第一篇:“解决问题的策略:转化”教学设计与心理学思考
“解决问题的策略:转化”教学设计与心理学思考
[教学内容]苏教版义务教育课程标准实验教科书《数学》六年级(下册)71~72页例1。[教学目标] 1.让学生经历回顾与探索运用转化策略解决问题的过程,初步感受转化策略的价值。
2.使学生初步学会运用转化的策略分析问题,并能根据问题的特点确定具体的转化方法,从而有效地解决问题。
3.使学生进一步积累运用转化策略解决问题的经验,增强解决问题的策略意识,获得成功的体验。[教学过程]
一、直观演示,在强烈对比中引出转化策略 1.考考你的眼力。
出示图(1),教师问:考考你的眼力,这两个图形的面积相等吗? 通过直观观察,学生很容易可以比较出左边图形比右边图形多了一个半圆的面积。
出示图(2),提问:同学们再仔细观察一下,这两个图形的面积相等吗?(如果有困难,教师可以启发思考:这两个图形的面积可以利用公式进行计算吗?我们用数方格的方法能求出它们的面积吗?最终引导出两种转化成长方形的思路。)交流反馈,课件动态演示转化的过程,并板书相应的转化方法:平移、旋转。
明确:这两个图形都可以转化成为长5格、宽4格 的长方形,所以它们的面积是相等的。2.初步感受转化作用。
教师:刚才我们都是把这两个图形转化成长方形进行比较的,想一想,为什么要这样转化呢?这样转化有什么好处? 交流中明确:由于这是两个不规则图形,所以不能直接用公式求出面积,用数方格的方法又太麻烦了,把它们转化成长方形后,非常容易比较出它们的大小。
(板书:复杂+简单)揭示课题:刚才同学们在解决这个问题时,其实用到了数学上一种重要的策略——转化。
(板书课题:解决问题的策略——转化)[心理学思考]有 效的数学学习是建立在学生合适的数学现实的基础之上的。六年级学生在以往数学学习过程中都积累了不少“转化”的体验,但这种体验基本上处于无意识的状态。只有合理呈现学习素材,才能促使学生对转化策略形成清晰的认知。为此,在课的一开始,便呈现了一个直观性和操作性极强的素材图(1),“考考你的眼力,这两幅图的面积相等吗?”学生很容易直观分出大小。然后再出示图(2),提问:“它们的面积相等吗?” 学生有了刚才的学习体验,就会积极开动脑筋,通过平移和旋转把这两个图形转化为一个长方形。这样以典型而具有直观性的图形转化为切入口,既使学习内容鲜明 生动,很快调动起学生积极的学习心向,又能唤醒学生原有认知中的“转化”体验,让学生不知不觉地开始进一步感悟“转化”策略。
二、回顾整理,在复习旧知中感受转化策略 1.图形面积、体积方面的应用。(1)回顾有关公式推导过程。
启发思考:其实在我们小学阶段的数学学习中,比如说一些图形面积公式、体积公式的推导,就常常用到转化的策略,你们能想起来吗?(学生先独立思考,然后在小组里讨论。教师巡视,指导交流。)反馈交流。(根据学生的回答,课件相机呈现平行四边形、三角形、梯形、圆面积计算公式和圆柱、圆锥体积计算公式的推导过程。)(2)再次感受转化策略的作用。
回顾:我们在推导平行四边形、三角形和梯形面积计算公式时,是先知道哪个图形的面积计算公式的?接下来我们是如何研究图形之间面积关系的?我们又是把哪些图形转化成平行四边形的(三角形、梯形)?长方体、圆柱和圆锥的体积计算公式呢? 感受:在刚才应用转化策略推导出这些公式时,你们发现它们都有什么共同的特点? 明确:转化前这些问题都是我们面临的新问题,而我们都是把它转化成曾经学习过的旧知识。
(板书:新问题+旧知识)应用:
2.图形周长、内角和方面的应用。
讲述:在求周长、内角和等问题时,我们也要用到转化的策略。
想一想:你有什么办法求出树叶和硬币的周长?怎样求出三角形的内角和? 明确:化曲为直,把曲线转化成线段来进行测量周长。把三角形的三个内角和转化为一个平角。
练习:计算下面左边两个图形的周长,求出右边图形的内角和。
师生交流:刚才我们回顾了一些关于图形中运用转化策略的问题,那对于转化这一策略,现在你有什么样的体会?(板书:复杂+简单)3.数与计算方面的应用。
