苏教版六年级上册数学《解决问题的策略---假设》教案

时间:2019-05-12 20:06:43下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《苏教版六年级上册数学《解决问题的策略---假设》教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《苏教版六年级上册数学《解决问题的策略---假设》教案》。

第一篇:苏教版六年级上册数学《解决问题的策略---假设》教案

解决问题的策略

——假设

教学目标:

1.使学生经历解决问题的过程,体会通过假设把复杂问题转化成简单问题的过程,初步感受假设的策略,并能运用策略解答一些实际问题。

2.使学生在运用假设的策略解决实际问题的过程中,初步感受假设的策略对于解决问题的价值,进一步发展观察、比较、分析和推理能力。

3.使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,增强学好数学的信心。

教学重点:初步学会用假设的策略解决一些含有两个未知数的实际问题。教学难点:通过假设把含有两个未知数的实际问题转化成含有一个未知数的问题。教学过程:

一、复习铺垫

小明把720毫升果汁倒入9个同样大小的杯子里,正好都倒满,每个杯子的容量是多少毫升? 指名读题

你会列式吗? 为什么这么列?

指出数量关系式:一共的容量 ÷ 杯子的个数 = 每个杯子的容量

二、探究策略

1.出示例1(先隐藏“小杯的容量是大杯的1/3”)指名读题

从题目中你知道了什么?

学生回答,教师在黑板上贴出6个小杯和1个大杯 这些数量之间有什么关系?

得出:6个小杯的容量+1个大杯的容量=720毫升 现在能不能用720毫升直接除以杯子的个数?

为什么? 如果知道什么条件就好求了呢?

指名说,出示“小杯的容量是大杯的1/3”现在你会求了吗? 2.学生尝试解决 可以用自己喜欢的方式先画一画,再做一做 教师巡视,选择有代表性的方法进行板演 3.组织交流

请板演学生说说你是怎么想的?可以利用黑板上的卡片把你的思路讲给同学们听

方法

一、假设720毫升全部倒入小杯中 学生讲完后,教师引出两个问题:

(1)为什么假设全部倒入小杯? 这样做有什么好处?

引出把两个未知量转化成一个未知量

(2)为什么一个大杯可以看作3个小杯?能不能换成4个?5个?

引出要根据题目中数量之间的关系 方法

二、假设全部倒入大杯 方法

三、用方程解

可以结合线段图来理解

x是什么?3x表示什么?根据怎样的数量关系来列方程?

刚才我们用了几种方法解决了这个问题,那你怎样才能知道自己做的对不对呢? 引出检验,学生独立完成检验 指名回答:你是怎么检验的? 刚才我们在解决这个问题的时候运用了数学上重要的策略——假设,板书课题 4.引导比较

比较一下假设的这几种思路,有什么相同点和不同点? 相同点:总量不变

都是把两个未知量转化成一个未知量

不同点:杯子的数量发生了变化 5.练习:书第69页 学生独立完成后交流 你为什么不假设全是桌子呢?

得出:假设时要根据题目合理地选择方法 6.联系旧知

其实假设这种策略同学们并不陌生,在以前的学习中也曾经运用过。(出示课件)

三、全课总结

教学反思:

1.重视数量关系的分析

学生学习策略的过程不只是解决某个问题的过程,更重要的是学习一种思想方法,让学生感受到运用假设的策略可以把复杂的数量关系简化,达到解决问题的目的,进而感受到“假设策略”的价值。本节课的开始,我由一道简单的复习题引入,既复习了基本的数量关系,又激活了学生原有的知识储备,为下面的学习做了铺垫。出示例题后,教师故意隐藏一个条件,设置一定的认知障碍,启发学生:现在还能用720毫升直接除以杯子的个数吗?学生很自然地想到,如果告诉我们大杯和小杯之间的关系,问题就好解决了,产生了把复杂问题转化成简单问题的心理需求,这样就为下面的学习活动提供了明确的目标。

