5、一件工作,甲独做要12小时,乙独做要15小时,丙独做要10小时,甲、乙合做3小时后,由乙、丙合做,还要多少小时才能完成?
6、一个水池,如果单开甲水管,12分钟可以把空水池注满,单开乙水管,10分钟可以把空池注满;单开再水管,20分钟可以把满池水放完,如果三管齐开,多少分钟可将空池注满?
7、一个水池装有进水管和出水管,单开进水管,8分钟可将空池注满;单开出水管,12分钟可将满水池放完,现在同时打开进、出水管,注半池要多少时间?
8、—个水池装有进水管和出水管,单开进水管3小时将空池注满,单开出水管5小时可将满池水放完。同时打开进水管和出水管,2小时后,关掉出水管,还要几小时可以将全池水注满?
9,某工程,甲独做需10天,乙独做需12天,丙独做需15天,三者合做几天可以完成全部工程的3/4?
10、一项工程,甲队单独完成需24天,乙队的工作效率比甲队高20%,乙队单独完成这项工程需要多少天?
11,一项工程,甲单独做12天可以完成,乙单独做15天可以完成,甲、乙、丙合做5天可以完成,如果这项工程由丙独做,几天可以完成?
12、一项工程,甲队单独做,需要18天完成,乙队单独做,6天完成全部工程的1/4,如果两队同时合做,需要多少天完成?
13、一项工程,甲乙合作8天可以完成,现在甲乙合作2天后,余下的工程由乙独做又用了10天正好做完,这项工程如果由甲单独做,需要几天完成?
14、整修—条路面,如果甲队单独修需12天完成,现在甲队修了3天,另有任务调走,剩下的由乙队继续修,乙队用6天就把剩下的修完,如果由乙队单独修全部路面需要多少天?
15、修一段路,单独修甲队9小时修完,乙队8小时修完,现在由甲队人数的75%和乙队人数的50%共同来修这段路,需要几小时修完?
16、三个植树小组完成一项植树任务,第一小组单独做要6小时;第二小组单独做要7时,第三小组单独做要14小时。第一、二两小组共同植树2小时后,第三小组加入一块植,还要多少小时完成任务?
17、某校共有学生2000人,其中五,六年级占3/10,又知五年级学生人数比六年级多2/5。六年级有学生多少人?
18、某水泥厂仓库堆放一批水泥,运走3/5后,又运进150吨,这时库存水泥的吨数相当于原来的1/2少100吨。这个仓库原有水泥多少吨?
19、张强期末考试时,自然得了84分,语文分比自然分多1/7,比数学分少1/25。张强期末考试数学得了多少分?
20、兄弟二人共储蓄若干元,其中兄储蓄的占3/5,若弟从自己储蓄中给兄18元,那么弟余下的储蓄就占总数的1/4,问兄弟二入原来各储蓄多少元?
21、建筑工地有一堆黄砂,第一次用去90吨,刚好是这堆黄砂的l/4,第二次又用去总数的3/5,这堆黄砂还剩多少吨?
22、玩具厂有职工128人,男职工人数占总数的1/4,后来又调进男职工若干人,这时男职工占总数的2/5,这个厂现在有职工多少人?
23、某水果店买进苹果、桔子和黄梨三种水果,苹果比桔子多1/4,苹果相当于黄犁的7/8,已知黄犁比苹果重50千克。问买进桔子多少千克?
24、甲乙两个煤仓,已知乙仓存煤150吨,现从甲仓运出存煤的4/5,从乙仓运出存煤的2/5,这时两仓剩下的煤的吨数,乙仓比甲仓的3倍少6吨。甲仓原有存煤多少吨?
25、先锋农场买回一批化肥,用去了60吨,比剩下的少1/4,这批化肥原来有多少吨?
26、有一批货物,分3天运完。第一天运走3/10,第二天比第—天多运走8吨,第三天比
第二天多运走8吨,问这批货物共有多少吨?