教师:从某种意义上来说,学习数学就是不断学会转化的过程。不仅在图形的世界里常常应用转化的策略解决问题,而且在数与计算方面也常用到这一策略。
想一想:在学习认数和计算时,哪些地方用到过转化的策略呢? 先让学生在小组整理回顾,然后师生互动交流。(举例说明:如小数乘法是转化为整数乘法,分数除法是转化为分数乘法来进行计算的,等等。)练习:计算1/2+1/4+1/3+1/16。先让学生试算,然后出示图片。
提问:你能运用转化的策略来解决这一问题吗? 引导学生交流算法,明确把加法计算转化为减法计算的过程。(板书:数+形)[心理学思考]结 构性材料的组织和呈现,是课堂教学不同于自然认知的重要标志。对转化策略的理解不能仅仅依赖直观的演示与形象的操作,更重要的是能让学生亲身经历策略的形 成过程,尤其是思维不断发展的过程。因此,教学时应该加强对知识的学习进行系统分类,以逐步建构学生对转化策略的深层理解。以上教学设计中主要从3个层面让学生经历转化策略的形成过程:(1)图形面积、体积方面的应用;(2)图形周长、内角和方面的应用;(3)数与计算方面的应用。在转化策略的形成过程中,遵循学生的心理规律,逐步深入展开:首先,让学生经历直观的单一图形的转化(即考考你的眼力);接着,让学生经历了形与形之间的转化(即在面积和体积计算公式推导、求周长和内角和中的应用);然后,又让学生经历了数与计算方面的转化(即数与形的转化)。不同层面的转化策略,思维含量是不一样的,分类让学生经历转化策略的形成过程,符合学 生“感知——表象——抽象”的认知规律。在学生学习过程中,还针对性地设计了一些练习题,这些习题的练习,突出了教学的重点,分散了教学的难点,增强了教学的有效性。
三、实践应用,在解决问题中体验转化策略 1.关注生活。
教师:刚才我们回顾了以前学习过程中经历转化的一些例子。在我们的实际生活也常常要用到这一策略。
举例:如何用转化的策略求一张纸的厚度,一枚硬币的体积,一个灯泡的容积。
(学生探索、交流、汇报。)2.实践应用。
出示:有16支足球队参加比赛,比赛以单场淘汰制(即每场比赛淘汰1支球队)进行。数一数,一共要进行多少场比赛后才能产生冠军?如果不画图,有更简便的计算方法吗? 引导:单场淘汰制就是一场比赛就会淘汰一支球队,因为最终只有一支球队是冠军,就需要淘汰16—1=15支球队,所以比赛的场数也就是16—1=15(场)。追问:如果是64支球队参加比赛,一共要进行多少场比赛?如果一共有n支球队呢?比较画图与列式计算的方法,你觉得哪种方法更为简便?之所以简便就是因为我们应用了什么样的策略? [心理学思考]转 化策略在实际生活中应用得非常广泛,但转化的手段和具体方法是多样而灵活的,既与实际问题的内容和特点有关,也与学生的认知结构有关。因此,在实践应用环 节,呈现了一些适合学生探究的生活问题。这些鲜活的素材,一方面调动了学生学习的积极性,激活了学生的思维需要,丰富了对转化策略的认知,培养了应用转化 策略的能力;另一方面使学生体验到生活与数学的密切联系,感受到生活中处处有数 学,增强学生学习数学的信心。
四、拓展提升,在总结反思中提升转化策略
全课总结:今天我们一起学习了什么知识?你最大的收获是什么?(转化的策略可以把复杂的问题变得简单,可以把新的问题变成已经学习过的旧知识,还可以把数转化为形„„这也就是转化的价值所在。)反思提升:(出示3句话)“天下难事,必作于易;天下大事,必作于细。”——思想家老子
“如果说我看得比别人更远些,那是因为我站在巨人的肩上。”——科学家牛顿
“什么叫解题?解题就是把题目转化为已经解过的题。”——众多的数学家
围绕这3句话,从今天学习转化策略的角度,你能明白它们的含义吗? [心理学思考]学习转化的策略,不仅要让学生懂得如何转化,更重要的是要让学生具有应用转化策略的意识,而这种意识的萌发,必须建立在充分体验策略价值的基础上。在前面的 学习过程中,教者不断组织学生对转化策略的价值进行了追问与引领。在课尾,首先让学生回顾本课的学习内容与过程,总结课堂学习的收获,然后出示思想家、科 学家与数学家的3句名言,让学生从今天学习转化策略的角度,谈谈自己的理解,力图增强数学学习的文化性、历史性,让学生在与先哲、大师们的对话中,充分感受转化价值的魅力所在。
