第一篇:等比数列的前n项和说课稿
《等比数列的前n项和》说课稿
各位老师,大家好,今天我要说课的内容是人教版高中数学必修5第二章第五节的《等比数列的前n项和》.我的说课主要分为下面六个过程来进行:教学理念、教材内容分析、教学目标及学情分析、教学的重难点分析、教学方法的分析、教学过程的设计.一、教学理念
新的课程标准明确指出 “数学是人类文化的重要组成部分,构成了公民所必须具备的一种基本素质.”其含义就是:我们不仅要重视数学的应用价值,更要注重其思维价值和人文价值.
因此,创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、与人合作交流和创新等过程,获得情感、能力、知识的全面发展.本节课力图打破常规,充分体现以学生为本,全方位培养、提高学生素质,实现课程观念、教学方式、学习方式的转变.
二、教材内容分析
在学习《等比数列前n项和公式》之前,学生已学习了数列的定义、等比数列、等比数列的通项公式等知识内容,这为过渡到本节的学习起着铺垫作用,而本节内容也为后面学习数列求和、数列极限打下基础.本节课既是本章的重点,同时也是教材的重点.从高中数学的整体内容来看,《数列》这一章是高中数学的重要内容之一,在整个高中数学领域里占据着重要地位,也起着决定性的作用.首先:数列有着广泛的实际应用.例如产品的规格设计、储蓄、分期付款的有关计算等.其次:数列有着承前启后的作用.数列是函数的延续,它实质上是一种特殊的函数;学习数列又为进一步学习数列的极限等内容打下基础.再次:数列也是培养提高学生思维能力的好题材.学习数列要经常观察、分析、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有利于学生数学能力的提高.三、教学目标及学情分析
作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识.以下是我的教学目标分析和学情分析:
1、教学目标分析
根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,依据《课标》我制定了如下的教学目标:
[知识与技能]
理解并掌握等比数列前n项和公式的推导过程、公式的特点,在此基础上能初步应用公式解决与之有关的问题.
[过程与方法]
通过对公式推导方法的探索与发现,向学生渗透特殊到一般、类比与转化、分类讨论等 1 数学思想,培养学生观察、比较、抽象、概括等逻辑思维能力和逆向思维的能力.
[情感态度与价值观]
通过对公式推导方法的探索与发现,优化学生的思维品质,渗透事物之间等价转化和理论联系实际的辩证唯物主义观点;培养学生学习数学的积极性,锻炼学生遇到困难不气馁的坚强意志和勇于创新的精神.2、学情分析
学情分析主要通过以下两方面来展开:
[知识基础]
学生在学习本节内容之前已经学习等差数列,知道等差数列的前n项和的公式由来;熟悉等比数列的通项公式,知道等比性质.[思维水平]
学生具备一定的数学思想方法,能够与等差数列的求和公式的推导过程联系,形成类比迁移,而且在情感上也具备了学习新知识的渴求.但是学生对等比数列的前n项和的推导方法---错位相减法比较陌生,学习思维上存在障碍.并且学生考虑事情缺乏全面性,在推导过程中容易忽略公比q1的情形.四、教学的重难点分析
结合前面的教材分析、三维目标的确定以及学情分析,我总结了总结课的重难点:
教学重点是等比数列前n项和的公式的推导过程以及应用.教学难点是等比数列前n项和的推导过程中“错位相减法”的发现以及运用;不同推导过程所蕴含的思想方法的理解.五、教学方法分析
1、教法
