第一篇:新湘教版七年级上有理数第十一课时有理数的乘法[定稿]
第十一课时 有理数的乘法(2)
一、教学目标:
(一)知识与技能:
1、理解和掌握乘法交换律,乘法结合律和乘法分配律
2、能应用运算律使运算简便;
(二)过程与方法:
使学生在合作交流中对运算定律的认识由感性认识逐步发展到理性认识,合理构建知识。
(三)情感态度与价值观:培养学生分析、推理能力,培养学生探索规律的欲望和学习数学的
三、教学重难点:
1、教学重点:理解和掌握乘法交换律,乘法结合律和乘法分配律
2、教学难点:灵活运用乘法的运算律简化运算
三、教学过程:
(一)创设情景,导入新课:
同学们,还记得我们以前学过的乘法运算率吗?请观察下面的式子: 3×5是否等于5×3(相等,满足交换律)
(3×5)×2是否等于3×(5×2)(相等,满足结合律)5 ×(3 + 7)是否等于5 ×3 + 5×7(相等,满足分配律)
引入了负数后,乘法的运算侓是否适用?这节课,我们就来学习第一章中的第四节有理数的乘法(二)
(二)合作交流,解读探究
1、探究乘法交换律:
计算:(-2)×4 与 4×(-2)你发现了什么? 乘法交换律:两个数相乘,交换因数的位置,积不变。乘法交换律:ab=ba
2、探究乘法结合律:
计算:(1)[(-2)×(-3)]×(-4)与(-2)× [(-3)×(-4)](2)()()6与()()6
4994从上面的计算中你发现了什么?
乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。乘法结合律:(ab)c=a(bc)根据乘法交换律和结合律可以推出:三个以上有理数相乘,可以写成这些数的连成积。对于连成积,可以任意交换因数的位置,也可先把其中的几个数相乘; 练习:为使运算简便,如何把下列算式变形? 344317537)×1.25×(-8);
2、()36 2096418533、(-10)×(-8.24)×(-0.1);
4、()2.4
651、(
3、探究乘法结合律:
计算:(1)(6)4(9)与(6)4(6)(9);
(2)5×[3+(-7)]与5×3+5×(-7)。
通过计算你能发现什么吗?
乘法结合律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。乘法分配律:a(b+c)=ab+ac 根据分配律可以推出:一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加。
练习:为使运算简便,如何把下列算式变形?
17537)×1.25×(-8);(2)()36 209641853(3)(-10)×(-8.24)×(-0.1);
(4)()2.4;
65(1)(
4、几个有理数相乘的积的符号法则
计算,并观察下面各题的计算结果,找一找积的符号与什么有关?
(1)1×2×3×(-4)×(-5);(2)1×2×(-3)×(-4)×(-5);(3)1×(-2)×(-3)×(-4)×(-5);(4)(-1)×(-2)×(-3)×(-4)×(-5)。说明:(2),(4)等题积为负数,负因数的个数是奇数个;(1),(3)等题积为正数,负因数个数是偶数个。因此可得到:
几个有理数相乘的积的符号法则:几个不等于0的数相乘,当负因数个数是奇数时,积为负;当负因数个数是偶数时,积为正。
计算:(1)(-2)×(-3)×0×(-4);(2)2×0×(-3)×(-4)。引导学生由以上计算归纳:几个有理数相乘,有一个因数为0,积就为0。
继而教师强调指出,以后进行有理数乘法运算,必须先根据负因数个数确定积的符号后,再把绝对值相乘,即先定符号后定值。
(三)应用迁移,巩固提高 例1计算(1)(1111179 --+)×60;(2)99234518171写成-100+,再利1818(3)-3.14×35.2+6.28×(-23.3)-1.57×36.4 分析:第(1)小题利用乘法分配律;(2)题应把99用乘法分配律.(3)题逆用结合律,学生活动:在练习本上独立完成,并与同伴交流
教师活动:(1)鼓励学生独立完成;(2)引导学生观察算式,尽量利用运算律计算,(3)组织学生交流比较每人的计算过程,肯定哪种计算方法最简便 例
2、计算:
(1)310.25(2)()(10)(3.2)(5)(3)(-12.5)×(-2.5)×(-8)×4(4)(+7)×(-8)×(564515212)×0×(9)×(-4.25)883引导反思:完成计算后,说说你运用运算律解决问题的感觉.
强调:1.可以从前向后依次相乘,但这样麻烦,而利用乘法交换律、结合律简化计算;
2、第2小题要能运用结合律,把第1个和4个,第2和第3结合相乘。说明:运用乘法的运算律可以简化乘法运算,一般有以下简便方法:
(1)把互为倒数的因数结合相乘;
(2)把乘积为整数或末尾产生零的因数结合相乘(3)把便于约分的因数结合相乘(4)巧用分配律,逆用分配律 例
3、计算1111+++…+ 12233499100分析:把每项拆成两项的差;
(四)课堂练习:p34练习1、2题。
(五)总结反思:运算律的运用十分灵活,在有理数的混合运算中,各种运算律常常是混合运用的,这就要求我们要有较好的掌握运算律进行计算的能力,在平时的练习中,要观察题目特点,寻找最佳解题方法,这样往往可以减少计算量.