27、石山林场今年春季已完成了造林计划的3/5,如果再造林7.05公顷,就超过计划的1/10,今年计划造林多少公顷?(得数保留整公顷)
28、客车从甲地、货车从乙地同时相对开出,6小时后,客车距乙地还有全程的1/8,货车超过中点54千米。已知客车比货车每小时多行15千米,甲乙两地间路程是多少千米?
29、电视机厂从仓库里拿山720台电视机,又拿出余下的1/3,这时仓库里的电视机正好是原仓库电视机总数的1/6,仓库里原有电视机多少台? 30、红星厂去年男职工人数占全厂职工人数的11/20,今年调走男职工9人,又调进女职丁9人,这时女职下人数相当全厂职工总人数的12/25,红星厂今年有女职工多少人?
31,养鸡专业户,5月份上旬、中旬、下旬三次向国家交售鸡蛋,上旬交售360千克,比中旬多交售1/8,已知中旬交售数量的3/4和下旬交售数量的4/5等。5月下旬交售鸡蛋多少千克?
32、甲、乙、丙三辆汽车运—批粮食,甲车运全部粮食的1/3,甲车运的3/5乙车运的11/15相等,剩下的5200千克由丙车运。这批粮食共有多少千克?
33、小王和小李共同加上—批儿童服装,小王单独做要18天完成;小李每天加工16件。当完成任务时,小王做了这批儿童服装的5/9。这批儿童服装有多少件?
34,东风商店两次降低一种风扇的售价。第一次比原价降低1/9,降价后每台卖112元,第二次又比降价后的价格降低3/25。现在每台价格比原价便宜多少元?
35、一本书共360页,小华第一天读了1/10,第二天读的是第—天的2倍,剩下的要9天渎完,平均每天读多少页?
36、两根水泥柱,埋人地下的部分各长0.8米,第一根露出地面的部分是它全长的7/9,第二棍露出地面的部分比第一根全长长1/4,求第二根水泥柱长多少米?
37、国营农场收割小麦,第一天收割了小麦地总数的9/25,第二天收割了余下的3/8,第二天比第一天少收割了432公亩,这个农场共有小麦多少公亩?
38、一艘从梧州开往广州的客轮,途中到
达肇庆时有2/9的旅客离船,又有63人搭船,这时船上的旅客是原来的17/18,问在梧州开船时有旅客多少人?
39、某厂第一车间的人数比第二车间多1/10,第二天车间人数比第三车间多1/4,第—车间比第三车间多36人,第三车间有多少人?
40、东风小学五年级学生植树150棵,四年级学生比五年级植树少1/5,比二年级学生植树多1/3,三年级学生植树多少棵?
41、学校把栽280棵树的任务,按照六年级三个班的人数分配给各班,一班有47人,二班有45人,三班有48人,三个班各应栽树多少棵?
42、在比例尺是l:4000000的地图上,量得两地的距离是5厘米,甲、乙两辆汽车同时从两地相向开出4小时后相遇,甲汽车与乙汽车速度的比是2:3,求甲、乙两汽车每小时各行多少千米?
43、电视机厂第一季度共生产彩色电视机4000台,其中一月份牛产的台数占总数的40%,二月份与三月份生产台数的比是2:3,二月份和三月份各生产多少台744、青年运输队计划在3天内运完—批货物,第一天运了4.8吨,占这批货物的40%,第二天运的与第三天运的吨数比是3:5,第三天运的货是多少吨?
45、某小学图书馆原有科技书、文艺书共630本,其中科技书占20%,后来又买进一些科技书,这时科技书和文艺书的比是3:7。又买进科技书多少本?
46、有三个小组的少先队员在校园内植树。甲组种了总数的30%,乙组与丙组植树棵数的比是5:2,已知乙组比丙组多种15棵,求三个小组共植树多少棵?
47、甲、乙、丙三个养猪专业户共养猪288头,甲专业户养猪头数是乙专业户的3/5,丙专业户养猪头数是乙专业户的4/5,甲乙、丙三个专业户各养猪多少头?
48、有甲乙两个运输队,甲队有载重4吨的汽车5辆,乙队有载重2吨的汽车6辆,现在要把700吨货物按两队的运输能力分配给他们运输,问两队各应运输货物多少吨?