数学是一门培养和发展人的思维的重要学科,因此在教学中不仅要让学生“知其然”,还要“知其所以然”,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进和启发式教学原则,我进行这样的教学设计:在教师的引导下,创设情景,通过开放式问题的设置来启发学生进行思考,在思考中体会数学概念形成过程中蕴涵的数学方法和思想,使之获得内心感受.本节课将借助计算机多媒体辅助教学,采用“多媒体优化组合—激励—发现”式教学模式进行教学.该模式能够将教学过程中的各要素,如教师、学生、教材、教法等进行积极的整合,使其融为一体,创造最佳的教学氛围.主要包括启发式讲解、互动式讨论、研究式探索、反馈式评价.2、学法
数学作为基础教育的核心学科之一,转变学生的数学学习方式,变学生被动接受式学习为主动参与式学习,不仅有利于提高学生的整体数学素养,也有利于促进学生整体学习方式的转变.在课堂结构上我根据学生的认知层次,设计了(1)创设情景、(2)观察归纳、(3)讨论研究、(4)即时训练、(5)总结反思、(6)任务延续,六个层次的学法,它们环环相扣,层层深入,从而顺利完成教学目的.自主探索、观察发现、类比猜想、合作交流.3、教学手段
利用多媒体和POWERPOINT软件进行辅助教学.六、教学过程分析
1、创设情境,提出问题
西游记后传之猪八戒的高老庄——话说猪八戒自从西天取经之后,就回到了高老庄,成立了高老庄集团,自己也摇身一变成了总经理,但是好景不长,他的公司因为经营不善出现了资金短缺,于是他便想向师兄孙悟空借钱.孙悟空:没问题!我每天给你投资100万元,连续一个月(30天)猪八戒:师兄你太好了,那„„我何时还你钱?
孙悟空:咱俩谁跟谁呀!我给你投资的钱就不用还了,你就意思意思,第一天给我1元,第二天给我2元,第三天给我4元,„„以后就每天给我的钱是前一天的两倍,一直给我30天,我们就算两清了,你看如何?
猪八戒:第一天1元换100万元,第二天2元换100万元,„„哇,发财了!猪八戒:猴哥,你可别反悔呀!
孙悟空:那„我们可以签一个合同嘛!说着就起草了一份合同.猪八戒正想签字,可转念一想,发现不对劲了,这猴哥本来就精明,做了生意之后就更精了,他会不会又在耍我?
设计意图:设计这个情境目的是在引入课题的同时激发学生的兴趣,调动学习的积极性.故事内容紧扣本节课的主题与重点.
此时我问:同学们,如果你是猪八戒的参谋,你认为他签不签这个合同呢?
设计意图:在实际教学中,由于受课堂时间限制,教师舍不得花时间让学生去做所谓的“无用功”,急急忙忙地抛出“错位相减法”,这样做,有悖学生的认知规律:求和就想到相加,这是合乎逻辑顺理成章的事,教师为什么不相加而马上相减呢?在整个教学关键处,学生难以转过弯来,因而在教学中应舍得花时间营造知识形成过程的氛围,突破学生学习的障碍.同时,形成繁难的情境激起了学生的求知欲,迫使学生急于寻求解决问题的新方法,为后面的教学埋下伏笔.这样引入课题有以下几个好处:
(1)利用学生求知好奇心理,以一个实际问题为切入点,便于调动学生学习本节课的趣味性和积极性.(2)在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中.(3)问题内容紧扣本节课教学内容的主题与重点.(4)有利于知识的迁移,使学生明确知识的现实应用性.在我的诱导下,学生根据自己掌握的知识和经验,很快建立起等比数列的数学模型,写
7出猪八戒应付的钱的总数1+2+2+22,并与1001000030=3.010进行比较.2329带着这样的问题,学生会动手算了起来,他们想到用计算器依次算出各项的值,然后再求和.这时我对他们的这种思路给予肯定.
当学生跃跃欲试要求这个数列的和的时候,课题的引入已经水到渠成.我再由特殊到一般、具体到抽象的启示,正式引入课题.2、师生互动,探究问题 2329、2、2、2、、2是什么数列?有何特征? 在肯定他们的思路后,我接着问:1应归结为什么数学问题呢?