2.重视学生的自主探索

探究策略的教学过程更强调的是让学生感悟和体验,只有真正地去充分感悟和体验,才能实现对于策略的领悟。在教学例题时,我没有做任何提示,而是把空间留给了学生,放手让学生用自己喜欢的方法尝试着做一做,学生把我预设到的几种方法全都想到了。然后组织学生进行交流,每一种方法我都是让板演学生自己说说解题思路。在第一位学生汇报后,教师提出两个关键性的问题:(1)为什么假设全部倒入小杯?这样做有什么好处?使学生明白,这样可以把原来的两个未知量转化成一个未知量。(2)为什么一个大杯换3个小杯?不能换成4个呢?进而理解在假设的过程中要根据数量之间的关系。在交流的过程中,不断完善解题过程,感知假设的策略和运用假设策略解决问题的步骤。让同学们进一步体会到结合使用画图在解决问题中的价值,也体现了解决问题的策略是综合而灵活的。在解决问题的同时,学生的应用策略的能力得到提高,发展他们的思维开放性与灵活性。

第二篇:新版苏教版小学数学六年级上册《解决问题的策略假设》教案

《解决问题的策略——假设》教学设计

巢湖市黄麓镇中心小学 罗云

教学内容

苏教版六上教科书第68--69页例1和“练一练”,第72页第1-3题

教学目标

1、使学生经历解决问题的过程,体会通过假设把复杂问题转化成简单问题的过程,初步感悟假设的策略,并能用策略解答一些问题。

2、使学生在运用假设的策略解决实际问题的过程中,初步感受假设的策略对于解决问题的价值,进一步发展观察、比较、分析和推理的能力。

3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,增强学好数学的信心。

教学重难点

感受假设策略的价值,并会用假设的策略灵活解决问题。

教学准备:课件 教学时间:1课时 教学过程

一、复习铺垫

出示下面的问题,让学生口头列示解答。

把720毫升果汁,倒入9个同样大的杯子里,正好可以倒满,平均每个杯子的容量是多少毫升?

提问:为什么可以用720÷9来计算? 出示例1 提问:这里还有一道题,你能解答吗? 发:和上面的一道题相比,这道题难在哪里?

揭示课题:这道题可以怎样解答呢?今天我们就来研究解决这样的实际问题的策略。(板书课题:解决问题的策略)

【设计说明:创设到果汁的问题情境,呈现对比强烈的可以直接平均分和不能直接平均分的问题,引导学生通过比较体会实际问题的结构特点,形成认知冲突,进而产生把复杂问题转化为简单问题的心理需求,激发进一步探索解决问题策略的欲望。】

二、探索策略

1.出示例题1。(1)理解题意。

谈话:请同学们先观察题中的条件和问题,想一想,根据题意,你能找到怎样的数量关系,再和小组里的同学说一说你是怎样理解这些数量关系的。

学生活动后,组织交流,并揭示:6个小杯的容量+1个大杯的容量=720毫升,大杯的1容量×3=小杯的容量,小杯的容量×3=大杯的容量。

(2)确定思路。

谈话:我们知道,在遇到比较复杂的问题时,要想办法把复杂的问题转化成简单的问题。你有办法使这个问题变得简单吗?请大家先联系刚才找到的数量关系想一想,再和同学说说你准备怎样解决这个问题。

学生按要求活动,教师巡视,并对需要帮助的学生作个别指导。反馈:你想到了怎样的解决问题的方法?请把你的想法介绍给大家。学生想到的思路可能有以下几种,结合学生的交流,分别作如下引导: 思路一:假设把720毫升的果汁全部倒入小杯。

提问:把720毫升果汁全部倒入小杯,结果会怎样?1个大杯要换成几个小杯?把大杯换成小杯后,一共需要多少个小杯?

思路二:先画线段,再解答。

提问:画图表示题意时,可以先画哪条线段?怎样画出表示1个大杯容量的线段?为什么表示1个大杯容量的线段要和表示3个小杯容量的线段画得同样长?从图中可以看出,720毫升果汁正好倒满多少小杯?

思路三:列方程解。

提问:设小杯的容量是x毫升,1个大杯的容量可以怎样表示?可以根据哪个数量关系式列方程解答?

