浙教版七年级上有理数乘法的教案

时间:2019-05-12 20:49:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《浙教版七年级上有理数乘法的教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《浙教版七年级上有理数乘法的教案》。

第一篇:浙教版七年级上有理数乘法的教案

2.3 有理数的乘法(二)

一、教学目标

1、经历探索有理数乘法的运算律的过程,发展学生观察、归纳等能力。

2、理解并掌握有理数乘法的运算律:乘法交换律、乘法结合律、分配律。

3、能运用乘法运算律简化计算,进一步提高学生的运算能力。

二、教学重点、难点 重点:乘法的运算律

难点:灵活运用乘法的运算律简化运算。.三、教学过程

(一)回顾复习,引入课题

21151

1、计算:16 211(3)(-4)×7×0 4100.16

35326你能说出各题的解答根据吗?叙述有理数的乘法运算的法则是什么?多个不为0的有理数相乘,积的符号怎样确定?

有理数的乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘,积为0。几个不等于0的因数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个因数为0,积就为0。

2、学生练习:简便计算,并回答根据什么?

(1)125×0.05×8×40(小学数学乘法的交换律和结合律.)

5571(2)336(小学数学的分配律)

9612

23、上题变为(1)(-0.125)×(-0.05)×8×(-40)

5571(2)336

96122能否简便计算?也就是小学数学的乘法交换律和结合律、分配律在有理数范围内能否使用?

[引出课题:有理数的乘法(二)]

(二)交流对话,探索新知

4、多媒体显示:学生练习:计算下列各题:(1)(-5)×2;(2)2×(-5);

(3)[2×(-3)]×(-4);(4)2×[(-3)×(-4)] 1(5)32;

31(6)323

3在进行加、减、乘的混合运算时,应注意:有括号时,要先算括号里面的数,没有括号时,先算乘法,后算加减。

比较的结果.:(1)与(2);(3)与(4);(5)与(6)的计算结果一样.计算结果一样,说明了什么? 生:说明算式相等。即:(1)(-5)×2=2×(-5);(2)[2×(-3)]×(-4)=2×[(-3)×(-4)];

11(3)32=323

33由(1),我们可以得到乘法交换律;由(2),可以得到乘法结合律;由(3),可以得到分配律。

师:乘法的运算律在有理数范围内还成立吗?大家每人写一些不同的数据来试一试。(学生活动。)乘法的运算律在有理数范围内成立。

5、这节课我们探讨的乘法运算律在有理数运算中的应用。我们首先要知道乘法运算律有哪几条?能用文字叙述吗?

乘法运算律有:乘法的交换律、乘法的结合律、分配律等三条.多媒体显示:乘法的交换律.:两个数相乘,交换因数的位置,积不变;

乘法的结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变; 分配律:一个数与两个数的和相乘,等于把这个数分别与这两数相乘,再把积相加。

乘法的交换律和结合律仅涉及一种运算,分配律要涉及两种运算。你能用字母表示乘法的交换律、结合律,分配律吗? 如果a、b、c分别表示任一有理数,那么: 乘法的交换律:a×b=b×a.乘法的结合律:(a×b)×c=a×(b×c)分配律:a×(b+c)=a×b+a×c 练习:多媒体显示 下列各式中用了哪条运算律?如何用字母表示?(1)(-5)×3=3×(-5)

292925362536(2)[-+]+(-)=(-)+[+(-)]

7737372121(3)(-6)×[+(-)]=(-6)×+(-6)×(-)323255(4)[29×(-)]×(-12)=29×[(-)×(-12)]

66(5)(-8)+(-9)=(-9)+(-8)

(答案多媒体显示,略)

运算律在计算中起到了简化运算的作用.那我们看刚才做的5个题中,计算等号右边比较简便还是计算等号左边比较简便?(略)

6、新知应用 乘法的运算律在有理数运算中的应用 例

1、简便计算(1)(-0.125)×(-0.05)×8×(-40)

5571(2)336

96122 师生共析(1)题先确定符号,再算绝对值;先用乘法的交换律,然后用结合律进行计算。

(2)题用分配律。运用运算律,有时可使运算简便。解:(1)(-0.125)×(-0.05)×8×(-40)=-0.125×0.05×8×40 =-0.125×8×0.05×8×40(乘法的交换律)=-(0.125×8)×(0.05×40)(乘法的结合律)=-1×2=—2 5571(2)336