第二篇:解决问题的策略——转化教学设计
苏教版五年级下册《解决问题的策略——转化》
教学内容:苏教版五年级下册第105-106例1和练一练,练习十六第1-3题。教学目标:
1.学生初步学会运用转化的策略分析问题,并能根据问题的特点确定具体的转化方法,从而有效解决实际问题。
2.学生通过对解决问题过程的反思,感受解决问题策略的特点和价值,进一步培养思维的条理性和严密性。
3.学生通过学习,进一步积累解决问题的实际经验,增强解决问题的策略意识,获得解决问题的成功体验。
教具学具准备:多媒体课件、练习纸。教学过程:
一、教学例1
师:今天老师为大家准备了两个图形朋友。(出示PPT1)你打算怎么比较这两个图形的面积?请大家拿出练习纸,动手试一试。可以在图上标一标、画一画、或是写一写,把自己的想法表示出来,便于交流想法。
指名学生到展示台上介绍自己的想法。师:大家觉得他这种方法好不好?生:好
师:下面让我们一起再来看看这个过程。(出示PPT2-9)师:还有那些同学也是用这种方法解决问题的?
师:老师想为大家点个赞!你们真的很了不起!其实,大家在解决这个问题的时候用到了一种解决问题的策略——转化。这就是我们今天这节课要共同研究的内容。板书课题:解决问题的策略——转化。
二、回顾提升 师:让我们一起来回顾一下,刚才我们是怎样比较他们的大小的?(出示PPT10)师:那么请大家比较一下,转化后的图形和转化前图形相比,什么变了,什么没变?而在转化的过程中我们又具体用到了哪些数学方法?
师:其实,转化的策略我们以前也运用过。想一想:我们曾经运用转化的策略解决过那些问题?(出示PPT11)1.图形面积公式的推导
师:比如说推导图形的面积计算公式(出示PPT12-14)
师:那你们有没有想过,我们为什么要进行转化呢?(出示PPT15)2.计算
师:在计算里面,我们有没有用过转化的策略呢?(出示PPT16-17)师:这里我们为什么也要用转化的策略?(出示PPT18-19)师:看来,我们在解决问题时,经常会运用转化的策略。如果以后你再遇到一个复杂或是陌生的问题,你会怎么想?比如说:我们马上要学习圆,你觉得圆的面积可以怎样推导? 生:各抒己见。
师:课后有兴趣的同学可以提前去进行尝试研究研究。
三、巩固练习
1.探索1看一看:书109页练习十六第1题(出示PPT20)学生独立完成后交流。
2.探索2想一想:书109页练习十六第2题(出示PPT21-28)学生独立完成后交流。
3.探索3算一算:书109页练习十六第3题(出示PPT29)学生独立完成后交流。
四、总结提升
今天这节课我们共同研究了解决问题的策略——转化。通过今天的研究你学到了什么?转化的策略不但在数学中运用广泛,其实在生活有时也会用到,而且还可以求人。比如司马光砸缸的故事。(出示PPT30)
五、赠送数学家名言。
数学家的名言送给大家,作为今天这节课的结束。(出示PPT31)
【教学反思】
本节课原本是六年级上册的内容,现调整到五年级来上,放在最后一个单元。现在又提前到前面来上,对于学生来说,应该提高了难度。所以,上完本节课,我有几点感受,与大家共享。
1.对于学生来说,解决问题的策略——转化,其实并不陌生,在以前的学习中已经运用过,只是并没有提炼。现在单独作为一个单元来进行教学,我觉得应该是在原有基础上进行提高,也就是说要理解为什么要进行转化,什么时候进行转化,怎样转化?而不是单独的为了解决一个单一的问题。因此,教学时,我大胆的进行尝试,放手让学生直接比较两个不规则图形的面积,学生在开始的时候并没有想到转化,而是运用已有经验,用数方格的方法进行解决的,整个班级我只发现了一个学生采用了转化的策略,既把图形通过转化变成长方形,然后进行比较。在这里,我处理的有点急,看到学生用了转化的策略,我就急忙让该生进行展示,引导学生评价这种方法是否可行,然后让大家也尝试这种方法。整个过程,看似流畅,但缺乏思维的碰撞。如果当时,能将转化和数方格两种不同的方法进行展示,让学生进行对比,然后思考两种方法的可行性,我想学生对于转化的策略运用感悟会更深,可能效果会更好。