小结:根据题中的数量关系,同学们想到了解决问题的不同思路,上面的几种思路都是抓住哪一个数量关系展开思考的?那这一过程中都要把1个大杯看作几个小杯? 指出:像这样通过假设把复杂问题转化为简单问题的方法,也是一种常用的解决问题策略。(板书:假设)

(3)列式解答并检验。

谈话:选择一种方法完成解答,并检验解题的过程和结果。完成解答后,让学生说说列式、检验的方法和结果。

【设计说明:引导学生通过题中条件和问题的梳理,找到数量关系,并说说对数量关系的理解,可以帮助学生正确地理解题意,感知题中条件和问题之间的联系,打开寻求解题方法的思路。针对解决问题的困难,启发学生思考使复杂问题变得简单大方法,既可以激活学生已有的解决问题经验,有使学生的探索活动有了明确方向,进而产生假设的需要,找到解决问题的方法。展示并交流学生中出现的不同的解决问题思路,并通过师生对话帮助学生理解,有利于学生深刻体验用假设的策略解决问题的思考过程,感受假设的策略在解决问题过程中的作用;在列式解答的同时,提出检验的要求,有利于学生加深对题中数量关系的理解,逐步养成自觉检验的良好习惯。】

(4)小结。

提问:解答例1的一开始,我们遇到了怎样的困难?是怎样解决这一困难的?解决问题时运用了什么策略?说说你对假设这一策略的认识和体验。

指出:由于题目中是吧720毫升的果汁倒入大、小不同的两种杯子中,解题时不能直接用除法算出结果。为了化难为易,我们假设把720毫升果汁全部倒入小杯,这样就使原来含有两个未知量的问题转化成只含有一个未知量的问题。

【设计说明:及时反思提炼,引导学生进一步体会“为什么假设”“怎样假设”等问题,以强化对“假设”策略的体验。】

(5)教学第二种思路。

谈话:刚才我们假设把720毫升果汁全部倒入小被,顺利解决了问题。这道题还可以怎样假设?假设把720毫升果汁全部倒入大杯,可以倒满几个大杯?你能根据这样的假设算出结果吗? 学生独立思考,列式计算,教师巡视。

指名交流解题时的思考过程,以及列式计算的过程和结果。(6)比较和回顾。

比较:请同学们比较假设全部倒入大杯和全部倒入小杯这两种假设方法,想一想,它们有什么相同和不同的地方? 提问:通过解答上面的问题,你有哪些收获和体会?

谈话:假设是解决问题的常用策略,运用假设的策略,可以把复杂的问题转化成简单的问题。请同学们回顾一下,在过去的学习中,我们曾经运用假设的策略解决过哪些问题?

让学生先在小组里说一说,再组织全班交流。

【设计说明:假设“把720毫升果汁全部倒入大杯”的思路,由学生自己提出,并通过独立思考解决问题,促使学生再次经历和体验运用假设的策略解决问题的过程,获得对假设策略更深刻的题感悟。比较两种假设思路的联系与区别,并交流自己的收获和体会,目的是帮助学生整理用假设策略解决问题的方法,以及在解决问题过程中积累起来的经验,进一步提升对策略的认识和感悟;回顾曾经运用假设的策略解决过哪些问题,意在引导学生从策略的高度重新审视过去的学习中解决问题的过程和方法,以促进策略的内化,形成策略意识。】

2.完成“练一练”。

出示题目,让学生读一读题目,说一说题中的已知条件和问题。提问:要求桌子和椅子的单价,可以怎样进行假设? 让学生按讨论的思路完成解答,教师巡视。

让用不同思路解题的学生展示自己列式解答的方法,介绍解题时的思考过程。【设计说明:想让学生说一说解题时可以怎样假设,再独立完成解答,并交流不同的假设思路,突出了课本的教学重点,有利于强化学生对假设策略的体验。】

三、巩固练习

做练习十一第1题。

让学生独立完成填空,再指名说说填空时的思考过程和结果。做练习十一第2题。

出示题目,让学生读一读,说一说题中的条件和问题,并要求学生画线段图表示题中的条件和问题。

提问:解决这个问题,你想怎样假设?如果假设全部用小货车来运,一共需要多少辆?假设全部用大货车来运呢?