96122=155736336363636(分配律)29612=-18+108+20-30+21 =149-48=101 例

2、计算

51(1)1237 26100.1

63124330 44.9912

235分析:(1)(2)用乘法的交换、结合律;(3)(4)用分配律,4.99写成5-0.01 学生板书完成,并说明根据什么?略

3、某校体育器材室共有60个篮球。一天课外活动,有3个班级分别计划借篮球总数的和

11,231。请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个? 4解:

111601234

111601606060234=60-30-20-15 =-5 答:不够借,还缺5个篮球。练习巩固:第41页1、2、7、探究活动(1)如果2个数的积为负数,那么这2个数中有几个负数?如果3个数的积为负数,那么这3个数中有几个负数?4个数呢?5个数呢?6个数呢?有什么规律?

(2)逆用分配律 第42页

5、用简便方法计算

(三)课堂小结

通过本节课的学习,大家学会了什么?

本节课我们探讨了有理数乘法的运算律及其应用.乘法的运算律有:乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理数的运算中,灵活运用运算律可以简化运算.(四)作业:课本42页作业题

乐成二中 陈也已

第二篇:有理数的乘法 (新人教七上)教案

有理数的乘法(2)(新人教七上)教案

以下是查字典数学网为您推荐的1.4.1 有理数的乘法(2)(新人教七上)教案,希望本篇文章对您学习有所帮助。1.4.1 有理数的乘法(2)(新人教七上)【教学目标】

1.巩固有理数乘法法则;2.探索多个有理数相乘时,积的符号的确定方法.【对话探索设计】 〖探索1〗

1.下列各式的积为什么是负的?(1)-2345(2)2(-3)4(-5)6789(-10).2.下列各式的积为什么是正的?(1)(-2)(-3)456(2)-2345(-6)78(-9)(-10).〖观察1〗 P38.观察 〖思考归纳〗

几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?(见P38.思考)与两个有理数相乘一样,几个不等于0的有理数相乘,要先确

第 1 页 定积的符号,再确定积的绝对值 〖例题学习〗 P39.例3 〖观察2〗 P39.观察 〖练习〗 P39.练习〖作业〗

P46.7.(1),(2)(3),8,9,10,11.〖补充练习〗

1.(1)若a = 3,a与2a哪个大?若 a= 0 呢? 又若 a=-3呢?(2)a与2a哪个大?(3)判断:9a一定大于2a;(4)判断:9a一定不小于2a.(5)判断:9a有可能小于2a.2.几个数相乘,积的符号由负因数的个数决定 这句话错在哪里? 3.若ab,则acbc吗?为什么?请举例说明.4.若mn=0,那么一定有()(A)m=n=0.(B)m=0,n0.(C)m0,n=0.(D)m、n中至少有一个为0.5.利用乘法法则完成下表,你能发现什么规律?

第 2 页 3210-1-2-3 39630-3 2622 1321-1-2-3 6.(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为-a,你认为哪家商店该彩电的降价的百分率大?为什么?(2)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为1.2a,你认为哪家商店该彩电的降价的百分率大?为什么?

第 3 页

第三篇:有理数乘法教案

§2.7 有理数的乘法(1)

课时课题:第二章 第七节 有理数的乘法(1)课型:新授课

授课时间: 2012年 10月 15 日,星期 一,第 一 节课 教学目标:

(1)了解有理数乘法的意义,经历探索有理数乘法法则的过程.(2)掌握有理数的乘法法则,初步发展、归纳、猜测、验证等能力.(3)知道倒数的意义.重点:

有理数乘法法则及熟练运用有理数乘法法则进行运算

难点:

确定多个有理数乘法中的符号

教法及学法指导:

本节应用“启迪诱导-自主探究”教学模式,引导学生对设计的问题进行仔细观察、主动思考、小组讨论、主动探究,最后自己得出结论,学会解决问题的方法.本节是在有理数的加减运算之后,进一步讲解有理数的乘法运算。通过生活中的实例引入关于负数乘法的运算过程,同时通过小组进行讨论,议一议,有理数乘法的同号和异号的乘法的规律,得到有理数的乘法法则,利用例1的计算巩固法则,进而引出有理数的倒数概念,通过了例2的计算,探索规律,得出有理数乘法法则的拓展规律,培养了学生的自学能力和小组探究的能力.课前准备:

制作课件,学生课前进行相关调查及预习工作.教学过程:

一、回顾旧知

师:同学们,我们大家在此以前已经学习了有理数的加法和减法运算,请看下面的题目:

投影展示 5+5+5+5=

(-5)+(-5)+(-5)+(-5)=

学生口答:5+5+5+5=20;(-5)+(-5)+(-5)+(-5)=-20 师:这样的加法能否转换为乘法,如何转化?