探讨1:设S30=1+2+22+23229,记为(1)式,注意观察每一项的特征,有何联系?(学生会发现,后一项都是前一项的2倍)
探讨2: 如果我们把每一项都乘以2,就变成了它的后一项,(1)式两边同乘以2则有,2S30=2+22+23229+230,记为(2)式.比较(1)、(2)两式,你有什么发现?
设计意图:留出时间让学生充分地比较,等比数列前n项和的公式推导关键是变“加”为“减”,在教师看来这是“天经地义”的,但在学生看来却是“不可思议”的,因此教学中应着力在这儿做文章,从而抓住培养学生的辩证思维能力的良好契机.
经过比较、研究,学生发现:(1)、(2)两式有许多相同的项,把两式相减,相同的项就消去了,得到:S302301.老师指出:这就是错位相减法,并要求学生纵观全过程,反思:为什么(1)式两边要同乘以2呢?
设计意图:经过繁难的计算之苦后,突然发现上述解法,不禁惊呼:真是太简洁了!让学生在探索过程中,充分感受到成功的情感体验,从而增强学习数学的兴趣和学好数学的信心.
3、类比联想,解决问题
这时我再顺势引导学生将结论一般化,设等比数列an的首项为a,公比为q,如何求Sn?这里,让学生自主完成,并喊一名学生上黑板,然后对个别学生进行指导.
设计意图:在教师的指导下,让学生从特殊到一般,从已知到未知,步步深入,让学生自己探究公式,从而体验到学习的愉快和成就感.
a1a1qn在学生自己探究完成后,我再问:由1qSna1a1q得Sn,这样子对
1qn不对?这里的q能不能等于1?等比数列中的公比能不能为1?q1时是什么数列?此时)Sn?(这里引导学生对q进行分类讨论,得出公式,同时为后面的例题教学打下基础.再次追问:结合等比数列的通项公式ana1q,如何把Sn用a1、an、q表示出来?(引导学生得出公式的另一形式)
设计意图:通过反问精讲,一方面使学生加深对知识的认识,完善知识结构,另一方面使学生由简单地模仿和接受,变为对知识的主动认识,从而进一步提高分析、类比和综合的能力.这一环节非常重要,尽管时间有时比较少,甚至仅仅几句话,然而却有画龙点睛之妙用.
4、讨论交流,延伸拓展
在此基础上,我提出:探究等比数列前n项和公式,还有其它方法吗? 我们知道,Sn=a1+a1q+a1q2++a1qn1=a1+q(a1+a1q++a1qn2)那么我们能否利用这个关系而求出Sn呢?
再根据等比数列的定义,能否联想到等比性质
aa2a3a4nq从而求出a1a2a3an1Sn呢?
设计意图:以疑导思,激发学生的探索欲望,营造一个让学生主动观察、思考、讨论的氛围.以上两种方法都可以化归到Sna1qSn1, 这其实就是关于Sn的一个递推式,递推数列有非常重要的研究价值,是研究性学习和课外拓展的极佳资源,它源于课本,又高于课本,对学生的思维发展有促进作用.5、变式训练,深化认识
例
1(1)求等比数列1111,,„的前8项和; 24816111163(2)等比数列,,„的前多少项和是?
24816641111(3)求等比数列,,„的第5项到第10项的和;
248161111(4)求等比数列,,„的第2n项中所有偶数项的和;
24816首先,学生独立思考,自主解题,再请学生上台来幻灯演示他们的解答,其它同学进行评价,然后师生共同进行总结.
设计意图:采用变式教学设计题组,深化学生对公式的认识和理解,通过直接套用公式、变式运用公式、研究公式特点这三个层次的问题解决,促进学生新的数学认知结构的形成.通过以上形式,让全体学生都参与教学,以此培养学生的参与意识和竞争意识.
6、例题讲解,形成技能
例2 求和Sn1aa2a3an1.设计意图:解题时,以学生分析为主,教师适时给予点拨,该题有意培养学生对含有参数的问题进行分类讨论的数学思想.