让学生完成书上的填空,并列式解答,教师巡视。指名说一说是怎样进行假设的,怎样列式解答的。

【设计说明:围绕假设策略的重点,设计针对性强、层次鲜明的练习,引导学生经历运用假设策略解决实际问题的过程,获得对假设策略的深刻感悟和体验,不断积累解决问题的经验,增强运用策略的意识,提高分析和解决问题的能力。】

四、课堂总结。

提问:今天这节课我们学了什么?你有哪些收获和体会?

五、作业

练习十一第3题。

附:板书设计

解决问题的策略——假设 两个未知量→一个未知量

6个小杯: 1个大杯:

720毫升

【教学总结】

本节课关注学生的认知起点,充分利用学生已有的学习经验,为学生提供发现问题、提出问题和自主解决问题的机会。让学生经历感知策略、体验策略、形成策略、运用策略的过程。在学生形成“假设的策略”的同时,渗透等量代换的思想,发展数学思考。具体体现在以下几个方面:

1.充分经历解决问题的过程,体会策略。

“策略”属程序性知识,它无法直接通过讲解、示范等方式从外部输入,而必须在学生充分经历探索的过程,不断积累活动经验的基础上在内部产生。本节课中,问题呈现后,教师没有做任何分析、提示,把空间留给了学生,让学生完整经历解决问题的过程。尽管此时学生没有意识到假设策略的运用,有些学生可能一时还找不出解决问题的有效方法,但经历了就会有体验,而这种体验正是本课得以精彩展开的宝贵资源,也是学生在下环节活动中体会假设策略价值的基础和关键。

2.有效反思解决问题的过程,提升策略。

解决问题不是我们的最终目的,而是要进一步引导学生通过对解题过程的分析、反思中提取策略。当学生交流了自己的解题方法后,教师相机引导学生进行反思,将不同解法中相同的策略元素“假设”提取出来:第一位学生汇报后,教师以“你觉得这位同学在解答时最关键的步骤是什么?”的问题,引导学生开始关注“1个大杯换成3个小杯”;有学生说可以画线段图,教师又引导学生关注“用这样的3小段表示大杯的容量,也就是把1个大杯换成3个小杯”。这样就成功地使学生本来无意识的策略明晰化,逐步形成策略。

3.重视数量关系的分析,理解策略。

学生学习策略的过程不只是解决某个问题的过程,更重要的是学习一种思想方法,让学生感受到运用“假设的策略”可以把复杂的数量关系简化,达到解决问题的目的,进而使学生感受到“假设策略”的价值。本课的开始,教师精心设计了一道准备题:把720毫升果汁倒入9个同样大的杯子里,正好都倒满。每个杯子的容量是多少毫升?既复习了基本的数量关系,激活了学生原有的知识储备,又为下环节探索解决新问题的思路做了必要的孕伏。出示例题后,教师启发学生思考:这道题有点复杂了吧?与第1题相比,复杂在哪里?通过比较,学生很自然地想到:如果题目中只有一种杯子,问题就解决了,这就使学生下一步的活动有了明确的目标——设法把大杯换成小杯或把小杯换成大杯。分析数量关系时,教师抓住题中题目中的数量关系,引导学生经历从直觉地“换”到有条理地“换”的过程,通过“换”来实现假设,并通过交流使学生明确为什么要假设,怎样假设,进而感受到通过假设实现“消元”是必要的,也是可行的。

第三篇:解决问题的策略假设教案

《解决问题的策略—假设》教学预案

教学内容

六上教科书第68~69页例1和“练一练”,第72页第1~2题 教学目标

1、使学生经历解决问题的过程,体会通过假设把复杂问题转化成简单问题的过程,初步感悟假设的策略,并能用策略解答一些问题。

2、使学生在运用假设的策略解决实际问题的过程中,初步感受假设的策略对于解决问题的价值,进一步发展观察、比较、分析和推理的能力。

3、使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,增强学好数学的信心。教学重难点

感受假设策略的价值,并会用假设的策略灵活解决问题。教学过程

一、复习引入

完成书第72页第1题,小结复习题的共同点(把一种量转化成另一种量),并揭示课题。

二、探索策略

1.出示例题,理解题意。

学生轻声读题后,找出题目中的已知条件和问题。2.合作学习

(1)根据要求,先独立解决问题,后小组交流。(2)学生展示自己的做法,全班交流。

(3)比较几种不同思路的相同点,初步感知通过假设的策略把两种量转化成一种量,使复杂的数量关系变简单了。3.完成练一练:1张桌子和4把椅子的总价是2700元,椅子的单价是桌子的。桌子和椅子的单价各是多少?