49、一个车间生产—批机器零件,原计划每天生产240个,25天可以完成。如果要提前5天完成,每天要完成原计划每天生产数的百分之几?(用比例解答)
50、用一种瓶子装95000毫升酒精,装4500毫升用了9个瓶子。剩下的还要用多少个瓶子可以装完?(用比例解答)
51、有若干桶汽油,计划可用120天,技术革新后,每天实际用汽油10千克,结果比原计划多用了12天。问原计划每天用多少汽油?(用比例解。)
52。某煤矿上半年计划产煤105吨,实际每月增产煤3.5吨,照这样计算,完成上半年计划要用几个月?(用比例解。)
53、一辆汽车开往某地,每小时行30千米,预定2小时到达。行驶半小时后,因故停车15分钟。如果仍要求在预定的时间到达,问以后的车速每小时必须加快多少千米?(用比例解。)
54、—种农业机械在4小时内可平整—块长的500米,宽30米的长方形田地,这种农业机械在6小时内可平整长750米、宽多少米的—块长方形地?(用比例解)
55、一个车间,原来用边长3分米的方砖来铺地,共需方砖640块,现在用边长比原来大1分米的新方砖重新铺地,问需要新方砖多少块?(用比例解)
56、一个运输队有载重量相同的汽车32辆,每天运货物256吨。照这样计算,增加8辆这样的汽车,每天要比原来多运货物多少吨?(用比例解。)
57、一根钢管长1米,外直径是10厘米,内直径是8厘米.如果一立方厘米的钢重7.8克,这根钢管重多少千克?(得数保留整千克数,)
58、把一个长、宽、高分别为5厘米、6厘米,7.85厘米的长方体形铁块铸成一个底面周长是18.84厘米的圆锥形毛坯,这个毛坯高是多少?
59、一个正方形的金鱼缸,每边长4分米,如果把满缸水倒入另一个长8分米,宽2.5分米的长方形的鱼缸里,问水面可升到多少分米的高度?
60、把一个长、宽、高分别是9厘米、7厘米、3厘米的长方体容器和一个棱长是5厘米的正方体容器盛满水,然后把这两个容器的水全都倒人—个底面积是31.4平方厘米的圆柱体容器里刚好装满。求这个圆柱体容器的高。61、一箱铁钉共600个,第一天用掉了若干后,第二天又用掉了余下的60%,这样还剩120
个,求第一天用掉铁钉多少个?
62、两袋米同样重,从第一袋中取出它的75%和从第二袋中取出它的87.5%后,两袋米还剩下60千克,问两袋米共重多少千克?63、甲乙两人分得同样多的零件加工任务,甲完成自己的任务要20天,乙完成自己的要30天,两人将分到的任务并在一起做,需多少天完成?
64、甲乙做一批零件,计划8小时完成,实际甲每小时多做15个,乙每小时少做5个,这样比计划提前1小时完成,这批零件多少个?65。甲仓比乙仓多25包粮食,甲合的3/8与乙仓的1/5的和是18包,甲乙两仓各多少包?
66、汽车从甲到乙计划每小时40千米,走了全程的3/4多5千米后,以每小时30千米的速度走完余下的路程,所以比计划迟到1/6小时,甲乙两地有多少千米?67、一辆客车和一辆货车同时从甲乙两站相对开出,经过12小时相遇,相遇时货车比客车少114千米,相遇后客车又行8小时行完剩下的路程,甲乙两地相距多少千米?
68、两块地,平均亩产540千克,第一块4亩,平均亩产600千克,第二块平均亩产500千克,两块地共有多少亩?
69、一根木料第一次截下3.2米,第二次又截下剩下的4/5,最后还剩下的相当于全长的l/7,这根木料全长多少米?
70、甲乙共60吨,甲的3/4比乙的5/7多4吨,求甲乙各多少吨?
71、汽车从A到B,如速度比计划的每小时少走5千米,到达时间就比计划的多1/8,如速度比计划增加1/3,到达时间就比计划早1小时,求AB多少千米?