7、总结归纳,加深理解
以问题的形式出现,引导学生回顾公式、推导方法,鼓励学生积极回答,然后老师再从知识点及数学思想方法两方面总结.
设计意图:以此培养学生的口头表达能力,归纳概括能力.
8、故事结束,首尾呼应 最后我们回到故事中的问题,我们可以计算出两种方式猪八戒应付的钱分步为3.010和1.0710,显然猪八戒不该签这个合同.
97设计意图:把引入课题时的悬念给予释疑,有助于学生克服疲倦、继续积极思维.
9、课后作业,分层练习
必做: P129练习1、2、3、4; 选做(思考题):
(1)求和Snx2x23x3nxn.(2)“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首中国古诗的答案是多少?
设计意图:出选作题的目的是注意分层教学和因材施教,让学有余力的学生有思考的空间.
我的说课到此结束,谢谢!
第二篇:等比数列前n项和作业
第五章第3讲
一、选择题
1.公比为2的等比数列{an}的各项都是正数,且a2a12=16,则a5=()A.1B.2C.4D.8
2.[2013·安徽名校联考]已知等比数列{a的前n项和为S39
n}n,a32S3=2,则公比q=()
A.1或-1B.-1C.1D.-1或1222
3.[2013·泉州五校质检]在各项均为正数的等比数列{an}中,a1=3,前三项的和S3=21,则a3+a4+a5的值为()
A.33B.72C.84
D.189
4.[2013·合肥质检]已知数列{an}满足a1=1,an=2n
(n∈N*
+1·an),则a10=()A.64B.32C.16D.8
5.[2013·衡阳三联]设{an}是由正数组成的等比数列,Sn为其前n项和.已知a2·a4=1,S3=7,则S5=()
A.33B.31171544C.2D.2
6.[2013·湖南重点中学调研]若等比数列{an}的公比q=2,且前12项的积为212,则a3a6a9a12的值为()
A.24B.26C.28D.212
二、填空题
7.已知等比数列{a}中,a5
n1+a3=10,a4+a6=4,则等比数列{an}的公比q=________.8.[2013·金版原创]设等比数列{an}的前n项之和为Sn,已知a1=2011,且 an+2an+1+an+2=0(n∈N*),则S2012=________.9.[2013·南京模拟]记等比数列{an}的前n项积为Tn(n∈N*),已知
am-1am+1-2am=0,且T2m-1=128,则m=________.三、解答题
10.[2013·锦州模拟]设Sn为数列{an}的前n项和.已知S3=7,a1+3,3a2,a3+4构成等差数列.
(1)求a2的值;
(2)若{an}是等比数列,且an+1 11.[2013·湖州模拟]已知等差数列{an}满足:a5=9,a2+a6=14.(1)求{an}的通项公式; (2)若bn=an+qan(q>0),求数列{bn}的前n项和Sn.12.[2013·浙江模拟]已知公差不为0的等差数列{a(a∈R),且11 n}的首项a1为aa1 a2,a4 (1)求数列{an}的通项公式; (2)对n∈N*,试比较11111 a2+a22+a23+…+a2na1 自强学校高一数学 等比数列及其前n项和 1.等比数列的定义 如果一个数列从 A.2B.2C.2D.24.设{an}是首项大于零的等比数列,则“a1<a2”是“数列{an}是递增数列”的() A.充分而不必要条件C.充分必要条件 B.必要而不充分条件 D.既不充分也不必要条件 5.各项均为正数的等比数列{an}的前n项和为Sn,若S10=2,S20=8则S30=________.等比数列中基本量的运算 【例1】 等比数列{an}满足:a1+a6=11,a3·a49q∈(0,1). (1)求数列{an}的通项公式;(2)若该数列前n项和Sn=21,求n的值. 总结:在使用等比数列的前n项和公式时,应根据公比q的情况进行分类讨论,切不可忽视q的取值而盲目用求和公式. 练习1.