成正反比例量的应用题教学设计与评析

时间:2019-05-12 20:57:10下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《成正反比例量的应用题教学设计与评析》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《成正反比例量的应用题教学设计与评析》。

第一篇:成正反比例量的应用题教学设计与评析

成正反比例量的应用题教学设计与评析

江苏省海安县实验小学

姜小玲

226600 教学内容:苏教版第十二册第51、52页“成正反比例的应用题”。教学目标:

1、掌握成正、反比例量的应用题的解题规律。

2、通过解答应用题使学生进一步熟练地判断两种相关联的量是否成什么比例,从而加深对正反比例意义的理解。

3、培养学生分析问题、解决问题的能力。教学重点:掌握用正、反比例的方法解决应用题。

教学难点:能正确判断两种相关联的量成什么比例,正确列出比例式。教学过程:

一、联系实际,复习迁移

1、谈话引入

同学们,如果你留心一下就会发现近几年海安发生了翻天覆地的变化。比如,为了方便行人步行,很多河堤都用方砖铺设了人行道,那么,你知道在铺设方砖的过程中藏着哪些数学问题呢?

学生可能会回答:(1)人行道的总面积(2)每块方砖的面积(3)方砖的块数(4)方砖的单价(5)方砖的总价(6)每辆汽车运载方砖的块数(7)汽车的辆数(8)每天铺方砖的面积(9)铺砖需要的天数

2、师:你能任意选择其中的三个数量说说他们之间存在着哪些数量关系,会构成什么样的比例关系吗?

3、揭示课题

师:看来,同学们已能正确判断两种量成什么比例关系了。这节课,我们就一起应用正、反比例的知识共同研究有关应用题。(板书课题)

[评析:联系实际,引入新课,学生倍感亲切,兴趣盎然;同时能体会到数学在实际生活中的应用价值。]

二、探究新知,培养能力

1、出示题目:

修路队5天可铺设方砖2000平方米。照这样计算,7天可铺设方砖多少平方米?(1)学生试做(一人板演)

(2)激励引新:这是我们以前学习的归一应用题的解题方法,能不能用比例方法解答呢?

(3)学生以小组为单位围绕以下两个问题讨论,并尝试解题。a、题目中哪两种量是相关联的?

b、哪一种量是固定不变的?从哪里可以看出?它们成什么关系?(4)反馈:重点强调题目中的数量关系及对应的条件。(5)师:怎样检验呢?

学生回答后小结:我们可以把求出的数代入原题,看工作效率是不是相同,也可以用归一应用题的方法检验。

2、出示题目:

修路队用方砖铺设人行道,用面积是0.3平方米的方砖铺,需要2000块。如果改用0.2平方米的方砖铺,需要多少块?

(1)学生尝试用比例方法解答。(2)反馈:你是怎样想的?

3、师生共同小结:比较刚才两题的解题过程,明确解题步骤。(1)分析数量关系,判断哪两种成什么比例关系。(判)(2)设未知数。(设)

(3)根据正、反比例的意义列出等式并解答。(列)(4)检验并解答。(检)

[评析:本着“以学生发展为本”的理念,围绕铺砖的问题,让学生经历“尝试——理解——深化”的全过程,从而理解、掌握正、反比例应用题的解题方法。]

三、巩固练习,形成技能

1、只列式,不解答

(1)修路队购买方砖3000块花了6000元,照这样计算,13000元可以购买方砖多少块?

(2)修路队用方砖铺设人行道,如果每天铺400平方米,25天可以完成任务。如果每天铺设500平方米,多少天完成任务?

(3)修路队运送一批方砖,每辆车运450块,需要20辆运完。如果只用18辆运完,那么每辆车应该运多少块?

(4)修路队用同一种方砖铺设人行道,铺600平方米用砖2000块,如果要铺设900平方米,需要用砖多少块?