72、两牧场共有123头奶牛,如果从甲场卖出1/3,乙场卖出13头,这时乙场余下的奶牛是甲场的70%,原来各有多少头?
73、一个圆柱体,底面半径是高的1/3,把底面分成若干个扇形再切割成近似长方体后,棱长和是57.12厘米,求圆柱体积。
74、商店一批热水瓶,第一天卖出2/9,第二天卖出余下的3/7,第三天运进的是第二天剩下的—半,这时有42只,商店原有水瓶多少只?
75、甲乙两队共植树580棵,甲队植的比
乙队的1/9少10棵,两队各植了多少棵?
76、车队客车与货车的比是3:2,如果将客车辆数的1/10又20辆调给货车,这时客货两车的比是23:27,客车原有多少辆?77、甲乙丙三数和是1010,乙数比甲数的2倍少30,丙数比乙的1/2少50,求这三个数?
78、甲原有的钱是乙的1/3,后来两人各得10元,这时甲乙两人钱数比3:4,求两人原来各有多少元?
79、某车间计划每天应加工50个零件,实际每天加工56个零件,所以不仅提前3天完成,而且比原计划多加工120个零件,这个车间实际加工多少个?
80、一次考试,全班平均分70分,其中3/4及格,他们平均分是80分,求不及格的同学平均分是多少?
8l、一次考试,某班平均分75分,已知男生人数比女生人数多80%,女生平均分比男生高20%,求女生平均分是多少?
82、一次考试,全班共55人,全班平均分78分,男女生平均分分别是75.5和81分,这个班男女生人数各是多少?
83、40只篮球10只足球共用去80元,已知每2只篮球的价钱比1只足球贵1元,每只足球和篮球单价各多少元?
84、小华买3本语文和5本数学本,计划10.2元,到了商店,买到5本语文和3本数学本,结果缺4角钱,语文本单价多少元?
85、甲乙两人拿同样多的钱合买一段布,原各拿一样多,结果甲拿4米,乙拿6米,这样乙就给甲6.4元,每米布料多少元?86、甲乙丙三人拿同样多的钱合买同样规格的练习本,买后甲和乙都比丙多拿6本,因此甲,乙分别给丙0.36元,每本练习本价钱多少元?
87、40人参加植树,男生平均每人种3棵,女生平均每人种2棵,已知女生比男生多种30棵,男生、女生各多少人?
88、A站有26辆车,B站有30辆车,每小时A站向B站开出12辆,B站向A站开了8辆,都是1小时到达,几小时后B站的车是A站的3倍?
89、甲乙二人以每分60米的速度同时、同地、同向步行出发,走15分钟后甲返回原地取东西,而乙继续前进,甲取东西用去5分
钟时间,然后改骑自行车以每分钟360米速度追乙,甲骑车多少分钟才追上乙?
90、兄妹二人同时离家上学,哥哥每分90米,妹妹每分60米,哥哥到校时,立即回家拿书,行至离校180米处和妹妹相遇,他家离校多远?
91、某人骑车从甲地到乙地,要行288千米,开始每小时32于米的速度行驶,途中因故停驶2小时,因为要按时到达乙地,他以后每小时要增加16千米,他是在离甲地多远处停车的?
92,甲乙两地相距420千米,其中一段柏油路,一段土路,汽车从甲到乙用了8小时,已知在柏油路上每小时60千米,在土路上每小时40千米,求柏油路长多少千米?
93、部队行军越过一岭,去时用6.5小时,返回时用7.5小时,已知上坡每小时行5千米,下坡每小时行6千米,这个山岭路程多少千米?
94、一件工作甲做5小时后由乙来做,3小时可以完成,乙做9小时后由甲来做,3小时可以完成,甲单独做要几小时完成?
95、桌上一边5包茶叶,另一边4包糖,每包茶叶比每包糖轻,茶叶、糖共44千克,如果各取—包糖和—包茶叶交换位置,那么两边重相等,每包茶叶和糖各多少千克?
96、六年级三个班都是30人,甲班男生和乙班女生—样多,丙班男生占全年级男生的2/5,六年级女生多少人?