生:5+5+5+5可以看作4×5,(-5)+(-5)+(-5)+(-5)也可以看作4×(-5); 师:小学学习的运算是在有理数的什么范围中进行的?

(第七组)这组同学,利用的是我们课本上结论,说明我们的同学回家是预习了,学了就能用,也很好.师:通过大家的讨论,我们现在来归纳一下两个有理数相乘可以分为哪几类,他们存在什么规律?大家研究一下?

生1:有理数的乘法可分为四类:正数乘以正数;正数乘以负数;负数乘以正数;负数乘以负数。

生2:我认为他回答的不正确,应为:有理数的乘法可分为三类:

正数乘以正数;正数乘以负数;负数乘以负数。因为:正数乘以负数、负数乘以正数是一样的; 生3:我认为他们回答得还不够全面,都没考虑0。教师总结:生1:把我们已学的四种情况都概括了;

生2:把异号的两数相乘纳为一种也不错,主要是利用自己的经验;

生3:作了全面的补充,把前两位同学没考虑到的问题都想到了,说明思维很严密。

整理一下,可以分为三大类:

一、同号的两个有理数相乘

二、异号的两个有理数相乘

三、0和有理数相乘

师:下面再请大家根据刚才的内容归纳一下两个有理数相乘的乘法法则: 从一般到特殊,引导学生思考

生1:同号的两个有理数相乘符号为正,并把绝对值相乘;

生2:异号的两个有理数相乘符号为负号,并把绝对值相乘; 生3:0与任何有理数相乘,积为0。教师总结概括并板书:

两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0.

给出有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数同0相乘,都得0.

让学生自主学习发现结论,体验成功的喜悦,培养数学的学习兴趣,通过上述的结论的应用发现规律掌握规律

四、尝试做题,巩固新知

1、算一算:

(-7)×3

(-48)×(-3)(-6.5)×(-7.2)

(-3)×3 强调指出:

(1)法则只适用于两个有理数相乘;

(2)结果强调两部分:一是符号,二是绝对值;(3)比较易混的是:“负负得正”和“异号得负”。

2、典例讲析,规范做题

例1 计算:

(1)(-4)×5

(2)(-5)×(—7)

(3)(-381)×(-)(4)(-3)×(-)833教师引导学生规范解题过程

应用所学知识解决实际问题,规范解题格式,由知识上升为应用能力

第四篇:七年级上数学教案:1.4.1有理数的乘法

1.4.1有理数的乘法(3)

教学目标

1.经历猜想乘法交换律、乘法结合律、分配律的过程,培养类比推理和归纳推理能力.2.知道乘法交换律、乘法结合律、分配律,会利用它们进行简便运算.教学重点和难点

1.重点:乘法交换律、乘法结合律、分配律及其应用.2.难点:猜想分配律的过程.教学过程

(一)基本训练,巩固旧知 1.口答:

(1)1×2×3×4=

(2)1×(-2)×3×4=

(3)1×(-2)×3×(-4)=

(4)(-1)×(-2)×(-3)×4=

(5)(-1)×(-2)×(-3)×(-4)=

(6)(-1)×(-2)×(-3)×0×(-4)=

2.填空:

(1)加法的交换律:a+b= ;

(2)加法的结合律:(a+b)+c=.(二)尝试指导,讲授新课 师:前面我们学过加法交换律、加法结合律,哪一位同学能说出加法交换律、加法结合律的内容?

