第一篇:对数运算性质教案
《对数的运算》教学设计
一、课标要求
理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数。
二、教材分析
1、本节的地位和作用
对数是中学数学的重要内容之一。它是在学生学习了指数的基础上进行的,是对指数的运用与巩固,对数的运算性质更是对指数的运算性质的运用;同时,对数的学习为对数函数的学习做好充足的准备,起到承前启后的作用。
2、本节的主要内容
复习对数的定义,回顾对数与指数的联系与转化,进而猜测对数的运算性质与指数的运算性质的相关性;列举指数的运算性质,并推导出对数的运算性质;例题巩固,尝试对数运算性质的应用;介绍换底公式及其推导过程。
3、本节的重、难点
重点:对数运算的运算性质的推导及运用。
难点:对数运算的运算性质的推导及运用。换底公式的推导及运用。
三、学情分析
本节面对的是高一的学生,这一年龄段的学生思维活跃,求知欲强,但在思维习惯上还不够严谨,需要教师合理的引导,充分发挥学生主动性,创设疑问,主动思考,逐步解决问题。学生已经掌握了指数的相关知识,本节更注重已有知识的运用,从而获得新知,补充已有的知识结构。
四、教学目标
1、知识与技能:
通过对数的运算性质的推导,巩固指数的运算性质,熟练指数与对数的转化,掌握对数的运算性质及其推导过程,会运用对数的运算性质进行对数的运算。
2、过程与方法:
经历对数的运算性质的推导,运用类比的数学思想,猜想并证明三个运算性质,尝试运用性质求解例题,体验对数的运算性质的运用。
3、情感、态度与价值观:
由指数、对数的联系入手,善于寻求事物之间的联系;在知识探究的过程中养成合理猜想、大胆探索和实事求是的精神,感受学习数学的乐趣。
五、教学方法
本节课采用问题探究式教学方法。教师引导学生由指数的运算性质出发,运用对数的定义,得出对数的一个运算性质,注重如何引导;其余由学生独立思考并类比上述过程得出,发现问题,自主探究,从而解决问题。
六、教学理念
建构主义:本节课是在指数的运算性质、对数的定义和对数与指数的转化上进一步学习的,通过对已有知识的复习和巩固,加深学生对已有知识的理解,同时降低新知识的难度,利于学生掌握。
七、教学过程
1、复习巩固
(1)对数的定义 一般地,如果ax=N(a>0且a≠1),那么数x叫做以a为底N的对数,记作:x=logaN
(2)指数与对数的转化
ax=N(a>0且a≠1)
x=loga N 设计意图:回顾对数定义的形成,加深指数到对数的转化意识。并将其迁移到对数的运算性质的推导过程中。
(3)指数的运算性质(积、商、幂)
am·an=am+n ama n =am+n(am)n =amn 设计意图:复习指数的运算性质,为对数的运算性质的推导做准备。同时,暗含对数运算性质的研究方向:积、商、幂。
2、探究对数的运算性质
(1)积的对数:
loga(M∙N)=logaM+logaN 推导:am·an=am+n
令M=am,N=an,则M·N=am+n
由对数的定义可得:
logaM=m,logaN=n, loga(M∙N)=m+n
由m,n的等量关系可得:
loga(M∙N)=logaM+logaN 设计意图:引导学生推导,点明每一步的方法及依据。利于学生理解和掌握,同时为下一步独立推导性质2做铺垫。
(2)请同学们根据积的对数的运算法则,猜测第二条性质,即商的对数。并仿照上述过程推导。
猜测:积变商,和变差,即
loga(M N)=logaM−logaN 推导:am a n=am+n
令M=am,N=an,则M N=am−n
由对数的定义可得:
logaM=m,logaN=n, loga(M N)=m-n
由m,n的等量关系可得:
loga(M N)=logaM−logaN
设计意图:这一部分先由教师提问,学生思考得出运用“指数的运算性质”第二条,再由学生独立思考、推导,得出结论。最后教师和学生一同推导一遍,能纠正学生的错误,规范书写,再一次巩固。
(3)同理推导幂的对数的运算法则 logaMn=n logaM 推导:(am)n=amn
令M=am, 则Mn=amn
由对数的定义可得:
logaM=m,logaMn=n logaM
由m,n的等量关系可得:
logaMn=n logaM
设计意图:这一部分较前两条而言,难度增加,但基本步骤仍不改变,学生已经熟悉。先由学生尝试自己推导,在一起推导一次。提升能力。
3、对数运算性质的运用
例3:用logax, logay, logaz表示下列各式:(1)logaxy z ,(2)loga x2 y z 3
(1)logaxyz =logaxy-logaz=logax+logay-loga z(2)loga x2 y z 3 =loga(x2 y)-loga z3 =logax2+log a y-loga z3 =2logax+ 1 2 logay-1 3 logaz 设计意图:本题是对“对数的运算性质”的简单运用。例4:求下列各式的值:(1)log2(47 ×25)(2)lg 1005
(1)log2(47×25)=log247+log225=7log24+5log22=7×2 +5×1=19(2)lg 1005 =lg1001 5 =15lg100=2 5
设计意图:本题是对“对数的运算性质”的较复杂的运用,是一次能力的提升。
第二篇:对数的运算性质教案
房山高级中学生态循环课堂教案 高一数学
3.2.1对数的运算性质
一、教学目标
1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题; 2.通过法则的探究与推导,培养学生从特殊到一般的概括思想,渗透化归思想及逻辑思维能力;
二、教学重难点
对数的运算法则及推导与应用;
三、教学方法建议
类比联想,观察验证、推理证明
四、教学过程
教学流程
1、学生背诵:(A)对数的定义:(A)有理数指数幂的运算性质
2、(B)学生展示
(1)已知loga2=m,loga3=n,求amn的值.
(2)设logaM=m,logaN=n,能否用m,n表示loga(M·N)呢?观察教材P75中3-2-1中的数据,可以发现对数的哪些运算性质:
3、学生互批
学生批改,教师强调学生展示错误的问题
4、精讲归纳
对数的运算性质:(C)(1)loga(M·N)=logaM +logaN(a>0,a≠1,M>0,N>0);
(2)logMaN=logaM -logaN(a>0,a≠1,M>0,N>0);(3)logM na=nlogaM(a>0,a≠1,M>0,nR)典型例题: 例1(1)log
355125;(2)log2(2·4);
教学方法
类比联想 观察验证,推理证明
对数的运算法则
例2 已知lg2≈0.3010,lg3≈0.4771,求下列各式的值(结果保留4位小数):
(1)lg12;(2)lg2716;
五、课堂检测
1(C)求下列各式的值:
(1)lg25lg(2)log345log35
2(C)已知lg2=a,lg3=b,试用含a,b的代数式表示下列各式:(1)lg54;(2)lg2.4;
(3)教材76页练习1-5
六、教学反思
对数运算法则的应用
第三篇:对数的运算性质公开课教案
课题:对数的运算性质:积、商、幂
学科:数学
授课者:陈宝福
班级:17级烹饪6班 时间:2018年6月4日 星期一第5节
一、教学目标:
1、理解并掌握对数的运算性质,了解对数运算法则的推导;
2、能运用对数的运算性质进行化简、求值;
3、通过对数运算性质的探究与推导,培养学生从特殊到一般的概括思想,渗透化归思想及逻辑思维能力。二.教学的重点和难点 重点:对数的运算性质
难点:对数运算性质的探究,突破这一难点的关键是引导学生从特殊到一般的归纳过程
三、教学方法:探究式教学、讲授法
四、教学过程
(一)复习引入(1)对数的定义:
如果abN(a0,a1),那么b叫做以a为底N的对数,记作:blogaN,其中a叫做对数的底,N叫做真数(N0)。(2)指数式与对数式的互化:abNblogaN(3)对数的基本性质:①loga10;
②logaa1; ③N0,即零和负数没有对数。(4)常用对数与自然对数:
①log10NlgN;
②logeNlnN(e2.71828)。
思考:
1、引入对数是为了解决什么问题?
