第一篇:比的意义和基本性质练习 教学设计(模版)
比的意义和基本性质练习
主备教师:
教学内容:六年级数学(上册)第73—74页第9~14题 教学目标:
1.使学生进一步掌握比的意义和比的基本性质。
2.通过练习使学生进一步理解比与分数、除法之间的内在联系。3.感受比在现实生活中的广泛应用。教学重点:比的意义和比的基本性质 教学难点:比在实际生活中的运用的理解 教具准备:教学光盘 教学过程: 知识回顾与整理
师:前两节课,你学会了哪些知识? 生口答并举例说明 ①什么叫做比?
②除法、分数、比之间有什么联系吗?
③什么是比的基本性质?它和商不变的性质、分数的基本性质有什么样的联系?
二、巩固练习
1.完成练习十三第9题。
要加强比较让学生知道化简比与求比值的方法是不同的。但有时可以互相利用。分组完成,观察比较,再交流发现。
2.完成练习十三第10题。
师问:你是怎样估计的?你估计的结果和测量的结果一样吗? 先估计,说一说是怎样估计的,再通过测量调整或验算自己的估计。
3.完成练习十三第11题。
先让学生独立完成,再适当补充一些数量关系相同的例子。独立完成,比较思考:比化成后项是100后,有什么好处? 4.完成练习十三第12题。
学生完成后,结合反馈情况强调“盐水”的含义。生独立练习。
思考:盐水的重量怎么表示? 5.完成练习十三第13题。
学生完成后,引导讨论:哪一杯饮料最浓?哪两杯饮料一样浓? 讨论提出的问题,并把写出的比改写成分数形式进行比较。6.完成练习十三第14题
使他们初步感受到实际生活中通过加长斜面而省力的合理性。学生独立写出两个比,并化简。
三、拓展延伸
出示练习十三的思考题。
提示学生:把重叠部分的面积看作1份……
四、全课总结
提问:通过这节课的练习,你在哪些知识上得到了巩固和加强?
第二篇:比的意义和基本性质练习
比的意义和基本性质练习
一、填空。
1、甲数是乙数的2倍,乙数和甲数的比是()。
2、男生人数是女生的23,女生人数与全班人数的比是()。
3、一段路,甲走完全程用7小时,乙走完全程用6小时,写出甲、乙的时间比是(),甲与乙的速度比是()。
4、甲比乙多3,甲是8,甲与乙两数的比是(),比值是()。
5、():6=0.75
6:()=0.75
6、两个正方形的边长的比是1:3,它们的周长比是()。
二、判断: 1、45可以读作“5比4”。„„„„„„„„„„„„„„„„„„„„()
2、比的前项和后项同时乘一个相同的数,比值不变。„„„„„„„„()
3、比的基本性质与商不变的性质是一致的。„„„„„„„„„„„„()4、10克盐溶解在100克水中,这时盐和盐水的比是1:10。„„„„„()
5、比的前项乘5,后项除以
6、男生比女生多7、952515,比值不变。„„„„„„„„„„„„(),男生与女生人数的比是7:5.„„„„„„„„„()
既可以看作分数,也可以看成一个比。„„„„„„„„„„„„()
8、“宽是长的几分之几”与“宽与长的比”,意义相同,结果表达形不同。()
三、谨慎选择:
1、比的()不能为零。
A 前项 B 后项 C 比值 D 无法确定
2、比的前项和后项都乘
23,比值()。
A 变大 B 变小 C 不变 D 无法确定
3、A 23:109的比值是(),最简整数比是()。
532027 B C
D 3:5
4、在8:9中,如果前项增加16,要使比值不变,后项应()。A 增加16 B 乘2 C 不变 D 无法确定
5、糖占糖水的15,糖与水的比是()
A 1:5 B 1:4 C 1:6 D 无法确定
四、计算。
1、求比值。
32﹕12
1.8﹕4.2
2、化简比。
72﹕18 1.6﹕0.08 小结:求比值和化简比有什么区别?