(1)独立练习后,展示部分学生的作业,其中可抽取一些做错的作业,让学生说说该做哪些提醒。(2)围绕下面4个问题再次感悟策略。

①这题用了什么策略?②怎么假设的③根据哪句话想到假设的④这样假设有什么好处?

三、回顾策略

1、选择:下面哪些知识运用了假设策略?(有试商、画图策略、估算、一一列举策略相关知识的题目)

2、学生自主回忆以前还在哪里用过假设策略。比如鸡兔同笼,师引出检验也用到了假设策略。

四、运用策略 书第72页第2题

1、学生独立尝试,全班交流。

2、思考第二种假设方法

3、围绕下面4个问题再次感悟策略。

①这两种方法用了什么策略?③根据哪句话想到假设的④这样假设有什么好处?

五、课堂总结 1.学生说收获

2.听故事《两个铁球同时着地》,赠言:大胆的假设,小心的求证。15

第四篇:苏教版数学_六年级上册_解决问题的策略替换和假设练习

用替换的策略解决问题

1.粮店有大米20袋,面粉50袋,共重2250千克,已知1袋大米的重量和2袋面粉的重量相等,那么一袋大米重多少千克?

2.南方果店运进苹果和雪梨一共1626千克,每箱苹果有18千克,每箱雪梨有24千克,苹果比雪梨多11箱,运进的苹果和雪梨各是多少箱?

3.1个西瓜的重量是1个苹果的12倍,小王买了2个西瓜和36个苹果,共重18千克。1个苹果重多少千克?1个西瓜重多少千克?

4.学校买来4个篮球和6个排球,共付228元,已知每个篮球比每个排球贵12元,两种球的单价各多少元?

5.6只小猪和5只小羊共重112千克,已知2只小猪的重量等于3只小羊的重量,求每只小猪和每只小羊的重量?

6.8块达能饼干的钙含量相当于一杯牛奶的钙含量。小明早餐吃了12块饼干,喝了1杯牛奶,钙含量共计500毫克,你知道每块饼干的钙含量大约是多少毫克吗?

用假设的策略解决问题

1.某人徒步旅行,平路每天走25千米,山路每天走15千米,他15天共走了295千米。这期间他走了多少天山路?

2.12张乒乓球台上共有34人在打球,问:正在进行单打和双打的台子各有几张?

3.小芳家养了鸡和兔共100只,如果鸡和兔共有248条腿,那么鸡和兔各有多少只?

4.学校买了50本笔记本,其中一部分价格是每本1.5元,另一部分价格是每本2元,买这些本子共用了88元,两种笔记本各买了多少本?

5.一次数学竞赛共20题,规定做对一题得5分,做错一题倒扣3分,不做的题不得分。小红在这次竞赛中全部题都做了,总分是84分,她做错了几题?

6.甲地到乙地的车票每张33元,甲地到丙地的车票每张52元。某单位买了这两种车票共10张,用去406元。两种车票各买了多少张?

7.甲数与乙数的和是73,甲数的4倍与乙数的6倍的和是388。甲乙各是多少?