2、观看动画:测量古埃及金字塔高度的故事。(1)动画演示测量金字塔高度的全过程。

(2)启发学生思考:泰勒斯是利用“影长等于身长”推出“塔影等于塔高”,那么,是不是一定要等到影长等于身长时才可以测量塔的高度呢?(3)得出结论:同一时间内。

[评析 :练习是学生巩固和内化新知的重要手段。在这一环节,还要抓住学生求胜、挑战的心理。因此,我设计了巩固性的基础练习和拓展性的发展练习。]

四、课后延伸,深化拓展

课后大家可以利用其中的原理测一测身边一些高大建筑物的高度。

第二篇:正反比例应用题教学设计

正反比例应用题教学设计

西华小学

王丽英

教学目标

1.复习成正比例和反比例关系的量的意义。

2.掌握正比例和反比例应用题的数量关系、解题思路,能正确地解答成正、反比例关系的应用题。

3.进一步培养同学们分析、推理和判断等思维能力。教学重点和难点

1、判断两种相关联的量成什么比例;确定解答应用题的方法。教学准备 多媒体课件

教学过程设计

今天我们上一节复习课。(板书课题:正反比例应用题)出示目标学生齐读。通过这节课的学习,进一步理解和掌握正反比例意义及应用题的解题规律。

一、复习概念

1、什么叫成正比例的量?它的关系式是什么?

2、什么叫成反比例的量?它的关系式是什么?

3、正反比例它们有什么相同和不同的地方?

二、复习数量关系

1.判断下面每题里相关联的两种量是不是成比例?如果成比例,成

什么比例?

1.工作效率一定,工作时间和工作总量。()2.每块砖的面积一定,砖的块数和铺地面积。()3.挖一条水渠,参加的人数和所需要的时间。()4.从甲地到乙地所需的时间和所行走的速度。()5.时间一定,速度和距离。()2.选择题:

1.如果a = c÷b,那么当 c 一定时,a和b 两种量()。

① 成正比例 ② 成反比例 ③ 不成比例 2.步测一段距离,每步的平均长度和步数()。

① 成正比例 ② 成反比例 ③ 不成比例 3.比的后项一定,比的前项和比值()。

① 成正比例 ② 成反比例 ③ 不成比例 4.C= πd 中,如果c一定,π和 d()。

①成正比例 ② 成反比例 ③ 不成比例

5.化肥厂有一批煤,每天用15吨,可用40天,如果这批煤要用60天,每 天只能用几吨?下面等式()对。

40:15= 60:χ ② 40χ=15×60 ③ 60χ=15×40

三、复习简单应用题

例1 一台抽水机5小时抽水40立方米,照 这样计算,9小时可抽水多少立方米?

A、题中涉及哪三种量?其中哪两种是相关联的量? B、哪一种量是一定的?你是怎么知道的?

C、题中“照这样计算”就是说()一定,那么()和()成()比例关系。学生独立解答。

2、总结 正、反比例解比例应用题要抓的四个环节

3、判断下列各题中已知条件的两个量是否成比例,如果成比例是成什么比例,把已知条件用等式表示出来。

①、一台机床5小时加工40个零件,照这样计算,8小时加工64个。

②、一列火车从甲地到乙地,每小时行90千米,要行4小时;每小时行80千米,要行X小时。

③、一辆汽车3小时行180千米,照这样的速度,5小时可行300千米。

④、同学们做广播操,每行站20人,正好站18行,如果每行站24人,可以站多少行?

⑤、小敏买3枝铅笔花了1.5元,小聪买同样的铅笔5枝,要付给营业员多少钱?

⑥、甲种铅笔每支0.25元,乙种铅笔每支0.20元,买甲种铅笔32支的钱,可以买乙种铅笔多少支?

四、巩固练习

1、用一批纸装订练习本,如果每本30页可装订500本,如果每本比原来多10页,可装订多少本?

解:设可装订χ本。

(30+10)χ=500×30 4 0χ=15000 χ=15000 χ=375 答:可装订375本。

2、比一比,想一想,每一组题中有什么不同,你会列式吗?(1)修路队要修一条公路,计划每天修60米,8天可以修完。实际前25天就修了200米,照这样计算,修完这条路实际需要多少天?

(2)修路队计划30天修路3750米,实际5天就修了750米,照这样几天就能完成?

五、拓展延伸 用正反两种比例解答:

1、一辆汽车原计划每小时行80千米,从甲地到乙地要4.5小时。实际0.4小时行驶了36千米。照这样的速度,行完全程实际需要几小时?