(六)题库:
1.计算:
(1)4725(2)(3)0.513168113(4)(5)176112(6)2.计算:(1)60.513(2)(3)14112612(4)(5)79563436(6)1.计算:
(1)-2×(-3)×(-4)(2)6(3)100×(-1)×(-0.1)(4)((5)21×(-71)×0×43=(6)2.计算:(1)14201.258(2)(3)153725105(4)A组练习
381253
55154
3736
1100.03100 100217 9181915
B组练习
×(-7)×(-5)-8)××(-1)×0.5 -9×(-11)-12×(-8)562.435
213147
第二篇:七年级上数学教案:1.4.1有理数的乘法
1.4.1有理数的乘法(3)
教学目标
1.经历猜想乘法交换律、乘法结合律、分配律的过程,培养类比推理和归纳推理能力.2.知道乘法交换律、乘法结合律、分配律,会利用它们进行简便运算.教学重点和难点
1.重点:乘法交换律、乘法结合律、分配律及其应用.2.难点:猜想分配律的过程.教学过程
(一)基本训练,巩固旧知 1.口答:
(1)1×2×3×4=
(2)1×(-2)×3×4=
(3)1×(-2)×3×(-4)=
(4)(-1)×(-2)×(-3)×4=
(5)(-1)×(-2)×(-3)×(-4)=
(6)(-1)×(-2)×(-3)×0×(-4)=
2.填空:
(1)加法的交换律:a+b= ;
(2)加法的结合律:(a+b)+c=.(二)尝试指导,讲授新课 师:前面我们学过加法交换律、加法结合律,哪一位同学能说出加法交换律、加法结合律的内容?
生:„„
(师出示下面板书)
加法交换律:两个数相加,交换加数的位置,和不变.a+b=b+a 加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.(a+b)+c=a+(b+c)
师:大家把加法交换律、加法结合律的内容仔仔细细地看一遍.(生默读)
师:与加法类似,乘法交换律、乘法结合律在有理数范围内,也是成立的.请同学们根据加法交换律、加法结合律的内容,说出乘法交换律、乘法结合律的内容.生:„„(多让几位同学说,最后师和学生一起将板书中的“加”改为“乘”,将“加数”改为“因数”,将“和”改为“积”,将“+”号改为“×”号)
师:请大家一起把乘法交换律、乘法结合律读一遍.(生读)师:(指a×b=b×a)为了书写方便,以后我们把a×b中乘号省略不写,这样a×b=b×a就写成ab=ba.(板书:即ab=ba)
师:(指(a×b)×c=a×(b×c))同样乘法结合律的乘号也可以省略不写,这样(a×b)×c=a×(b×c)就写成(ab)c=a(bc).(板书:即(ab)c=a(bc))师:利用乘法交换律和结合律,我们可以对一些乘法算式进行简便运算.请看例1.例1 用简便方法计算(-25)×(-85)×(-4).师:(指例1)按顺序计算这道题,大家都会做,但运算有点复杂,怎样利用乘法交换律、乘法结合律,用简便方法计算这道题?同学们自己先试一试.(生尝试,师巡视)
师:(板书:解:(-25)×(-85)×(-4))利用乘法交换律,(指准式子)可以交换-25与-85两数的位置.(板书:=(-85)×(-25)×(-4))
师:(指准式子)利用乘法结合律,可以先计算(-25)×(-4).(-25)×(-4)等于什么?
生:100.(师板书:=(-85)×100)师:(-85)×100等于什么? 生:-8500.(师板书:=-8500)
(三)试探练习,回授调节 3.用简便方法计算:
(1)(-5)×(-4.5)×2;(2)(-)×(-0.5)×.3556
(四)尝试指导,讲授新课
师:乘法除了有交换律和结合律,乘法对加法还有分配律.(板书:分配律)什么是分配律呢?请大家完成下面的探究题.4.探究题:(1)验证5×(3+7)=5×3+5×7成立吗? 验证5×[3+(-7)]=5×3+5×(-7)成立吗?(2)观察上面两个等式的特点,你得出的结论是
___ ;
(3)你能把这一结论用数学式子表示出来吗?(生做探究题,师巡视指导,并将上面两个等式板书出来)师:现在请大家说一说各自的探究结果.容易验证,(指板书的等式)这两个等式都是成立的,通过观察、分析这两个等式的特点,你得出的结论是什么?