2.上课前,我一直在思考,怎样才能让学生充分体验转化的策略,因此,教学时,我通过不断的回顾、提炼和总结,目的是为了引导学生通过这样的活动过程理解、感悟转化的策略,帮助学生形成:当我们遇到不规则的图形或是未知的知识时,我们可以通过转化变成规则的图形或是已知的知识,从而找到解决问题的方法。应该说效果还是不错的,只不过学生在回忆的过程中,语言概括上还略有不足。其实当图形出现后,学生就明白了其中的含义,只是不会用语言来进行合理的表达。因此,在今后课堂中我们要多关注学生的语言表述,提高他们发言的激情和语言表述能力。
3.学习的目的是学以自用。当学生深刻理解转化策略就是把不规则图形转化成规则,把未知转化成已知,会不会用,能不能想到用成为我思考的一个问题。因此教学中,我设计了一个环节,就是问学生当我们以后如果在遇到一个复杂或是陌生的问题,你会怎么想?我列举了即将学到的圆,让学生大胆猜测圆的面积可以怎样推导?这个过程看似没什么,其实它是考验学生到底有没有将所学知识进行有效运用。课堂上,学生虽然没有具体说怎么推导,但在他们心中已经有了这样一个想法,就是可以把圆转化成长方形、正方形、平行四边形等等,其实这也正说明学生头脑中已经有了转化策略的形成。应该说,本节课设计条理清晰,层次分明。但在课堂实施中,我还是遇到了一些问题:比如说课堂气氛的沉闷,很多学生都不敢发表自己的见解,这可能和自己的教学引导有关。因此,在今后的教学中,我还有许多需要改进的地方。但不管怎么说,还是应该感谢孩子们,有了他们才有今天的共享。
第三篇:解决问题的策略——转化教学设计
白兔有5只,黑兔有3只。
你能根据这两个条件说一句话吗? 活动一:
例2 学校美术组有35人,其中男生人数是女生人数的2。女生有多少人?
31.认真读题,先理清题中的数量关系,然后选择合适的方法解答。(只列式不计算)
2.从“男生人数是女生人数的学过的“比”想想哦!)
3.受到刚才的启发,这道题是否可以直接列式解答呢?试一试吧!
答:女生有()人。4.小组交流,说清自己的思考过程。
活动二:
2”你能知道什么?(可以试着画线段图,也可以联系以前3
第四篇:《解决问题的策略--转化》教学设计
第三届全国“教学中的互联网搜索”优秀教案评选
教案设计
学校:江苏省大丰市实验小学 姓名:宗建华
一、教案背景:
1、面向学生:小学 学科:数学
2、课时:第一课时
3、教师课前准备准备:
①准备运用转化策略的数学故事。
②教学之前用百度在网上搜索《解决问题的策略——转化》的相关教学材料,确定课堂教学形式和方法,根据课堂教学需要,下载相关图片、PPT演示课件。
【百度百科】http://baike.baidu.com/view/225840.htm 【百度视频】
http://video.baidu.com/v?word=%D7%AA%BB%AF+%BD%E2%BE%F6%CE%CA%CC%E2%B5%C4%B2%DF%C2%D4&ct=301989888&rn=20&pn=0&db=0&s=0&fbl=800
【百度文库】http://wenku.baidu.com/search?word=解决问题的策略——转化&lm=0&od=0 ③制作教学多媒体课件。
二、教学课题
苏教国标版六年级下册第71—72页《解决问题的策略——转化》
三、教材分析
本节课是国标苏教版六年级下册解决问题的策略一单元中第一课时。通过例1的教学让学生联系实际感悟转化的含义,体会无论在过去还是现在,转化都是解决问题的有效方法。本单元的教学不以学生能够解决教材里的各个问题为目的,而在于学生对转化策略的体验与主动应用。具有初步的转化意识和能力,对以后的学习与解决问题将会产生十分积极的作用。
教学目标:
1、使学生初步学会运用转化的策略分析问题,灵活确定解决问题的思路,并能根据问题的特点具体的转化方法,从而有效地解决问题。
2、使学生通过回顾曾经运用转化策略解决问题的过程,增强解决问题的策略意识,主动克服在解决问题中遇到的困难,获得积极的成功体验。
3、进一步积累运用转化策略,解决问题的经验,增强解决问题的策略意识,主动克服在解决问题中遇到的困难,获得积极的成功体验。
四、教学方法
本节课突出“四性”,即现实性、趣味性、思考性、开放性,以激发学生的兴趣和思考,以培养学生运用所学知识解决实际问题的能力,培养学生的数学意识,培养学生的探索精神和创新能力为核心理念而设计的一堂课。
分析本节课,纵观全程既把平移、旋转运用到等面积、等体积、等周长变化的问题中,又蕴含探索图形面积、体积公式的转化,计算方法的转化,以及数量关系的转化等。通过回忆和交流,意识到转化是经常使用的策略,从而主动应用转化的策略解决问题。
五、教学过程
课前谈话: 【百度搜索故事】“转化”故事6 http://&W358&H420&T7671&S54&TPjpg
(三)单场淘汰制
1、感知单场淘汰制:邀请上课班级四名同学上台玩“石头,剪刀,布”的游戏,讲清游戏规则。
2、出示练习题。
①师:如果用一个方框表示一名同学,16名同学应该用几个方框表示?
②要想最后产生冠军,一共要比赛多少场呢?学生回答后,点出剩下的示意图,并带领学生验证。
③这道题目有更简便的方法吗?(电脑闪动“每场比赛淘汰一名同学”)④如果今天的现场的128位老师和同学,大家都来玩“石头,剪刀,布”的游戏,要比赛多少场才能产生冠军呢
3、【百度知道】足球比赛场次。http://zhidao.baidu.com/question/250646245.html
四、走进生活,拓展运用转化策略的视野
1、【百度搜索故事】“转化”故事1 爱迪生的故事 http://www.xiexiebang.com 通讯地址:江苏省大丰市实验小学
邮编:224100 宗建华,男,1998年参加工作,一直担任中高年级数学教学工作。从教以来,本人致力于研究数学教学情境创设,构建有效课堂,重视培养学生的学习兴趣和创造能力。
第五篇:《解决问题的策略(转化)》教学设计
教学目标:
1、使学生在解决实际问题的过程中初步学会运用假设的策略分析数量关系、确定解题思路,并有效地解决问题。
2、使学生在对自己解决实际问题过程的不断反思中,感受假设的策略对于解决特定问题的价值,进一步发展分析、综合和简单推理能力。
3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,提高学好数学的信心。教学重点:使学生理解并运用假设的策略解决问题。教学难点:当假设与实际结果发生矛盾时该如何进行调整是学生学习的难点。教学过程:
一、直接导入:1.直接出示你知道吗?鸡兔同笼问题是我国古代的数学名题之一。它出自于我国古代的一部算书《孙子算经》。书中的题目是这样的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?师:你能理解这句话的含义吗?学生回答。2.师说明:解答鸡兔同笼问题时,我们会用到一个新的解决问题的策略假设,同时要用到以前的策略画图或列表。教师板书:解决问题的策略假设。
二、以鸡兔同笼为例,探究假设1.教师出示题目:鸡和兔一共有8只,数一数腿有22条。你知道鸡和兔各有多少只?教师边出示边说明:为了解答方便,老师适当的改了几个数据。师:看到这个题目,是否觉得比较难?师:这样吧,我们用以前的一种策略画图来解决。师让学生上台画鸡或兔,当学生有疑问时,问:这样画鸡或兔是否很麻烦,能否用其他方法来代替?师应引导学生用圈来表示鸡或兔,用2脚与4脚区分鸡与兔。问:能不能马上确定鸡兔各有几只?因此,我们画图时不能马上画出几只兔几只鸡。师:这时我们可以假设全部是鸡或兔了。分别板书:假设都是鸡 假设都是兔。师:我们先来假设都是兔,兔有几条腿?我们就用短线段表示脚,请同学们把所有的脚都画上。