第五篇:新苏教版数学六年级上册解决问题的策略假设教学设计

优质文档

解决问题的策略——假设

教学内容:教材第68-69页例1和“练一练”,第72页第1-3题。教学目标:

使学生经历解决问题的过程,体会通过假设把复杂的问题转化成简单问题的过程,初步感悟假设的策略,并能运用策略解决一些实际问题。使学生在运用假设的策略解决实际问题的过程中,初步感受假设的策略对于解决问题的价值,进一步发展观察、比较、分析和推理等能力。

使学生进一步积累解决问题的经验,增强解决问题的策略意识,获得解决问题的成功体验,增强学好数学的信心。教学重点:理解相关实际问题的数量关系,初步学会运用假设的策略解决一些含有两个未知数的实际问题。

教学难点:通过假设把含有两个未知数的实际问题转化成含有一个未知数的问题。教具准备:教学课件。教学过程:

一、复习铺垫

请大家快速口答:小华把720毫升果汁倒入9个同样容量的小杯里,正好都倒满,每个小杯的容量是多少毫升?

小华把720毫升果汁倒入3个同样容量的大杯里,正好都倒满,每个大杯的容量是多少毫升? 看来这两题对大家来说都是小case呀,我们再看一道题(出示例1.)指名读题,说说你收集到了哪些信息?

提问:和上面两道题相比,这道题复杂在哪里?(板书:两种未知量)今天这节课,我们就通过解决实际问题,研究解决问题的策略(揭示课题:解决问题的策略)。

二、探索策略

1、教学例1。

(1)理解数量关系。

提问:你是怎样理解题中数量之间的关系的?同桌互相说一说。交流:怎样理解题中数量之间的关系?

明确:根据“720毫升果汁倒入6个小杯和1个大杯,正好都倒满”,可以知道6个小杯的容量+1个大杯的容量=720毫升

“小杯的容量是大杯的”就是大杯的容量是小杯的3倍,也就是1个大杯的容量=3个小杯的容量。(2)确定思路。

你准备怎样解决这个问题?小组里讨论一下,每人都要发表自己的想法。学生交流汇报,屏幕相机出示(3)虽然大家想法很多,有直接思考的,有借助画图的,有列方程的,但思路都是一样的,都是假设把果汁倒入同一种杯子。板书:假设

(4)假设把720ml的果汁都倒入小杯,请选择一种方法写出解答过程并检验。(5)学生列式解答并检验,教师巡视,选择不同解答方法的学生进行板演。(6)集体评析板演的不同方法,弄清各种算法中每一步算出的是什么?

(7)讨论检验的方法。明确:检验时要看我们所求答案是否符合题目中所有的 条件:

1、看6个小杯和1个大杯的果汁是不是一共720毫升;

2、小杯的容量是不是大杯的。

相信能就一定能

优质文档

(4)小结:假设把720毫升果汁全部倒入小杯,这样就使原来含有两个未知量的问题转化成只含有一个未知量的问题。(板书:一个未知量)(5)教学第二种思路。这道题还可以怎样假设?

交流思考过程,学生列式解答。2.比较和回顾。

回顾用假设的策略解决问题的过程,你有什么体会?

3、小结:假设是一种策略,问题中有两个未知量,可以通过假设转化成一个未知量,使数量关系变得简单,从而使问题很容易解决;在假设的时候,要抓住两个量之间的关系进行转化,才能统一成一个未知数量;画图有助于帮助理解数量之间的关系;假设时也可以用字母表示未知量,列方程解答。

4、丰富体验,理解策略

其实在我们以前的学习中就曾经运用过假设的策略,想一想,我们曾经运用假设解决过哪些问题?

三、巩固提高

1、做“练一练”。

学生独立解答。交流:这里是怎样用假设策略的?每一步算式表示什么? 为什么这道题假设全部买椅子而不是假设全部买桌子? 指出:合理选择假设也很重要。

2、做练习十一第1题。

学生独立完成填空,同桌互相说说自己的想法。全班交流。

指出:在解决问题时,要先弄清两个数量之间的关系,再通过假设正确地把两个数量转化成一个数量。

3、做练习十一第2题。

让学生填充并交流填充结果。学生独立完成解答。

集体交流,让学生说说解答的过程。

4、练习十一第3题(机动)

四、课堂总结

今天我们的学习就结束了,请用三言两语来总结一下今天的收获。健康文档

放心下载 放心阅读

相信能就一定能

下载苏教版六年级上册数学《解决问题的策略---假设》教案word格式文档
下载苏教版六年级上册数学《解决问题的策略---假设》教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