六、全课总结

解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。

七、板书设计

正反比例应用题

=K(一定)X×Y=K(一定)X和Y成正比例关系。X和Y成反比例关系。

正y、反比例解比例应用题要抓的四个环节 x第一、分析:可分四步。第一步:确定什么量是一定的。

第二步:相依变化的量成什么比例。

第三步:找准相对应的两个量的数。

第四步:解方程(根据比例的基本性质)第二、设未知数为X,注意写明计量单位。第三、根据正反比例的意义列出方程。第四、检验并答题。

正反比例应用题(复习课)——教学反思

西华小学

王丽英

正反比例的意义和应用题是人教版小学数学第十二册的内容,这个教学内容要求学生学会分析、判断两种相关联的量是否能成正比例或反比例,学会比较正反比例的相同点及不同点,同时学会用比例的方法解答相关的应用题,作为一节复习课,课前我首先进行了深入的研究,对本课内容进行了整合,自己设计了课件,一节课下来有很多感触: 我觉得在教学过程中做好了以下几方面:

1、能强化正、反比例意义概念的复习,因为正反比例的意义所涉及的文字内容较多,因此,在教学中以简化的概括让学生很容易就把两个意义的核心内容记牢。

2、重视知识间的对比,让学生在对比中发现正、反比例的相同点及不同点,杜绝在以后的学习中出现混乱的现象。

3、练习设计形式多样,让学生在完成不同类型的题目中巩固知识。

4、善于引导学生分析问题,回答问题,出现问题的根源所在,让学生真正掌握知识。

5、课堂教学的连贯性较强,知识之间的衔接严密,教学层次之间过渡自然,让不同层次的学生均能有所收获。

课后,我反复回忆了本节课,发现也存在不足之处,1.教学时没有让学生讨论分析题里的数量关系成什么比例,老师讲的多,学生说的少。

2.教学时不注重情感交流,应及时抓住学生的闪光点,及进表扬,充分让学生表现自己。

3.讲课节奏快,对差生辅导不到位。讨论的环节和交流的环节花费的时间少,抽的学生少,导致学生没有更好的掌握怎样从关键字眼上找正反比例的特征,因此有些学生不会判断。不会判断就不会列方程。对于这节课的不足我在今后的教学中要克服缺点,不断积累有效的教学经验,争取每节课都能收到很好的教学效果。

第三篇:正反比例应用题教学设计

正反比例应用题教学设计

教学目的:1.通过检测讲评,进一步理解和掌握正、反比例应用题的解题规律。

2.通过一题多变、一题多解等题组练习形式,由浅入深,由易到难,培养学生思维的灵活性。教学过程:

我们已经学过了正、反比例应用题,今天我们上一节检测讲评课课。(板书课题:正反比例应用题)通过这节课的学习,希望进一步理解和掌握正反比例应用题的解题规律。

一、检测题

1.什么叫成正比例的量?它的关系式是什么?

2.什么叫成反比例的量?它的关系式是什么?

3.判断下面两种量成不成比例?成什么比例?

a.订阅《中国少年报》的份数和钱数。

b.日产量一定,天数和总产量。

c.路程一定,速度和时间。

d.圆的周长和半径。

e.长方形的周长一定,长和宽。

f.圆锥的体积一定,底面积和高。

大家对概念掌握得较熟练,但在应用中可看出对概念的理解程度还是有差距的。两种量是不是成正反比例的量先明确是谁和谁,其次看它们是不是相互影响,若是,就看着两种量是不是属于积商关系,积商一定时,就下断论。例如人的身高和体重是不是成正反比例的量,这两种量一种量变化,另一种量不一定发生变化,直接否定。再如,圆周率和圆周长是不是成正反比例的量,因为圆周长变化时圆周率并不发生变化,也是直接否定。a、b、c、d、f中两种量相互影响,且积或商一定所以成正反比例的量,e中两种量相互影响,但不实际上已定,故不成正反比例的量。大家一定要把握概念的实质,灵活运用。

二、练一练

1.计算下列各题:

农具厂生产一批农具,3天生产360台,照这样计算,30天可生产多少台?(指名读题)

师:这道题用比例方法来解答请同学们自己做一做。(一人板演)

订正时请板演的同学先讲一讲,做题的时候自己是怎么想的?并板书列式:360/3=X/30。

师:这道题,你们觉得他做得咋样?如果工作时间30天不直接告诉我们,还可以怎么说?