数一数,一共有几条腿?为什么会多腿?(要求学生一定说出因为把鸡当成是兔)了多几只腿?一只兔比一只鸡多几条腿?师:因为每只鸡比每只兔少2条腿,所以我们每次拿走2条腿。要拿走几次,你是怎样算的?师:现在你能发现什么吗? 现在兔有几只?鸡有几只了?你能否把刚才的过程表述出来?请同桌互说把刚才的过程表述出来。师:刚才的过程我们还可以用式子表示,谁来说明?教师根据学生回答分别板书。84=32(条)表示假设全部是兔总共有32条腿。32-22=10(条)表示实际多画了10条腿。4-2=2(条)表示一只兔比一只鸡多2条腿。102=5(只)表示鸡有5只。8-5=3(只)表示兔有3只。教师重点多次提问要求学生回答出每句话的含义。教师小结:我们可以首先假设全部是兔,然后数出兔的腿与实际的腿的差距,因为一只兔比一只鸡多2条腿,所以看这个差距里有几个2,所求出的与假设相反的鸡,最后求兔。
2、刚才我们假设了全部是兔,如果假设全部是鸡,应该怎样想?先让学生小组内交流,然后有能力的学生独立完成,其他学生画图完成或看提示完成。在交流时分别对每步提问。问:82=16表示什么?(假设全部是鸡总共有16条腿)22-16=6表示什么?(实际少画了6条腿)4-2=2表示什么?(一只兔比一只鸡多2条腿)。102=5表示什么?(鸡有5只)8-5=3表示什么?(兔有3只)师:上面的方法有什么共同的特点?
3、师:除了全部假设为鸡或兔,我们还可以假设每种各有一半,可以怎样假设?师:如果是总过8只可以假设鸡有4只,兔有4只。如果是11只呢,我们可以怎样假设?师:如果是偶数,我们可以假设每种各有一半;如果是奇数,我们可以假设一种为一半多一点,另一种为一半少一点。而且,此类假设我们用表格来解决。师出示表格 鸡的只数兔的只数腿的条数和22条腿比较师根据学生的回答分别板书。4 4 42+44=24多了2条在这里多了2条,表明什么?按照刚才的假设兔4只太多了还是太少了?如何调整?如果在这里少了4条,表明什么?该如何调整?师小结:此种方法我们首先假设各有一半,然后按照这种假设算出腿的总数,根据与题意差距,合理地调整。
4、师:要知道我们所求的答案是否正确,我们还应检验,如何检验?教师根据学生的回答板书检验。
5、小结:刚才我们用了三种方法解答了鸡兔同笼问题,都是采用的假设法,可以假设一种全是,也可以假设另一种全是,还可以假设各有一半,在解答时,可以选择你比较喜欢的一种来解答。
三、以引入题为辅,再次巩固假设法。
1、师:刚才我们采用假设法解决鸡兔同笼,我们回到刚才的你知道吗。老师把题目转化了。出示题目。现在你会解决了吗?这样吧,行的话你们可以直接完成,不行的话半分钟后会出现提示,还是不行的话一分钟后可以两人或四人商量商量。学生独立解决,完成后要求学生检验。
2、交流时在实物转换仪展示学生作业,师提问学生每步的意义。方法一:354=140(条)方法二:352=70(条)140-94=46(条)94-70=24(条)4-2=2(条)4-2=2(条)鸡 462=23(只)兔 242=12(只)兔 242=12(只)鸡 462=23(只)方法三: 鸡的只数兔的只数 18 20 23 腿的条数 17 15 12 和94条腿比较 182+174=104 多10条 202+154=100 多6条 232+124=94 正好
小结:对于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。
四、以例题为练,提炼假设方法。
1、师:刚才我们解答了两道鸡兔同笼问题,知道了此类题目的方法,接下去老师来考考你。(出示例题)全班51人去公园划船,一共租了11条船。每只大船坐5人,每只小船坐3人。租用的大船和小船各有几只?学生独立完成,教师帮助有困难的学生。交流时要求学生说明理由。
2、师:现在你能归纳这种方法的解答过程吗?小结:于此类题目,我们可以假设全部是一种量,先求出另一种量,再求出一种量,也可以假设两种量各一半,然后适当调整,到最后与题目相符。
五、总结。师:你什么收获?