记等差数列{an}的前n项和为Sn,设S3=12,且2a1,a2,a3+1成等比数列,求Sn.等比数列的判定及证明 【例2】 已知数列{an}的前n项和Sn=2an+1,求证:{an}是等比数列,并求出通项公式. 总结:证明一个数列是等比数列的主要方法有两种:一是利用等比数列的定义,即证明an+1*2* =q(q≠0,n∈N),二是利用等比中项法,即证明an+1=anan+2≠0(n∈N). an 练习2.设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2.(1)设bn=an+1-2an,证明数列{bn}是等比数列;(2)求数列{an}的通项公式. 等比数列的综合应用 【例3】(2010·上海卷)已知数列{an}的前n项和为Sn,且Sn=n-5an-85,n∈N*.(1)证明:{an-1}是等比数列; (2)求数列{Sn}的通项公式,并求出使得Sn+1>Sn成立的最小整数n.总结:数列是特殊的函数,以数列为背景的不等式证明问题及以函数为背景的数列的综合问题体现了在知识交汇点上命题的特点,该类综合题的知识综合性强,能很好地考查逻辑推理能力和运算求解能力,从而一直成为高考命题者的首选. 练习3.数列{an}的前n项和为Sn,且a1=1,an+1=3Sn,n=1,2,3,„,求: (1)a2,a3,a4的值及数列{an}的通项公式;(2)a2+a4+a6+„+a2n的值.作业: 一、选择题 1.已知{an}是等比数列,a2=2,a5=4q=() 111A.-2B.2C.2D.22.已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6=() A.42B.7C.6D.52 13.已知等比数列{an}的前n项和Sn=t·5n-2-5t的值为() A.4B.5C.5D.54.已知等比数列{an}中,若a1 005·a1 007=4,则该数列的前2 011项的积为() A.42 011B.±42 011C.22 011D.±22 011 225.若a1=1,对于任何n∈N*,都有an>0,且nan+1=(2n-1)an+1an+2an.设M(x)表示 整数x的个位数字,则M(a2 011)=() A.2B.3C.4D.5 二、填空题 6.数列{an}满足a1=1,an+1=2an+1,若数列{an+c}恰为等比数列,则c的值为________. 7. 等比数列{an}的公比q>0,已知a2=1,an+2+an+1=6an,则{an}的前4项和S4=____.8.等比数列{an}的前n项和为Sn,若S3=2,S6=6,则a10+a11+a12=________.9.设{an}是公比为q的等比数列,|q|>1,令bn=an+1(n=1,2,„),若数列{bn}有连续四项在集合{-53,-23,19,37,82}中,则6q=________.三、解答题 10.设等比数列{an}的前n项和为Sn,已知S4=1,S8=17,求{an}的通项公式. 11.已知数列{an}满足a1=1,a2=3,an+2=3an+1-2an(n∈N*). (1)证明:数列{an+1-an}是等比数列;(2)求数列{an}的通项公式. 12.在数列{an}中a1=1,an=2(an-1-1)+n(n≥2,n∈N*). (1)求a2,a3的值; (2)证明:数列{an+n}是等比数列,并求{an}的通项公式;(3)求数列{an}的前n项和Sn. 2014届高三理科数学学案教师寄语:学数学的诀窍 勤思 善思 多思 等比数列及前n项和2013.11命制人:刘晓琳 一、复习要求 掌握等比数列的通项公式和等比数列的前n项和公式 二、知识梳理 1.等比数列定义: 2.通项公式 2、等比数列an的公比为q,首项为a1,前n项和Sn Sn 3.等比中项:若a、b、c成等比数列,则b是a、c的等比中项,且bac 4.等比数列{an}的性质: 3.等比数列an前n项和Sn的相关性质 5.