生:如果再生产27天,一共可生产多少台?

师:同原题比较,这道题复杂在哪呢?

生:原题的条件是直接的,这题的条件是间接的。

生:原题问题所对应的量是已知的,这题问题所对应的量是未知的。

师:这道题怎样解答呢?(要求学生口头列出比例式)

生:解:设一共可生产X台,360/3=X/(3+27)(板书:360/3=X/(3+27))。

教师提问:3+27求的是什么?把3+27写成27可以吗?

教师强调:列式时一定要找准相关联的量中相对应的数。

师;这道题还可以怎样解答?

生:解:设27天可生产X台,360/3=X/27 X+360。(板书:360/3=X/27 X+360)。

教师小结:80%同学能做出地一题,第二问题就有点大了。其实象这道题,问题虽然变了,但题中基本数量关系未变,所以我们都是用正比例的方法来解答的。这道题我们可以直接设问题为X,列出这样的比例式(指360/3=X/(3+27))。也可以间接设27天的生产量为X,求出27 天的生产量再加上前3天的生产量,就得到了一共的生产量。

解答正比例应用题的关键一是要正确判断相关联的两种量是否成正比例,二是要找准相关联的量中相对应的数。

a.农具厂生产一批农具,原计划每天生产80台,20天完成任务。如果每天生产100台,需多少天完成?

师:这道题用比例方法来解答请同学们自己做一做。(一人板演)

教师订正时请同学讲述解题思路,并板书方程:100X=80*20。

将原题变成:

b.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天多生产20台,需多少天能完成任务?

c.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天比原计划多生产25%,需多少天能完成任务?

d.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天生产100台,可提前几天完成任务?

e.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天比原计划多生产20台,可提前几天完成任务?

以上4题要求学生独立完成。

教师评讲:通过刚才的变换我们发现,较复杂的反比例应用题,其复杂性表现在两个方面。一是已知条件发生变化,引起未知数X对应值的复杂化。二是问题发生变化,引起未知数X的复杂化。但不管怎样,我们要紧扣反比例的意义,对应用题中两相关联的量进行正确的判断。

三、巩固练习

1.学校买来塑料绳150米,先剪下12米做了4根跳绳。照这样计算,剩下的塑料绳可以做这样的跳绳多少根?(用算术和比例两种方法)

2.利民加工厂生产一批零件,原计划每天生产25个,30天可以完成。实际每天多生产5个,这样可提前几天完成?

3.根据题中所给的条件,你能提出什么问题?并列出比例式。

一个农具厂,计划一个月(30天)生产农具600台,结果4天生产了100台,照这样计算,?

小结:刚才这道题同学们所提的问题有:(1)完成计划需要多少天?(2)余下的任务还需要几天?(3)可比计划提前几天完成?(4)全月实际可生产多少台?(5)实际超过计划多少台?虽然不同,但因题中的基本数量关系未变,所以我们都是用正比例的方法来解答的。

4.用正、反比例两种方法解答下题。

修一条公路,原计划每天修300米,60天修完。实际3天就修了120米,照这样计算,实际用几天修完?

教师小结:我们分析问题的角度不同,解题的思路也就不同。刚才这道题,从“照这样计算”可知每天修路的米数是不变的,可用正比例的方法来解答。从“修一条公路”又可知这条路的长度是不变的。又可用反比例的方法来解答。

四、全课小结

解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。

第四篇:正反比例应用题复习课教学设计

正、反比例复习课导学案 红土学校 刘丽花

复习内容: 正、反比例的应用。学习目的:

1.通过练习,进一步理解和掌握正、反比例意义及应用题的解题规律。2.通过一题多解等形式,由浅入深,由易到难,培养学生思维的灵活性。学习重点:

找出相关联量中相对应的两个数。学习难点:

用两个变量来表示定量。学习过程: 一.温故知新。问题一

正比例和反比例的意义有什么共同点和不同点? 问题二

用比例解决实际问题可以归纳为哪几个步骤? 二.巩固练习。

(一)。下面各题里相关联的两种量成不成比例,如果成比例,成什么比例?