(在指数式中,已知底数a和幂N示指数b的值)
2、由指数式与对数式的互化可知:指数与对数都是一种运算,而且它们互为逆运算,而指数运算有一系列性质,那么对数运算有那些性质呢?
请学生回顾指数幂的运算性质:
(1)amanamn;(2)amanamn;(3)(am)namn
(二).创设情境、引入新课
问题:请同学们求出下列各对数的值,并思考它们之间有什么关系?(1)log33=________;log39=________;log327=__________。(2)log24=________;log216=_______;log264=__________。(3)lg2=___________;lg5=__________;lg10=___________。(4)lg3=___________;lg7=__________;lg21=___________。通过观察、分析、比较,我们可以猜想到:
loga(MN)logaMlogaN
点评:对结论加以说明,当底数相同的时候两个正数的对数之和等于这两个正数积的对数,那么这个结论是不否正确呢?如果正确怎么证明呢?接下来我们指数式与对数性的互化来证明这一结论。证明:设logaMp,logaNq 由对数的定义可得:
Map,Naq
MNapaqapq 再由对数的定义可得:
loga(MN)pq
loga(MN)logaMlogaN
证明完板书:
对数的运算性质:积、商、幂的运算法则
a0,a1,M0,N0
(1)loga(MN)logaMlogaN
(两个正数积的对数=这两个正数对数的和)(2)……(3)……
点评说明:事实上,对数除了上面的这个运算性质之外,人们在对数的运算和推理过程中,还发现了两个性质,和的运算和幂的运算。(直接板书)
MlogaMlogaN aN(3)logMnnlogM(nR)
aa(2)log注意:(1)语言表达;
(2)注意等式成立的限制条件,同底,真数大于0; 如:log23log34log212log312;
lg(3)(5)lg(3)lg(5)
(3)有时必须逆向运算。
设计意图:加深学生对知识的理解,注意细节问题,避免出现公式的错误应用。
(三)例题分析:
例
1、用lgx,lgy,lgz表示下列各式:
xyx(1)lg(xyz);
(2)lg;
(3)lg3
yzz解:(1)lg(xyz)=…… 例
2、求下列各式的值:
(1)log382log32;
(2)log2(2346)
解:log382log32;
=……
(四)课堂练习:课本P87页,练习4.3.3
(五)小结:
1、本节课我们重点学习了对数的三个运算性质:积、商、幂的对数运算;
2、了解对数的运算性质在求值、化简中的简单应用。
(六)课后作业:课本P88页,习题4.3A组,第四题
板书:
2对数的运算性质
知识要点
例题分析
多媒体演示
第四篇:对数运算性质教学设计
对数的运算性质教学设计
通江县涪阳中学 杨闵
一、教学目标
(一)知识与技能目标:
1、掌握积、商、幂的对数运算性质;
2、能够熟练的运用运算性质进行简单的对数运算.(二)过程与方法目标:
1、培养学生观察、分析、归纳、推理等思维能力;
2、了解积、商、幂的对数运算性质的推导方法.(三)情感、态度与价值观:
1、让学生自主探究,感受数学的建筑美,培养学数学的兴趣,了解对数运算的实际背景;
2、通过学生亲手实践,互动交流,激发学生的学习兴趣,努力培养学生的创新意识,提高学生抽象、概括、分析、综合的能力.二、教学重点、难点
重点: 积、商、幂的对数运算性质 ;
难点:运用对数的运算性质进行简单的对数运算.三、教法学法
自主探究法、小组讨论法、讲授法、练习法、归纳演绎法.四、教具
多媒体
五、教学过程
(一)复习旧知 1.对数的定义
常用对数log10N= lg N
(log10100lg100)
N= ln(log10100lg100自然对数loge
N
(loge6 l n6)
2.对数的性质
(1)零和负数没有对数,即真数N>0;(2)1的对数是0,即loga10;(3)底数的对数等于1,即logaa1;(4)对数的恒等式:alogaNN,logbaa.b3.填空
1)log3812)lg0.00013)log328
(二)探究新知
1、观察思考:log242
log2164
log2646观察上面式子,你有什么发现?