97、—批零件上午加工—部分后,下午又加工一部分,上午合格率是95%,下午合格数与上午合格数相等,下午有8个不合格,正好是总数的6.4%,求上午加工了多少个?98、一项工作平均分给甲乙同时做,甲比乙提前4小时做完.甲做完后又帮乙做了l小时,这样乙比自己完成任务的时间提前1.5小时,如果甲乙合做这件工作,要几小时做完?
99、甲乙合做—批零件,20天完成任务,已知甲每天比乙多做3个,乙中途请假5天,结果乙完成的工作量是甲的一半,这批零件共多少个?
100、甲乙各加工一批零件,甲每小时40个,乙每小时30个,甲比乙迟3小时完工,但工作量是乙的2倍,他们共做了多少个?
第四篇:15苏教六年级数学下册第三单元解决问题的策略教学设计
第三单元 解决问题的策略
教材分析:
从三年级上册起,每一册教科书里都教学一种策略,依次是分析量关系的“从条件向问题推理”和“从问题向条件推理”,帮助理解题意的“列表整理”和“画图整理”,还有“枚举”“转化”“假设与替换”等策略。本单元没有安排新的策略,只是应用前面教学的策略,解决稍复杂的问题。目的是让学生进一步体会策略在解决新颖问题、复杂问题时的作用,体会解决同一个问题的方法多样、策略灵活,体会各种策略之间的相互配合、相互补充。全单元编排两道例题,具体安排见下表:
例1 把陌生的问题转化成熟悉的问题,体会转化可以多样 例2 通过假设和调整解决问题,体会假设与调整可以多样 教学目标: 1.使学生学会应用已有的解决问题的知识经验、思想方法,加强对策略的体验和方法的领悟,提高解决问题的能力。
2.使学生在解决问题过程的不断反思中,感受各种策略对于解决不同问题的价值,进一步发展分析,综合和简单推理的能力。
3.使学生进一步积累解决问题的经验,增强知识间的联系,获得解决问题的成功经验,提高学好数学的信心。
教学重点:合理运用策略解决问题,加强知识间的联系。
教学难点:运用已学的策略解决新颖、复杂的问题,体会一个问题多种方法及各种策略之间相互的关系。
课时安排: 3课时
第一课时:转化的策略
教学内容:教材第27页的例1和第28页的“练一练”,完成练习五第1~3题。教学目标:
1.使学生学会联系不同的知识,作出不同的推理,体会策略和方法的多样性。2.在运用不同的策略解决问题的过程中,感受知识间的内在联系,形成最优化思想。3.在解决问题的过程中,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。
教学重点:掌握用转化的策略解决分数问题的方法。
教学难点:根据具体问题,确定转化后要实现的目标和转化的方法。教学资源:课件 教学过程:
一.回顾旧知,整理策略
谈话:从三年级上册起,每一册数学都教学一种策略,你们知道我们学了哪些策略?(学生可能已经忘记,教师帮助回顾整理:依次是分析量关系的“从条件向问题推理”和“从问题向条件推理”,帮助理解题意的“列表整理”和“画图整理”,还有“枚举”“转化”“假设与替换”等策略)
提问:这些策略你们都学会了吗?今天我们将合理的选择这些策略来解决新的问题,大家愿意接受挑战吗?(板书课题:转化的策略)
二.合作探究,运用策略
1、教学例1(课件出示例1)学生读题,自主完成。
谈话:这是一个稍复杂的分数问题,除了用刚才我们做的方法来解决,你们能否用以前学的策略来思考呢?(引导学生进一步分析)
小组交流方法。