1.总价一定,单价和数量。()2.比例尺一定,图上距离和实际距离。()3.全班人数一定,出勤人数和缺勤人数。()4.一个圆的直径和周长。()5.一根铁丝剪成同样长的段数与每段的长度。()

(二)选择题 1.从南京到南通,汽车车轮的直径与转数()。

① 成正比例 ② 成反比例 ③ 不成比例 2.当()时,x 和 y 成正比例。

① x × y = k(一定)② = k(一定)

③ x + y = k(一定)

3.步测一段距离,每步的平均长度和步数()。

① 成正比例 ② 成反比例 ③ 不成比例

(三)比一比,想一想,你会列比例吗?

(1)黎明发电厂运来一批煤,计划每天烧6吨,可以烧54天。实际每天比计划节约了2吨,这样可以烧几天?

(2)电视机厂要生产640台电视机,前8天共生产了总任务的10%。照这样计算,后来又生 产18天,又生产了多少台?

三.拓展练习你看我多棒 你会列几种比例解?

1.用一台打字机打字,6小时打36页,照这样计算,如果再打4小时,一共可以打字多少页?

想挑战吗?

奇怪!一道题同时可以用正反两种比例解!你相信吗?

2.一辆汽车原计划每小时行80千米,从甲地到乙地要4.5小时。实际0.4小时可行驶36千米。照这样的速度,行完全程实际需要几小时?

四.小结

通过本节课的学习,自己有什么收获。

第五篇:正反比例教学设计

正反比例教学设计

正反比例教学设计1

教学内容:

北师大版六年级下册第二单元第一课时教学目标:

1、知识技能目标:

⑴通过比较,进一步加深理解正比例和反比例的意义和特点,体会它们的联系与区别;

⑵掌握正比例和反比例的变化规律;

⑶在练习中进一步提高分析、比较、抽象、概括等能力。

2、过程性目标:

⑴在交流讨论中完善自己判断正、反比例关系的经验认识,掌握判断正、反比例关系的方法,形成接近自动化技能的判断策略;

⑵通过数“形”结合,进一步感受和领会正、反比例关系的变化规律及特点,进一步渗透函数思想,为今后中学的学习打下基础。

3、情感态度目标:

⑴体会借助图像对事物发展方向推断的作用,逐步养成用数学的眼光来分析问题的习惯;

⑵逐步增强数学学习的自信心,体验当独立思考解决不了问题时,与他人合作的成就感,逐步增强团队精神。

教学过程:

一、复习导入

1、揭示课题

师:老师知道同学们前两天已经学习了正比例和反比例意义。

谁来说一说正比例和反比例的意义。(板书:正比例和反比例)

2、出示练习九第1题

师:我们来用正比例和反比例的意义判断几道题?说说你的理由。

二、教学新课

1、教学例7

⑴出示例7两个表,学生自学,并回答相关问题。

师:为什么左表相关联的两种量成正比例关系?为什么右表相关联的两种量成反比例关系?

⑵小结。

⑶师:我们已经知道,路程、速度和时间这三个量存在相依关系,根据这两个表我们可以用什么样的关系式来表示它们之间的相依关系呢?(根据学生的回答板书)

⑷师:在这里,当速度一定时,路程和时间成什么比例关系?为什么?

当路程一定时,速度和时间成什么比例关系?为什么?

请你推想一下,如果当时间一定时,路程和速度成什么比例关系呢?为什么?

你能用关系式来表示吗?(根据学生的回答板书)

⑸小结。

⑹练习

①做“练一练”第1题

师:你能用关系式来表示这题里三个量之间的相依关系吗?

(根据学生的回答出示关系式)

②做“练一练”第2题

师:你能分别用数量关系式来表示吗?(根据学生的回答出示关系式)

⑺小结。

⑻总结判断策略

①师:同学们,学到这儿相信大家已经有了不少判断两种量是不是成比例的经验了,接下来请你们在小组里交流一下自己的经验,再听听别人的经验好吗?②小组活动讨论交流

③各小组汇报交流结果

④根据学生的回答板书

⑤师:谁能再来说一说判断两种量是不是成比例时怎么办?

⑥小结:当我们判断两种相关联的量是成正比例还是成反比例的时候关键是看?

⑼练习

①做练习九第2题

师:你是怎样判断的?