生:„„

(师出示下面板书)

加法交换律:两个数相加,交换加数的位置,和不变.a+b=b+a 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.(a+b)+c=a+(b+c)

师:大家把加法交换律、加法结合律的内容仔仔细细地看一遍.(生默读)

师:与加法类似,乘法交换律、乘法结合律在有理数范围内,也是成立的.请同学们根据加法交换律、加法结合律的内容,说出乘法交换律、乘法结合律的内容.生:„„(多让几位同学说,最后师和学生一起将板书中的“加”改为“乘”,将“加数”改为“因数”,将“和”改为“积”,将“+”号改为“×”号)

师:请大家一起把乘法交换律、乘法结合律读一遍.(生读)师:(指a×b=b×a)为了书写方便,以后我们把a×b中乘号省略不写,这样a×b=b×a就写成ab=ba.(板书:即ab=ba)

师:(指(a×b)×c=a×(b×c))同样乘法结合律的乘号也可以省略不写,这样(a×b)×c=a×(b×c)就写成(ab)c=a(bc).(板书:即(ab)c=a(bc))师:利用乘法交换律和结合律,我们可以对一些乘法算式进行简便运算.请看例1.例1 用简便方法计算(-25)×(-85)×(-4).师:(指例1)按顺序计算这道题,大家都会做,但运算有点复杂,怎样利用乘法交换律、乘法结合律,用简便方法计算这道题?同学们自己先试一试.(生尝试,师巡视)

师:(板书:解:(-25)×(-85)×(-4))利用乘法交换律,(指准式子)可以交换-25与-85两数的位置.(板书:=(-85)×(-25)×(-4))

师:(指准式子)利用乘法结合律,可以先计算(-25)×(-4).(-25)×(-4)等于什么?

生:100.(师板书:=(-85)×100)师:(-85)×100等于什么? 生:-8500.(师板书:=-8500)

(三)试探练习,回授调节 3.用简便方法计算:

(1)(-5)×(-4.5)×2;(2)(-)×(-0.5)×.3556

(四)尝试指导,讲授新课

师:乘法除了有交换律和结合律,乘法对加法还有分配律.(板书:分配律)什么是分配律呢?请大家完成下面的探究题.4.探究题:(1)验证5×(3+7)=5×3+5×7成立吗? 验证5×[3+(-7)]=5×3+5×(-7)成立吗?(2)观察上面两个等式的特点,你得出的结论是

___ ;

(3)你能把这一结论用数学式子表示出来吗?(生做探究题,师巡视指导,并将上面两个等式板书出来)师:现在请大家说一说各自的探究结果.容易验证,(指板书的等式)这两个等式都是成立的,通过观察、分析这两个等式的特点,你得出的结论是什么?

生:„„(多让几位同学发表看法)

师:(指板书的等式)通过观察、分析这两个等式的特点,可以得出这么一个结论:一个数同两个数的和相乘,(边讲边板书:a(b+c))等于(边讲边板书:=)把这个数分别同两个数相乘,(边讲边板书:ab ac)再把积相加.(边讲边板书:+)

师:利用分配律,我们可以对一些加减乘混合的算式,进行简便运算.例2 用两种方法计算(+-)×12.462111(师按教材中的两种解法板演讲解,然后向学生提这么一个问题:为什么括号中+-含有减法,但仍可以用分配律呢?简明

4621114 的回答是:因为减法可以转化为加法,减可以看成加-,所以可

2211以用分配律)

(五)试探练习,回授调节

5.用两种方法计算18×(-+).9637

51(六)归纳小结,布置作业

师:本节课我们学习了乘法交换律、乘法结合律、分配律,利用交换律、结合律、分配律,可以对一些算式进行简便运算.上了本节课,你有什么收获?

生:„„(多让几位同学表达个性化的看法)(作业: P33练习(2)(3))

第五篇:数学:1.6《有理数的乘法》教案2(湘教版七年级上)

1.6有理数的乘法(2)

学习目标

1、通过自己动手实际操作,证明有理数运算中乘法的交换律、结合律以及分配律依然成立;

2、培养积极参与对数学问题的讨论的能力,敢于发表自己的观点,并用实例来给予证明,对数学有好奇心与求知欲。

重点:理解有理数乘法依然满足交换律、结合律与分配律,并会利用它们进行简化运算。难点:运用乘法的交换律、结合律、分配律进行简化运算的原则。

学习过程

一、复习回顾

1、有理数乘法法则:

2、计算

(1)(-78)×5=(2)(-8)×(-2.5)=

3、小学学过的乘法运算率包括___________、___________和___________。

二、自主探究

小学时我们已学过乘法的交换律、结合律、分配律等一些运算律,这些运算在有理数的范围内仍然适合吗?这节课就来学习——乘法的运算律。

1、做一做:计算下列各题,并比较她们的结果。

(1)(-7)×8与8×(-7)(2)()(5

3995)与()()10103

表明:

2、[(-4)×(-6)] ×5与(-4)×[(-6)×5]结果相等吗?