汇报交流情况:(学生遇到困难可作适当的引导。)①根据“男生人数是女生的2/3”理解2/3这个分数的意义,可以画线段图,看出男生人数是美术组总人数的2/5。原来的问题就转化成美术组一共有35人,男生人数是总人数的2/5,女生人数是总人数的3/5,男生有多少人?女生有多少人?这是简单的求一个数的几分之几是多少的问题。
②根据分数2/3的意义,可以推理出“男生人数和女生人数的比是2∶3”。原来问题就转化成美术组一共有3/5人,男生与女生人数的比是2∶3,男生、女生各有多少人?这是按比例分配问题。
③根据分数2/3的意义,想到“女生人数看作3份,男生人数是2份”,于是产生解题思路:先算出1份是几人,再算2份、3份各是多少人。
④把作为单位“1”的女生人数设为x,那么男生人数就是2/3x,利用美术组一共35人,能够列方程解题。
„„
谈话:通过刚才的汇报和交流看出大家都有各自的想法,那你们最喜欢哪一种方法呢?为什么呢?(让多名学生回答,征求各自的看法。)
刚才我们运用了不同的策略来解决这个问题,你们能检验一下自己做的是否正确吗?(引导学生交流检验方法)
2.做第28页的“练一练”
引导学生运用刚才学过的策略,用自己喜欢的方法来解决。
要求学生说说“你选择了什么策略,是怎样想的”(通过他们在交流中获得这些体验,让学生体会方法的多样性。)
三.巩固练习,回顾策 1.练习五第1题。
要求学生根据示意图里的数量关系,写出分数,并转化成比。或者写出比,再转化成分数。(这道题可以看作沟通数学概念之间联系,组建概念系统的练习,有助于问题的转化。)
2.练习五第2题。
根据已知的比或百分数,把线段图补充完整,要求借助线段图,把稍复杂的问题转化成简单的问题,探索原来问题的解法。(在线段图上可以联想到的数学信息越多,思维就越开放,问题转化的思路会越开阔,解决问题的资源也就越充分。)
四.课堂小结,提升策略
谈话:通过今天的学习,我们知道了在小学阶段学习了很多解决问题的策略,如果能合理选择,就能起到“化繁为简”的作用,帮助我们更好的解决问题。
五.课堂作业:练习五第3题。
第二课时:假设的策略
教学内容:教材第28~29页的例2和第29页的“练一练”,完成练习五第4~5题。教学目标:
1.使学生学会通过假设和调整来解决问题,进一步的提升思维水平。2.在运用假设和调整来解决问题的过程中,体会假设与调整的多样性。3.在解决问题的过程中,获得解决问题的成功经验,提高学好数学的信心。教学重、难点:学会假设和调整的策略来解决问题,并体会假设与调整的多样性。教学资源:课件 教学过程: 一.谈话导入
上节课我们学习了运用已学的多种策略来解决问题,通过对条件的进一步分析和转化,使一个问题多种思维、多种解法。今天我们继续来学习解决问题的策略。(板书课题:假设的策略)
二.探究新知
1.教学例2(课件出示例2)
42人去公园划船,租10只船正好坐满。每只大船坐5人,每只小船坐3人。租的大船、小船各有多少只?
提问:解决这个问题,你准备选择什么策略? 学生小组讨论。画图法。
先画10只大船坐50人,再去掉多的8人。
列举法。
从大船有9只、小船有1只开始,有序列举。并填写右表。(1)列表假设。
假设大船和小船同样多,那么我们要如何调整算出大船和小船各有多少只? ① 出示表格。②借助表格调整。
第一步:假设租5只大船和5只小船,就会比42人少2人。
第二步:还少2人,也就是这2人还没有上船,那要让这2人也坐上船,大船和小船的数量应该怎么调整?