证明数列为等比数列的方法: 三、基础训练 1 等比数列an中,(1)已知a13,q2 则a6=__________________ (2)已知a320,a6160则a9=______,an______________(3)已知a14,q 2则s10=__________________(4)已知a11,ak243,q3则sk=___________________ 2在243和3中间插入3个数,若这5个数成等比数列,则三个数为____________ 3已知等比数列的公比是 25,第四项是 2,则前三项和为________________ 4等比数列a76 3n中,已知s32,s62 则an_______,s9___________ 5等比数列an中,前四项之和为240,第2项,第4项之和为180,则首项为____________ 6.已知an是等比数列,an>0,又知a2 a4+2a3 a5+a4 a6=25,那么a3a5()A.5B.10C.15D.20 四、例题精选 考向一 等比数列的判定 【例1】►(1)若an是等比数列,下列数列中是等比数列的所有代号为 ① a2n ② a2n③ 1 ④lgan an (2)已知数列{an}是公比q≠1的等比数列,则在 “(1){anan+1},(2){an+1-an},(3){an3},(4){nan}” 这四个数列中,成等比数列的个数是()(A)1(B)2(C)3(D)4【训练1】(1)下列命题中正确的是()(A)若a,b,c是等差数列,则log2a,log2b,log2c是等比数列(B)若a,b,c是等比数列,则log2a,log2b,log2c是等差数列(C)若a,b,c是等差数列,则2a,2b,2c是等比数列(D)若a,b,c是等比数列,则2a,2b,2c是等差数列 (2)设an、bn是项数相同的两个等比数列,c为非零常数,现有如下几个数列,其中必为等比数列的有。 ① {anbn}②{canbn}③{ an b④{anc}⑤{an·bn} n (3)在等比数列an中,a12,前n项和为Sn,若数列an1也是等比数列,则Sn等于A. 2n 12B.3nC.2nD.3n1 考向二等比数列的通项公式和求和公式 【例2】►已知等比数列{an}中,已知a3a636,a4a718,an 3.在递减等比数列{an}中,a4+a5=12,a2·a7=27,则a10=________.则n=_________ 2 2.在243和3之间插入3个数,使这5个数成等比数列,则这3个数是6.在数列{an}中,a1a2an2n1,则a12a22an2__________。 【训练2】 1、等比数列an中,已知a1a2324,a3a436,求a5a6.2、在各项都为正数的等比数列{an}中,首项a1=3,前三项和为21,则a3+a4+a5(A)33(B)72(C)84(D)189 47103n10 (nN),则f(n)等于()【例3】► 1、设f(n)2222 22.等比数列{an}中,a3=7,前3项之和S3=21,则公比q的值为答案1或-4.在等比数列{an}中,已知a1a3a11=8,则a2a8答案 46.已知等比数列{an}中,a1+a2=30,a3+a4=120,则a5+a6=.答案480 6.设等比数列{an}中,每项均为正数,且a3·a8=81,则log3a1+log3a2+…+log3a10等于 A.5B.10C.20D.40 24.在等比数列{an}中,S4=1,S8=3,则a17+ a18+ a19+ a20的值等于 A.12B.14C.16D.18 10、已知等比数列{an},公比q= 2n12 2(81)C.(8n31)D.(8n41)7772、在等比数列{an}中,a11,an152,前n项和为sn=-341,则公比q=__,项数n=________ A. B. 3、在等比数列{an}中,已知sn48,s2n60求s3n4、已知等比数列{an}的前n项和为Sn=x·3n-1-,则x的值为.答案 【训练3】 1、设等比数列{an}的前n项和为sn,s41,s817,则an=______________ 2、各项均为正数的等比数列{an}的前n项和为sn,若sn2,s3n14,则s4n_______。 