15232315﹕1 1.5﹕250%
﹕1 ﹕150%
第三篇:比的意义的基本性质
比的意义的基本性质
一、填空
1、比的前项扩大8倍,后项扩大2倍,这时的比值是原来比值的()。
2、把5克糖溶化在100克水中。糖和糖水的比是(),比值是()。
3、一个比的前项是,后项是前项的倒数,这个比化成最简单的整数比是()。
4、有一个直角三角形,它的一个锐角是60°,它的三个内角度数的比,从大到小依次是()。
5、两个正方体棱长的比是3∶10,它们棱长总和的比是(),表面积的比是(),体积的比是()。
6、走同一段路,甲用6分钟,乙用8分钟,甲乙两人的速度比是()。
7、正方形的边长与周长比是(),正方体棱长与棱长总和的比是()。
8、一个平行四边形和一个三角形的底相等,它们面积的比是1∶2,它们高的比是()。
9、在3∶7中,如果后项加上2,要使比值不变,前项要加上()。10、6∶8=3∶4=12∶()=()∶12=
11、甲乙两数比是5∶8,则甲数比乙数少,乙数比甲数多。
12、从甲堆煤倒出给乙堆,这时两堆煤的重量相等,那么甲乙两堆煤的重量比为()∶()。
二、选择
1、比的前项扩大2倍,后项缩小3倍,比值()
A、不变 B、扩大6倍 C、扩大5倍 D、扩大1.5倍 E、缩小1.5倍
2、比的前项扩大4倍,要想使比值不变,后项应()A、扩大4倍 B、增加3倍 C、缩小4倍 D、增加4倍
3、比的前项和后项是(),这个比一定是最简整数比。A、互质数 B、两个不同的质数 C、只有公因数1 D、合数
三、化简比或连比
1、A比B多,B∶C=5∶6,则A∶B∶C=()。
2、甲数与乙数的比是1∶2,乙数与丙数的比是5∶6,则甲乙丙三数的比是()。
3、甲的等于乙的,则甲∶乙=()。
4、男生人数的
5、甲班的相当于女生的,则男生∶女生=()
等于乙班的,又是丙班的。则甲班∶乙班∶丙班=()
6、一班人数比二班人数多,二班人数比三班人数少
7、苹果重量是梨的,又是橘子的,求苹果、梨、橘子重量的比。,求三个班人数的比。
8、甲乙两个三角形底的比是4∶3,高的比是5∶8,面积的比是几比几?
9、甲乙两种货物,总价比是3∶2,数量比是4∶5,单价比是几比几?
10、一个长方形与一个正方形的周长相等,长方形的宽是长的,求长方形的面积与正方形的面积比。
11、一个长方形与一个正方形周长的比是4∶3,长方形长与宽的比是5∶3,求这个长方形与正方形面积的比。
比的应用1
1.被减数是648,减数与差的比是2∶1,减数和差各是多少?
2.在一个直角三角形中,两个锐角度数比是3∶2,则这个三角形最小角是多少度?
3.在一个等腰三角形中,顶角与底角底数比是5∶2,那么顶角和底角各多少度?
4.甲乙两数相差0.4,甲的5.甲乙两数的比是9∶8,如果乙增加34,这里甲数除以乙数的商是是多少?,甲数
等于乙的,甲乙两数的和是多少? 6.等腰三角形周长是36厘米,腰与底边长的比是4∶1,这个三角形的底是多少厘米?
7.一个长方体棱长总和是72厘米,长、宽、高的比是4∶3∶2,这个长方体的体积是多少?
8.甲、乙、丙三数的平均数是19,甲与乙的比是3∶2,乙与丙的比是3∶2,甲、乙、丙三个数各是多少?
9.学校购进480本图书上,把其中的分给低年级,余下的按5∶3分给高年级和中年级,高年级比中年级多分多少本?
10、甲、乙、丙三人同乘一辆出租车,大家商定,出租车费一定要合理分摊,在全程的处甲下车,全程的
处乙下车,最后丙一人坐到终点,付车费90元,他们三人如何承担车费合理?