表明:

3、5×[(-7)+11]与5×(-7)+5×结果相等吗? 55

表明:

归纳:由上面的几道题,我们已经知道了在有理数运算中,乘法的交换律、结合律以及分配律均成立。请用字母表示乘法的交换律、结合律与分配律:

乘法的交换律:

第1页(共3页)

乘法的结合律:

乘法的分配律:

4、应用举例

计算:(1)[()](24)(2)(7)()

思考:这两道题如何计算能相对简便一些? 563843514

353(24)20(9)11868

545410()()()(2)原式=(7)143233解:(1)原式=[() ](24)()(24)

交换律、结合律、分配律进行简便运算的原则?

能约分的、凑整的、互为倒数的数要尽可能的结合在一起。

三、随堂练习

1、(2)(78)5

2、(8)(7.2)(2.5)

3、(100)(56512328)

4、3.1416×7.5944+3.1416×(-5.5944)10525

1815

5、-4×(-7)×(-125)

6、919

四、小结

在有理数运算中乘法满足交换律结合律、以及分配律,使用它们的原则是能约分的、凑整的、互为倒数的数要尽可能的结合在一起。

五、当堂训练

1、用简便的方法计算: ①(8)(8)(7)(8)158

②()

④(3737371255115()21③(0.25)0.5(80)(36)77227753711)(36)⑤999()9641899

111111(1)()()2223232、观察下列各式:(1)

11111111()()()()34344545

……

①你发现的规律是___________(用字母表示)

②用你发现的规律计算:(1)

1111111()()() 2233420082009

下载浙教版七年级上有理数乘法的教案word格式文档
下载浙教版七年级上有理数乘法的教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    有理数的乘法教案

    有理数的乘法教案 二、教学目标: (1) 解有理数乘法的意义,掌握有理数乘法法则中的符号法则和绝对值运算法则,并初步理解有理数乘法法则的合理性; (2) 根据有理数乘法法则熟练地......

    有理数的乘法教案

    第十八课时 有理数的乘法(2) 【学习目标】 1.掌握多个有理数相乘的积的符号法则; 2.掌握有理数乘法的运算律,并利用运算律简化乘法运算; 【学习方法】自主探究与合作交流相结合。......

    有理数的乘法教案

    学科:数学 教学内容:有理数的乘法 【学习目标】 1.经历探索有理数乘法法则及运算律的过程,发展观察、归纳、猜测、验证等能力. 2.会进行有理数的乘法运算,能运用乘法运算律简化计算......

    有理数的乘法教案

    有理数的乘法教案 知识目标:有理数乘法运算 能力目标:能确定几个不是0的有理数乘积运算的符号,进行有理数运算;运用乘法的分配律进行有理数的乘法计算; 情感态度和价值观:......

    有理数乘法法则教案[范文大全]

    有理数乘法法则教学探讨 由于引进了负数,七年级对数系的认识范围扩大到了有理数。有理数乘法法则的教学难点所在,就是运算的因式含有了负数,如何自然 由原来正数的乘法过渡到带......

    有理数的乘法教案

    www.xiexiebang.com 中考资源网 有理数的乘法(1)教案 教学目标: 1、让学生了解有理数乘法的意义,掌握有理数乘法法则,并能熟练、准确地有理数乘法法则进行有理数乘法运算。 2、通......

    有理数乘法的教案(范文大全)

    (一)学习与导学目标1、知识积累与疏导:通过蜗牛爬行模型的演示,循序渐进,导出有理数乘法法则。认知率100%。毛2、技能掌握与指导:能运用有理数乘法法则进行计算,掌握两个有理数相......

    有理数的乘法教案大全

    教学目的:1、要求学生会进行有理数的加法运算;2、使学生更多经历有关知识发生、规律发现过程。教学分析:重点:对乘法运算法则的运用,对积的确定。难点:如何在该知识中注重知识体......