②出示练习九第7题

2、用图表示例7中两种量的关系

⑴出示例7的.两个表

师:两种量成正比例关系和反比例关系的变化规律,也可以用图来表示。我们先来研究怎样将正比例关系用图来表示。

⑵出示空图,引领学生识图

⑶根据表里的数据描点

⑷出示空图,引领学生识图

师:我们再来研究怎样将反比例关系用图来表示。

⑸根据表里的数据描点

⑹正、反比例图比较

师:用图来表示正、反比例,你看了有什么感觉?

⑺练习:做练习九第8题

3、总结正、反比例的特点

师:通过我们这堂课的研究和学习,你们说说成正比例关系和成反比例关系的相同点和不同点吗?

⑴小组讨论交流

⑵汇报交流结果,完成表格。

三、课堂小结

师:今天我们不仅进一步认识了正比例和反比例的意义,还对它们进行了比较,(补充完整课题:的比较)通过今天的学习,你学到了什么?你觉得怎样判断两种量是否成比例?判断相关联的两种量成正比例还是反比例的关键是什么?

正反比例教学设计2

教学目的:

1.通过检测讲评,进一步理解和掌握正、反比例应用题的解题规律。

2.通过一题多变、一题多解等题组练习形式,由浅入深,由易到难,培养学生思维的灵活性。

教学过程:

我们已经学过了正、反比例应用题,今天我们上一节检测讲评课课。(板书课题:正反比例应用题)通过这节课的学习,希望进一步理解和掌握正反比例应用题的解题规律。

一、检测题

1.什么叫成正比例的量?它的关系式是什么?

2.什么叫成反比例的量?它的关系式是什么?

3.判断下面两种量成不成比例?成什么比例?

a.订阅《中国少年报》的份数和钱数。

b.日产量一定,天数和总产量。

c.路程一定,速度和时间。

d.圆的周长和半径。

e.长方形的周长一定,长和宽。

f.圆锥的体积一定,底面积和高。

大家对概念掌握得较熟练,但在应用中可看出对概念的理解程度还是有差距的。两种量是不是成正反比例的量先明确是谁和谁,其次看它们是不是相互影响,若是,就看着两种量是不是属于积商关系,积商一定时,就下断论。例如人的身高和体重是不是成正反比例的量,这两种量一种量变化,另一种量不一定发生变化,直接否定。再如,圆周率和圆周长是不是成正反比例的量,因为圆周长变化时圆周率并不发生变化,也是直接否定。a、b、c、d、f中两种量相互影响,且积或商一定所以成正反比例的量,e中两种量相互影响,但不实际上已定,故不成正反比例的'量。大家一定要把握概念的实质,灵活运用。

二、练一练

1.计算下列各题:

农具厂生产一批农具,3天生产360台,照这样计算,30天可生产多少台?(指名读题)

师:这道题用比例方法来解答请同学们自己做一做。(一人板演)

订正时请板演的同学先讲一讲,做题的时候自己是怎么想的?并板书列式:360/3=X/30。

师:这道题,你们觉得他做得咋样?如果工作时间30天不直接告诉我们,还可以怎么说?

生:如果再生产27天,一共可生产多少台?

师:同原题比较,这道题复杂在哪呢?

生:原题的条件是直接的,这题的条件是间接的。

生:原题问题所对应的量是已知的,这题问题所对应的量是未知的。

师:这道题怎样解答呢?(要求学生口头列出比例式)

生:解:设一共可生产X台,360/3=X/(3+27)(板书:360/3=X/(3+27))。

教师提问:3+27求的是什么?把3+27写成27可以吗?

教师强调:列式时一定要找准相关联的量中相对应的数。

师;这道题还可以怎样解答?

生:解:设27天可生产X台,360/3=X/27X+360。(板书:360/3=X/27X+360)。

教师小结:80%同学能做出地一题,第二问题就有点大了。其实象这道题,问题虽然变了,但题中基本数量关系未变,所以我们都是用正比例的方法来解答的。这道题我们可以直接设问题为X,列出这样的比例式(指360/3=X/(3+27))。也可以间接设27天的生产量为X,求出27天的生产量再加上前3天的生产量,就得到了一共的生产量。

解答正比例应用题的关键一是要正确判断相关联的两种量是否成正比例,二是要找准相关联的量中相对应的数。

a.农具厂生产一批农具,原计划每天生产80台,20天完成任务。如果每天生产100台,需多少天完成?