第四篇:比的意义和基本性质
比的意义和基本性质(1)班级:姓名: 【知识点详解】
比的意义:两个数相除又叫做两个数的比。
比的前项:在两个数的比中,比号前面的数叫做比的前项。比的后项:在两个数的比中,比号后面的数叫做比的前项。(3)比值:比的前项除以后项所得的商,叫做比值。
连比:三个或三个以上的数也可以用比表示,这样的比叫做连比。
反比:如果一个比的前项和后项是另一个比的后项和前项,这两个比叫做互为反比。如:a:b和b:a互为反比。
互为反比的两个比的比值互为倒数。
前项为0的比没有反比,因为比的后项不能为0。
比的基本性质:比的前项和后项同时乘或除以相同的数(0除外)比值不变,这叫做比的基本性质。
最简单的整数比:比的前项和后项是互质数的比,叫做最简单的整数比。
化简比:把两个数的比化成最简单的整数比,叫做化简比,也叫做比的化简。把一个数量按照一定的比进行分配,这种方法通常叫做按比例分配。典型例题精讲
知识点一:求比值。
求两个数比的比值,就是用比的前项除以比的后项。比值和比都可以用分数形式来表示,比表示一种除法关系,比值是一个数值。
比值不能写成比的形式,但是它可以是分数,也可以是小数或整数。比与分数、除法的关系为:a:b=a÷b=(b≠0)【例1】:求比值。
(1)12:0.7
(2):13
(3)0.36: 【例2】:求比值(有单位名称的比:先统一单位名称再求比值)。(提示:任何一个比的比值都不带有单位名称).(1)3km:4km
(2)20分:0.25时(3)3.75吨:250千克 知识点二:化简比。
1.整数比的化简方法:把比的前项和后项同时除以它们的最大公因数。【例3】(1)15:10
(2)180:120 2.分数比的化简方法:
(1)比的前项和后项中含有分数的,把比的前项和后项同时乘他们分母的最小公倍数,变成整数比,再进行化简;
(2)利用求比值的方法也可以化简分数比,但结果必须写成比的形式。【例4】把:化成最简单的整数比。
3.小数比的化简方法:把比的前项和后项的小数点同时向右移动相同的位数,变成整数比,再进行化简。【例5】(1)0.75:0.2
(2)1.2:3 【例6】甲数是乙数的,乙数是丙数的,求这三个数的连比。
【例6】一个等腰三角形的周长是40厘米,其中两条边的比是1:2,则它的三条边各是多少厘米?
【例7】一个长方体的棱长总和是216厘米,它的长、宽、高之比是4:3:2。长方体的表面积和体积各是多少? 【思维拓展训练】
一、填空题。
1.甲数除以乙数,商是0.6,那么乙数和甲数的比是()。2.60分:3小时的比值是()。3.两个数的比表示(),()叫做比值。4.0.3米:20厘米的比值是()。
5.在200克盐水中,含盐40克,盐与水的比是()。6.白兔60只,灰兔29只,白兔和灰兔只数的比是(),比值是()。7.化简比=()。
8.甲数除乙数的商是0.4,那么甲数与乙数的最简比是()。9.一个等腰三角形,它的顶角与一个底角的比是1:4,这个三角形三个内角的度数分别是()、()和().10.六(1)班有男生27人,男生、女生人数的比是3:2,女生有()人。11.5.6:4.2化成最简单的整数比是(),比值是()。12.如果把3:7的前项加上9,要使它的比值不变,后项()。
13.一个比的前项缩小到原来的,后项缩小到原来的后比值是,这个比原来的比值是()。14.甲加工3个零件用40分钟,乙加工4个零件用30分钟,甲、乙工作效率的比是()。15.把25g盐放入100g水中,盐和盐水的比为()。16.学校新进一批图书,按3:4:5分配给四、五、六年级。五年级分得120本,四年级分得()本,六年级分得()本。
17.小华和爷爷的年龄比是1:6,已知小华比爷爷小50岁,小华和爷爷年龄和是()。
18.赵老师用60厘米长的铁丝围成一个长方形的教具,围成的长方形长和宽的比是3:2,。则这个长方形教具的长是(),宽是是()。19.一个减法算式中减数与差的比是:,已知被减数是14,则减数是(),差是()。20.甲数的和乙数的相等,甲:乙=():()。
21.有一个三角形,它的三个内角的度数比是7:3:10,最小的角是()度,这个三角形是()三角形。
22.A数比B数多,A:B=():()。
23.a、b、c三个数的平均数是60,这三个数的比是1:2;3,这三个数分别是()、()、()。24.a除以b的商是,a和b的比是()。
25、等腰直角三角形三个内角度数之比是().26.4和它的倒数的最简整数比是()。
27.一个最简整数比的比值是4.5,这个比是().28.1.2与的最简整数比是(),比值是()。