先想一想,再在小组里交流想法,然后在表中填一填。第三步:集体交流,得出方法:
引导思考:少了2人,需要把一些小船调整为大船,一条小船调整为一条大船可以多坐2人,2÷2=1(条),所以调整为小船4条,大船6条。
② 检验结果。学生口答检验方法。三.巩固练习
1.完成第29页“练一练”。
(1)引导学生先用第一种方法,根据要求提示动手操作,独立完成。(2)用列表假设的方法再进行思考练习。学生交流,并汇报想法。2.完成练习五第4题。
根据题中所给的假设学生自主调整,并汇报调整想法。四.课堂小结
通过本节课的学习,我们知道了哪些解决问题的策略?你有哪些收获? 五.课堂作业:练习五第5题。
第三课时:解决问题的策略(练习课)
教学内容:教材练习五第6~9题和思考题,了解“你知道吗”。教学目标:
1.通过练习让学生熟练运用转化和假设的策略来解决问题。2.在不断练习和反思中,感受运用策略对于解决特定问题的价值。3.通过这些策略的运用,了解解题方法的多样性,感受数学知识的魅力。教学过程: 一.谈话导入
在前面两节课的学习中我们主要运用了哪些策略来解决问题的?(转化和假设的策略)你们学会了吗?今天老师想考一考大家对这两个策略的运用情况,你们能接受挑战吗?(板书课题:解决问题的策略练习课)
二.练习应用
1.练习五第6题。
出示题目:要求先画图表示题意,再解答。要求中、下层各放了多少本书?可以通过上层放书的数量100本,及所对应的份数5,先求一份的量是多少,再求中、下层各放了多少本书。也可以引导学生从其他方面去思考,如把比转化成分数来解答。
2.练习五第7题。
结合图引导思考:根据货车的速度是客车的2∕3,可以想到相遇时货车行驶的路程也是客车行驶路程的2∕3,接着让学生在图上画一画,并解答。
3.练习五第8题。学生读题,出示右图:
先在图中表示出第二、三堆的白子和黑子。
学生动手画,教师巡视、辅导。(学生可能在第二、三堆中把白子和黑子平均分,可让学生尽量避免这种特殊情况。)
结合图帮助学生理解:第二、三堆中的白子合起来正好是完整的一堆棋子,也就是60枚,再加上第一堆中白子的数量,这样就解决了这一问题。
4.练习五第9题。出示题目和表格。先假设两种球分别投中的个数,再通过试验调整找出答案。
学生独立完成。5.练习五思考题。
让学有余力的学生自己思考,独立解答。6.课外了解。(第32页“你知道吗”)让学生了解我国古代的数学,渗透国情教育,并思考解决。
三.课堂小结
通过今天这节课的练习,你有了哪些新的收获? 使学生进一步巩固策略在特定问题中的应用。四.课堂作业:基础训练
第五篇:六年级数学教学设计
人教版六年级上数学教学设计
一、班级学生情况分析
六年级现有学生35人。大部分学生对数学学习的积极性比较高,能从已有的知识和经验出发获取知识,抽象思维水平有了一定的发展.基础知识掌握比较牢固,有一定的学习数学的能力。在课堂上大部分学生能积极主动地参与学习过程,具有一定的观察、分析、自学、表达、操作、与人合作等一般能力,在小组合作中,同学之间会交流合作,但自主探讨能力不高。但也有一部分的学生基础知识差,上课不认真听讲,不能独立完成学习任务,需要老师督促并辅导。还有一部分比较认真但解决问题的能力较差,只能掌握一些基础知识,稍稍拐个弯就不知所措。本学期重点还是抓好学习上有困难的学生教学,在教学中,面向全体学生,创设愉快情境教学,激发他们的学习动机,进入最佳学习的动态。
二、教材分析 :
这一册教材内容包括:位置,分数乘法,分数除法,圆,百分数,统计,数学广角和数学实践活动等。分数乘法和除法,圆,百分数等是本册教材的重点教学内容。
在数与代数方面,教材安排了分数乘法、分数除法、百分数三个单元。分数乘法和除法的教学是在前面学习整数、小数有关计算的基础上,培养学生分数四则运算能力以及解决有关分数的实际问题的能力。会解决简单的有关百分数的实际问题,是小学生应具备的基本数学能力。
在空间与图形方面,教材安排了位置、圆两个单元。通过丰富的现实的数学活动,让学生经历初步的数学化的过程,理解并学会用数对表示位置;初步认识研究曲线图形的基本基本方法,促进学生空间观念的进一步发展。