考向四等比数列的性质 【例4】►18.有等比数列中,①已知a33,a748,则a5__________.②若a52,a1010,则a15__________.③若a45,a86,则a2a10__________.16 22n (81)7 且a1+a3+„+a49=30,则a1+a2+a3+„+a50=()2 A.35B.40C.45D.50 14.设{an}是由正数组成的等比数列,公比q=2,且a1a2a3……a30=230,那么a3a6a9…a30等于 A.210B.220C.216D.215 【训练4】 考向五等比数列与等差数列的综合a3a 41a2,a3,a1 aa52【例5】►25.各项都是正数的等比数列{an}的公比q≠1,且成等差数列,则4的值是 1511511 A.2B.2C.2D.2或29、等差数列{an}中,a1,a2,a4恰好成等比数列,则 a 1的值是()a 4A.1B.2C.3D.4 【训练5】1.数列{an}是公差不为零的等差数列,并且a5,a8,a13是等比数列{bn}的相邻三项.若b2=5,则bn等于 14.已知四个数,前三个数成等比数列,和为19,后三个数成等差数列,和为12,求此四个数.例1等比数列{an}的前n项和为sn,已知a1an66,a2an1128,sn126,求n和公比q的值。 11、各项均为正的等比数列{an}中,q 553 3n1n1n1n 1A.5·(3)B.5·(5)C.3·(5)D.3·(3) 27.公差不为0的等差数列{an}中,a2,a3,a6依次成等比数列,则公比等于 A.2B.3C.2D.3 40.等比数列{an}的首项a1=1,公比q≠1,如果a1,a2,a3依次是某等差数列的第1,2,5项,则q等于 11,那么当a6时,该数列首项a1的值为()216 A.2B.3C.-3D.3或-3 A.1B.-1C.2D.- 24.三个数成等比数列,它们的积等于27,它们的平方和等于91,求这三个数。 12、三个数成等比数列,其积为216,其和为26,则此三个数为 五、巩固练习 3.等比数列an中, a29,a5243,则an的前4项和为()A. 81B.120C.168D.19 22.已知等比数列{an}中,已知a2a836,a3a715则q=______________ (3)设等比数列{an}的前n项和为Sn,若S3+S6=2S9,求数列的公比q; 19、等比数列an的前n项和为Sn,已知S1,2S2,3S3成等差数列,则an的公比为. 3.已知方程xmx 2a1a3a9 aa4a10的值为.12.已知等差数列{an}的公差d≠0,且a1,a3,a9成等比数列,则2 14.在等差数列{an}中S6=0(d≠0),如果am,am+1,a2m成等比数列,则m的值等于______.7.若an是等差数列,公差d0,a2,a3,a6成等比数列,则公比为()A.1B.2C.3D.43、成等比数列的三个数的和等于65,如果第一个数减去1,第三个数减去19,那就成等差数列,求这三个数。 4、已知三个数a,b,c成等比数列,其公比为3,如果a,b8,c成等差数列,求这三个数。 【例6】►有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数. 【训练6】、2、在2与9之间插入两个数,使前三个数成等差数列,后三个数成等比数列,求这两个数。3 x nx20的四个根组成一个首项为的等比数列,则|m-n|=2 。答案: 3.2 2.若数列{an}的前n项和Sn=3n-a,数列{an}为等比数列,则实数a的值是.答案1 14.(四川理7)已知等比数列an中a21,则其前3项的和S3的取值范围是(D)(A),1(B),01,(C)3,(D),13, 10.(浙江卷6)已知an是等比数列,a22,a5,则a1a2a2a3anan1=C 4 (A)16(14n)(B)16(12n)(C) 3232nn (14)(D)(12)33 SS6 =3,则9 =S6S3 8.