29.把10克盐溶解到100克水中,则盐和盐水的重量比为():()。30.如果a÷b=4……1,那么a:b=。
31.把1吨:250千克化成最简整数比是(),它的比值是()。32.:0.75的比值是(),把它化成最简整数比是()。33.减数相当于被减数的,差和减数的比是()。34.甲数的等于乙数的(甲、乙两数均不为0),乙数比甲数多()。35.当x=()时,:x的比值恰巧是最小的质数。36.甲数比乙数少20%,则甲数与乙数的比是()。
37.一项工程,甲队独做10天完成,乙队独做8天完成。甲队与乙队的工作效率比是()。38.5.1分米:0.34米化成最简整数比是()。
39.被减数与差的比是17:13,那么减数与差的比是()。
40.两个完全相等的长方形拼成一个正方形,这个长方形的长与宽的比为()。41.正方形的周长和边长的比是()。42.把时:15分化成最简整数比()。43.():()==1.25=125÷()。44.()÷=()×=÷()=8:1。
45.甲、乙两数的比是3:4,乙、丙两数的比是5:6,那么甲乙丙三数的比是()。46.两个圆的半径比为3:2,他们的周长比是(),面积比是()。47.A:B=,那么2A:2B=()。48.=0.75=21:()=()%
第五篇:六年级数学教学设计:《比的意义和基本性质》
六年级数学教学设计:《比的意义和基本性质》
六年级数学教学设计:《比的意义和基本性质》
知识点:
理解比例的意义和基本性质。
能够根据比的意义或者比的基本性质来判定两个比是否能组成比例。
重点:比例的意义和基本性质。
难点:应用比例的意义和基本性质判断两个数能否成比例。并能正确地组成比例。
教学准备:课件
教学过程:
一.导入
(课件中有《比的意义和基本性质》这一课题)看到这一题目时,有的同学可能会想比例是什么?比例和比有关系吗?如果有关系,会是什么关系呢?有什么区别吗?等等。这节课,我们就展开研究!
二.探究新知
1.教学比例的意义
(1)课件出示“天安门广场升旗”图,同学们请看,这是在干什么?对,这是天安门广场庄严肃穆的升旗仪式,你知道这面国旗的长和宽各是多少吗?
(2)出示数据:看到这两个数据.你能提出什么数学问题?(周长,面积,长宽的比)根据学生的回答板书:5:10/3(板书:比)
(3)你还记得哪些关于“比”的知识。(求出比值)
(4)同学请看,这是其它不同场合用到的国旗,请分别算出它们长和宽的比值。(汇报.师板书)
(5)你有什么发现吗:(比值相同)这些国旗的大小相同吗?但比值相等,两个比也就相等,我可以用等式来表示:板书:5:10/3=2.4:1.6 像这样两个比相等的式子,你还能写出几个吗?(汇报:板书)
(6)像这样的式子就叫做比例:(板书:比例)哪位同学能说说什么叫做比例。(板书:表示两个比相等的式子叫做比例)这就是比例的意义,(板书:意义)
(7)说起比例,它必须是各两个条件,一个是......另一个是......2.教学比例的判定
(1)课件出示:下面就请同学们根据比例的意义来判断一下下面这四组,哪两个比可以组成比例?把组成的比例写出来。
(2)汇报:为什么20:5和1:4不能组成比例:要判断两个比能不能组成比例, 关键看什么?
(3)师小结:通过上面的学习,我们知道比例是由两个相等的比组成的......板书:1:2=():()
师小结:像这样的比例能写完吗?只要比值是1/2就可以了。
(4)“比”和“比例”的区别
现在请同学们想一想,比例和比有什么区别。
3.教学比例的基本性质
(1)刚才,我们知道了,比例有4个项,我们把外边的两个叫做外项,把里面的两个叫做内项。
(2)谁来说一说(1:2=6:12)这个比例的外项和内项。
(3)现在把内项和外项分别相乘,看看会有什么发现?(汇报,板书:外项的积=内项的积)
(4)检验
(5)师总结:在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。(板书:基本性质。
(7)根据比例的基本性质,判断是否成比例。
(8)师:判断两个比是否成比例,我们既可以用比例的意义,也可以用比例的基本性质。
(9)练习:(用自己喜欢的方法来判断)
12:6和10:5 1/2:1/3和6:4
1.5:3和15:0.3 2/5和12/30
汇报:
(10)师:五分之二和三十分之十二相等吗:(板书:2/5=12/30)它是一个比例吗?说出你的理由?(指出这个比例的内项和外项)
三.巩固练习
在()里填上合适的数.(想一想,你填数的根据是什么?)
1.5:3=():4()/40=9/60
():4=9:()
四.课堂小结