师:这道题用比例方法来解答请同学们自己做一做。(一人板演)

教师订正时请同学讲述解题思路,并板书方程:100X=80*20。

将原题变成:

b.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天多生产20台,需多少天能完成任务?

c.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天比原计划多生产25%,需多少天能完成任务?

d.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天生产100台,可提前几天完成任务?

e.农具厂生产一批农具,原计划每天生产80台,20天可完成任务。如果每天比原计划多生产20台,可提前几天完成任务?

以上4题要求学生独立完成。

教师评讲:通过刚才的变换我们发现,较复杂的反比例应用题,其复杂性表现在两个方面。一是已知条件发生变化,引起未知数X对应值的复杂化。二是问题发生变化,引起未知数X的复杂化。但不管怎样,我们要紧扣反比例的意义,对应用题中两相关联的量进行正确的判断。

三、巩固练习

1.学校买来塑料绳150米,先剪下12米做了4根跳绳。照这样计算,剩下的塑料绳可以做这样的跳绳多少根?(用算术和比例两种方法)

2.利民加工厂生产一批零件,原计划每天生产25个,30天可以完成。实际每天多生产5个,这样可提前几天完成?

3.根据题中所给的条件,你能提出什么问题?并列出比例式。

一个农具厂,计划一个月(30天)生产农具600台,结果4天生产了100台,照这样计算,?

小结:刚才这道题同学们所提的问题有:

(1)完成计划需要多少天?

(2)余下的任务还需要几天?

(3)可比计划提前几天完成?

(4)全月实际可生产多少台?

(5)实际超过计划多少台?虽然不同,但因题中的基本数量关系未变,所以我们都是用正比例的方法来解答的。

4.用正、反比例两种方法解答下题。

修一条公路,原计划每天修300米,60天修完。实际3天就修了120米,照这样计算,实际用几天修完?

教师小结:我们分析问题的角度不同,解题的思路也就不同。刚才这道题,从“照这样计算”可知每天修路的米数是不变的,可用正比例的方法来解答。从“修一条公路”又可知这条路的长度是不变的。又可用反比例的方法来解答。

四、全课小结

解答正反比例应用题,条件和问题不管多么复杂,我们要紧扣正反比例的意义,从题中的定量入手,对应用题中两种相关联的量进行正确的判断。定量

等于两种相关联的量相除,则成正比例;定量等于两种相关联的量相乘,则成反比例。

正反比例教学设计3

教学内容:

六年级下册总复习83—85页《正比例、反比例》。

教学目标:

(一)知识目标:

(1)通过回顾与交流,鼓励学生自己独立整理知识,形成系统。

(2)通过具体问题的认识进一步认识正比例、反比例的量。

(二)数学思考与解决问题

通过复习与整理加深对正、反比例意义的理解。并运用正、反比例的知识解决一些实际问题,为以后学习函数打下基础。

(三)情感态度

培养学生认真思考的习惯,学会区分正反比例。教学重、难点:

(1)进一步认识正、反比例的意义,并能运用正、反比例的意义解决实际问题。

(2)培养学生的问题意识,不断积累活动经验,体会重要的数学思想。

教法学法:

自主复习、小组交流、全班交流、互帮互学

教学准备

表格、课件、小黑板

教学过程

一、情境创设,导入复习

1、判断下面每题中的两种量成什么比例关系?

①速度一定,路程和时间()

②路程一定,速度和时间()

③单价一定,总价和数量()

④全校学生做操,每行站的人数和站的行数()

2、根据条件说出数学关系式,再说出两种相关联的量成什么比例,并列出相应的等式。

(1)一台机床5小时加工40个零件,照这样计算,8小时加工64个。

(2)一列火车从甲地开往乙地,每小时行90千米,要行4小时;

每小时千米,要行X小时。

指名学生口答,老师板书。

二、回顾整理,构建网络

(一)比的知识:

1.谁来举个例子说说什么是比?什么是比例?什么是比的基本性质?(引导学生列举:“按比例分配”、“比例尺”、“图形的放大与缩小”等例)

2.说一说用比的知识可以解决哪些实际问题。

让学生体会比在解决实际问题时的应用。3.完成教科书p83“回顾与交流”的3题

两人一组,合作完成后,全班交流结果,让学生比较后回答有什么发现。

(二)比和分数、除法的`联系

出示:a∶b=()(())=()÷()(b≠0)教师问:

1.你会填写这个的等式吗?学生填好后,再问:

2.你的根据是什么?(比和分数、除法的联系)

3.那么比和分数、除法的联系是什么?它们的区别呢?