(2009辽宁卷理)设等比数列{ an}的前n 项和为Sn,若 (A)2(B) (C)(D)3 例4 [2011·北京卷] 在等比数列{an}中,若a1a4=-4,则公比q=________;|a1|+|a2|+„ +|an|=________.a1a3a5a77.已知等比数列{an}的公比q= 1aa4a6a8.,则23 Sn为数列{an}的前n项和.3,a2,a34设{an}是公比大于1的等比数列,已知S37,且a13 构成等差数列. (1)求数列{an}的等差数列.,2,,(2)令bnlna3n1,n1求数列{bn}的前n项和T. 等比数列前n项和教案 导入:同学们,大家好!数学科学是一个不可分割的有机整体,它的生命力正在于各部分之间的联系,咱们在前边数列这一部分看到了很多有联系的数,排成一定顺序的数,我们重点研究了等差数列和等比数列,正是它们向我们展示了数与数之间美妙的联系,那么首先在等差数列当中,我们学习了等差数列的定义,通项公式和以及前n项求和公式,那么现在咱们一块回忆一下等差数列前n项求和公式的推导过程,在等差数列前n项求和公式的推导过程当中,我们注意到,等差数列的本质特征是从第二项起,每一项比前一项要多一个公差d,那么,再把对等的两项交换顺序后,我们又一次注意到等差数列从倒数第二项起,每一项比后一项少一个d,就是通过这样的本质特征,我们发现了等差数列各项之间的差异,那么我们通过什么样的方式来消除这样的差异呢?(停顿两秒,之后同学一起回答)把这两个式子相加,这样我们就可以得到等差数列前n项求和公式。先找差异,再消除差异,这样的方法我们称之为“倒序相加”的方法。 好,我们再来看等比数列,在等比数列中我们已经学习了它的定义,通项公式,那么接下来应该学习它的(在此停顿一秒,学生一起回答)前n项求和公式,好的,前n项求和公式。首先,我们来看这样一个问题情境,首先我们来做一个假设,假设在座的各位都是小小企业家,现在,你的公司在经营上遇到一些困难需要向银行贷款,银行和你商定,在三年内,公司每月向银行贷款一万元,为了还本付息,公司第一个月要向银行还款一元,第二个月还款2元,第三个月还款4元,„„,那么以此类推,也就是说公司每月还款的数量是前一个月的两倍。那么,你作为这个公司的负责人,你会在这个和约上签字吗?思考一下,和同桌之间讨论一下。 提问,怎么样会不会签约?那么请你吧这么一个在你的公司中遇到的问题给我们建立一个数学模型,我们可以把这个借款的过程(借款的过程也就是银行每月给你的过程,银行每月给的钱可以构成一个?)构成一个等比数列,(等比数列,好,an ,这个数列的首项?)首项是10000,(首项是10000元,)公比是1,(一共有多少项?)一共有36项。(好的,第二个,bn)首项是1元,(也就是你每个月给引港的还款也构成一个等比数列,他的首项是1,公比是?一共是多少项?) 那么你通过什么计算出我不会和银行签约,通过计算数列的和,好,首先我们来看看,在银行借给你的钱的和是?那么你还给银行的钱呢?非常好请坐 现在这位同学帮我们把这个实际问题概括成了数学问题,建立了数学模型,原来是两个等比数列的问题,我们在决定要不要和银行签约的过程也就是去比较一下银行借给我们的钱和我们还给银行的钱之间的差异,好,银行借给我们的前已经解决了,那么我们还给银行的钱又怎样计算呢,这实际上就是一个等比数列求和的问题,这也就是本节课我们要来研究的课题,等比数列前n项和,试想,如果我们掌握了这个方法,我们能精确的计算出我们还给银行的钱是多少,那么我们可以明确地做出判断我是否和银行签约,是不是? 接下来在这个36项求和的过程的当中,这个等比数列求和 等差数列求和的重要方法是倒序相加法,剖析倒序相加法的本质即整体设元,构造等式,利用方程的思想化繁为简,把不易求和的问题转化为易于求和的问题,从而求和的实质是减少了项.那现在用这种办法还行吗?若不行,那该怎样简化运算?能否类比倒序相加的本质,根据等比数列项之间的特点,也构造一个式子,通过两式运算来解决问题?第三篇:等比数列及其前n项和(学生)
第四篇:等比数列及前n项和学案
第五篇:等比数列前n项和教案[范文模版]