在统计方面教材是安排扇形统计图。进一步体会统计在生活和解决问题中的作用,发展统计观念。
在数学解决问题方面,体会解决问题策略的多样性及运用假设的方法解决问题的有效性,体会用代数方法解决问题的优越性,感受数学的魅力,发展学生解决问题的能力。
教材安排了两个数学综合应用的实践活动,体会探索的乐趣和数学的实际应用,感受数学的愉悦,培养学生的数学应用意识和实践能力。
三、教学目标:
(一)、知识和能力方面:
1.理解分数乘除法的意义,掌握分数乘、除法的计算方法,比较熟练地计算简单的分数乘、除法,会进行简单的分数四则混合运算。
2.理解倒数的意义,掌握求倒数的方法。
3.理解比的意义和性质,会求比值和化简比,会解决有关比的简单实际问题
4、掌握圆的特征,会用圆规画圆;理解圆周率的意义,探索并掌握圆的周长与面积公式,能正确地计算圆的周长与面积。
(二)、过程与方法方面:
5、知道圆是轴对称图形,进一步认识轴对称图形;能运用平移、轴对称和旋转设计简单的图案。
6、能在方格纸上用数对表示位置,初步体会坐标思想。
7、使学生理解百分数的意义,比较熟练地进行有关百分数的计算,能够解决有关百分数的简单实际问题。
8、认识扇形统计图,能根据需要选择合适的统计图表示数据。
(三)、情感态度价值观方面:
9、经历从实际生活中发现问题、提出问题、解决问题的过程,体会数学在日常生活中的作用,初步形成综合运用数学知识解决问题的能力。
10、体会解决问题策略的多样性及运用假设的数学思想方法解决问题的有效性,感受数学的魅力。形成发现生活中的数学的意识,初步形成观察、分析及推理的能力。
11、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
12、养成认真作业、书写整洁的良好习惯。
四、教学中需要准备的教具和学具:
在前面几册的教师教学用书中,已经介绍了许多教具和学具,其中的一些仍可继续使用,如小棒、方木块、量角器、三角板、直尺、计算器等。结合本册的教学需要,介绍几种使用效果较好的教具和学具,以供参考。
1.圆形纸板作为演示分数计算以及认识圆的教具。可以用硬纸板做成大小相同的圆若干个。拿其中的两个圆形纸板做成如五年级下册教师教学用书第14页介绍的教具,用来演示不同的分数。作为教师演示用的教具要大一些,作为学生操作用的学具可小一些。
2.圆规教学圆的认识时用。教师要准备可以在黑板上画圆的圆规。每个学生也要准备一套自己用的圆规。
3.说明圆面积计算公式用的教具可以仿照教材第68页的图用纸板制作,供教师演示用。另外在本册教材的附录中印有同样的图,学生可以剪下来贴在纸板上,作为操作用的学具。4.方格作图纸学习位置时用。在本册教材的附录中印有几幅10×10的方格纸,可以让学生剪下来用。
5.其他教具教师还可以根据各部分教学内容的需要自己准备或设计制作一些教具和学具。如教学位置时在本地区的简易路线图上画上方格子作为教具;教学百分数时,可搜集一些含有百分数表示含量或性能的商品标签作为教具或学具等。教师还可以根据需要自己制作其他适用的教具。
五、教学措施:
1、创设愉悦的教学情境,激发学生学习的兴趣。
2、提倡学法的多样性,关注学生的个人体验。
3、课堂训练形式的多样化,重视一题多解,从不同角度解决问题。
4、加强基础知识的教学,使学生切实掌握好这些基础知识。
5、学生能预习教材,提出知识重点,自己是通过什么途径理解的,还有哪些疑问。能通过查阅资料找出解决问题的方法。
6、教师作为课堂教学的指导者,以学生自主学习为主,主张探究式、体验式的学习方法,培养学生的动手操作能力和发散思维能力。
7、利用小组讨论的学习方式,使学生在讨论中人人参与,各抒己见,互相启发, 自己找出解决问题的方法,体验学习数学的快乐。
8、培养学习数学的兴趣和自信心,使每位学生的能力有所提高。
9、体现学生的主体作用,让学生爱学、会学,教学生掌握学习方法。
10、教学与实践活动相结合因材施教,每一堂课教学内容的设计都根据教学目标和学生的基础上,创建教学的问题情境,属于符合学生认知规律的教学过程