4.b为什么不能等于0?小组议一议,再交流。

5.谁来说说比的基本性质与分数的基本性质、商不变的规律?它们有什么联系吗,谁来说说?

(1)判断:比的前项和后项都乘或都除以相同的数,比值不变。(让学生说说为什么?)

(2)填空:()(())=()÷()=()∶()(填好后展示学生不同的结果。)

(三)比例尺的知识

什么是比例尺?

(四)正比例,反比例的知识:

(1)小组合作:把有关正比例反比例的知识在小组内进行交流,整理成知识网络图。

(2)班内交流,全班分享

(3)全班同学进行优化,形成知识网络图。

变化的量---正比例(意义、图象、应用)--反比例(意义、图象、应用)---图形的放缩---比例尺三:重点复习,强化提高:

1.一辆汽车在高速路上行驶,速度保持在100千米/时,说一说汽车行驶的路程随时间变化的情况,并用多种方式表示这两个量之间的关系。

(1)学生独立思考

(2)同桌交流

3)全班交流

a自然语言b列表c画图d关系式

2.举出生活中正、反比例的例子

3.完成课本84页巩固与应用独立完成,班内交流。

四.自主检测,完善提高:

判断并说明理由

(1)出油率一定,香油的质量与芝麻的质量。

(2)一捆100米长的电线,用去的长度与剩下的长度。

(3)三角形的面积一定,它的底和高。

(4)一个数与它的倒数。

五、完成后班内交流,这节课你有什么收获?

下载成正反比例量的应用题教学设计与评析word格式文档
下载成正反比例量的应用题教学设计与评析.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    正反比例教学设计

    【教学内容】 义务教育课程标准实验教科书《数学》(人教版六年级下册)教材 【教学目标】 1.理解用比例解决问题的一般方法和技巧,学会用比例解决一般问题。 2.通过与前面旧知识的......

    正反比例教学设计范文大全

    《正比例与反比例》教学设计 教学内容: 六年级下册总复习83—85页《正比例、反比例》。 教学目标:(一)知识目标: (1)通过回顾与交流,鼓励学生自己独立整理知识,形成系统。 (2)通......

    正反比例应用题复习课教学设计(合集五篇)

    正反比例复习课教学设计 峦庄小学 姚代利 复习内容: 正、反比例 教学目的: 1.通过练习,进一步理解和掌握正、反比例意义及应用题的解题规律。 2.通过一题多变、一题多解等形式......

    正反比例练习课教学设计

    正反比例练习课教学设计 花都区赤坭镇莲塘小学 关永谊 教学目标: 1、 通过正比例和反比例的对比练习,加深对正比例和反比例意义的理解,提高判断能力。 2、 通过讨论与交流,体会......

    正反比例练习教学反思

    教学完对比练习课后明显感觉正、反比例的判断问题严重,作业正确率明显下降。虽然,学生能够正确背诵正、反比例的意义和关系式,并且也能对比发现它们之间的异同点,但在实际应用中......

    熊黎 正反比例应用题复习课教案[合集]

    “正、反比例应用题解答方法复习”教学设计 台江县城关二小 熊 黎 复习内容: 正、反比例应用题解答方法 教学目的: 1.知识与能力:正确判应用题中涉及的量成什么比例关系。进一......

    按比例分配应用题教学设计

    按比例分配应用题教学设计 教学目标: 1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征和解题方法; 2、培养学生应用所学......

    按比例分配应用题教学设计(范文模版)

    按比例分配应用题教学设计 教学内容:苏教版第十一册75页例5 教学目标: 1、在合作探究和解决问题过程中使学生理解按一定比例来分配一个数量的意义,掌握按比例分配应用题的特征......