log24log216log(2416)log264
上边的结论,用字母怎样表示?
loga(MN)logaMlogaN a>0,a≠1,M>0,N>0.证明:略.例如:log327log3log3 .2、观察思考:
1)loglog16216,28,log28
2)log283,3log28 .通过观察,你又有哪些发现?请用字母将你的发现表示出来.1)logaMNlogaMlogaNa>0,a≠1,M>0,N>0.2)logaMnnlogaM a>0,a≠1,M>0,N>0.证明:略.11lglg15例如: lg3.归纳:
对数运算性质
前提:如果a>0,a≠1,M>0,N>0.则:(1)loga(MN)loga(2)logaaMlogaN
log
M
n
M(n
R).(3) nlogaM=logaM-logaN;N4.学以致用:
25log(93)3(1)、计算
(2).用logax,logay,logaz 表示下列各式.(3).计算:1)lg5lg20;2)log336log34;
3)lg2.5lg4lg10;
(4).拓展: 已知 log567a, log568和log5698的值.请计算5.小结:
1).对数的运算性质
前提:如果a>0,a≠1,M>0,N>0 ,则:
(1)loga(MN)logaMlogaN;
logaMlogaNloga(MN).推而广之:
loga(N1N2Nk)logaN1logaN2logaNk(Nk>0,k1,2,3,).(2MlogaM-logaNloga().N
(3Mloga=logaM-logaN;NlogaMnnlogaM(nR).2).灵活运用对数的运算性质来解决实际问题.例如:log2(x+1)+log2(x-2)=2 6.作业
P68的练习的第2、3题.
第五篇:对数及其运算说课稿
《对数及其运算》说课稿
贺 燕
本节是北师大版数学必修一第三章第四节内容,这节课对数的概念是在之前指数运算和指数函数的学习基础之上展开学习的,对数首先作为一种运算是由指数式引出的,在这个式子中已知一个数和它的指数求幂的运算就是指数运算,而已知一个数和它的幂求指数就是对数运算,(而已知指数和幂求这个数的运算就是开方运算)所以从方程角度来看待的话,这个式子有三个量,知二求一,恰好可以构成以上两种运算,所以引入对数运算是很自然的,也是很重要的,此外对数作为一种运算,除了认识运算符号“log”以外,更重要的是把握运算法则,以便正确完成各种运算,由于对数和指数在概念上相通,使得对数法则的推导应借助指数运算法则来完成,既掌握了推导过程又加深了“指对”关系的认识,这点要特别予以关注。
学情分析:对数运算符号的认识和理解是学生认识对数的一个障碍,其实与之前学生学习过的加减乘除等符号一样,表示一种运算,不过对数的运算符号写在前面,学生不习惯,所以在认识上感到困难。
本节重点是理解对数的概念,理解和掌握对数的性质,掌握对数式和指数式的互化。难点是对数求值。
教学方法和手段:采用合作探讨式教学方法,结合学生自主练习。教学过程的设计:
为尽可能地让学生经历知识的形成与发展过程,更好地使不同层次的学生对“对数的概念”这一知识更好的理解,结合本单元教材的特点,教学中采用了“自主合作探究”的教学模式,本节课教学过程分为六部分:问题引入,概念深化,应用举例,巩固训练,归纳小结,布置作业。六个教学环节穿插运用。
本节讲对数的定义和运算性质的主要目的是为了学习对数函数,对数概念与指数概念有关,是在指数概念的基础上定义的,在一般对数定义logaNb,a(a0,a1)之后,给出两个特殊的对数:常用对数,和自然对数,这样既为学生以后读有关的科技书给出了初步知识,也使教材大大简化,只保留到学习对数函数知识够用即可。