生:„„(多让几位同学发表看法)
师:(指板书的等式)通过观察、分析这两个等式的特点,可以得出这么一个结论:一个数同两个数的和相乘,(边讲边板书:a(b+c))等于(边讲边板书:=)把这个数分别同两个数相乘,(边讲边板书:ab ac)再把积相加.(边讲边板书:+)
师:利用分配律,我们可以对一些加减乘混合的算式,进行简便运算.例2 用两种方法计算(+-)×12.462111(师按教材中的两种解法板演讲解,然后向学生提这么一个问题:为什么括号中+-含有减法,但仍可以用分配律呢?简明
4621114 的回答是:因为减法可以转化为加法,减可以看成加-,所以可
2211以用分配律)
(五)试探练习,回授调节
5.用两种方法计算18×(-+).9637
51(六)归纳小结,布置作业
师:本节课我们学习了乘法交换律、乘法结合律、分配律,利用交换律、结合律、分配律,可以对一些算式进行简便运算.上了本节课,你有什么收获?
生:„„(多让几位同学表达个性化的看法)(作业: P33练习(2)(3))
第三篇:浙教版七年级上有理数乘法的教案
2.3 有理数的乘法(二)
一、教学目标
1、经历探索有理数乘法的运算律的过程,发展学生观察、归纳等能力。
2、理解并掌握有理数乘法的运算律:乘法交换律、乘法结合律、分配律。
3、能运用乘法运算律简化计算,进一步提高学生的运算能力。
二、教学重点、难点 重点:乘法的运算律
难点:灵活运用乘法的运算律简化运算。.三、教学过程
(一)回顾复习,引入课题
21151
1、计算:16 211(3)(-4)×7×0 4100.16
35326你能说出各题的解答根据吗?叙述有理数的乘法运算的法则是什么?多个不为0的有理数相乘,积的符号怎样确定?
有理数的乘法法则:两数相乘,同号得正,异号得负,绝对值相乘。任何数与0相乘,积为0。几个不等于0的因数相乘,积的符号由负因数的个数决定。当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正。只要有一个因数为0,积就为0。
2、学生练习:简便计算,并回答根据什么?
(1)125×0.05×8×40(小学数学乘法的交换律和结合律.)
5571(2)336(小学数学的分配律)
9612
23、上题变为(1)(-0.125)×(-0.05)×8×(-40)
5571(2)336
96122能否简便计算?也就是小学数学的乘法交换律和结合律、分配律在有理数范围内能否使用?
[引出课题:有理数的乘法(二)]
(二)交流对话,探索新知
4、多媒体显示:学生练习:计算下列各题:(1)(-5)×2;(2)2×(-5);
(3)[2×(-3)]×(-4);(4)2×[(-3)×(-4)] 1(5)32;
31(6)323
3在进行加、减、乘的混合运算时,应注意:有括号时,要先算括号里面的数,没有括号时,先算乘法,后算加减。
比较的结果.:(1)与(2);(3)与(4);(5)与(6)的计算结果一样.计算结果一样,说明了什么? 生:说明算式相等。即:(1)(-5)×2=2×(-5);(2)[2×(-3)]×(-4)=2×[(-3)×(-4)];
11(3)32=323
33由(1),我们可以得到乘法交换律;由(2),可以得到乘法结合律;由(3),可以得到分配律。
师:乘法的运算律在有理数范围内还成立吗?大家每人写一些不同的数据来试一试。(学生活动。)乘法的运算律在有理数范围内成立。
5、这节课我们探讨的乘法运算律在有理数运算中的应用。我们首先要知道乘法运算律有哪几条?能用文字叙述吗?
乘法运算律有:乘法的交换律、乘法的结合律、分配律等三条.多媒体显示:乘法的交换律.:两个数相乘,交换因数的位置,积不变;
乘法的结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变; 分配律:一个数与两个数的和相乘,等于把这个数分别与这两数相乘,再把积相加。
乘法的交换律和结合律仅涉及一种运算,分配律要涉及两种运算。你能用字母表示乘法的交换律、结合律,分配律吗? 如果a、b、c分别表示任一有理数,那么: 乘法的交换律:a×b=b×a.乘法的结合律:(a×b)×c=a×(b×c)分配律:a×(b+c)=a×b+a×c 练习:多媒体显示 下列各式中用了哪条运算律?如何用字母表示?(1)(-5)×3=3×(-5)
292925362536(2)[-+]+(-)=(-)+[+(-)]
7737372121(3)(-6)×[+(-)]=(-6)×+(-6)×(-)323255(4)[29×(-)]×(-12)=29×[(-)×(-12)]
66(5)(-8)+(-9)=(-9)+(-8)
(答案多媒体显示,略)
运算律在计算中起到了简化运算的作用.那我们看刚才做的5个题中,计算等号右边比较简便还是计算等号左边比较简便?(略)
6、新知应用 乘法的运算律在有理数运算中的应用 例
1、简便计算(1)(-0.125)×(-0.05)×8×(-40)
5571(2)336
96122 师生共析(1)题先确定符号,再算绝对值;先用乘法的交换律,然后用结合律进行计算。
(2)题用分配律。运用运算律,有时可使运算简便。解:(1)(-0.125)×(-0.05)×8×(-40)=-0.125×0.05×8×40 =-0.125×8×0.05×8×40(乘法的交换律)=-(0.125×8)×(0.05×40)(乘法的结合律)=-1×2=—2 5571(2)336
96122=155736336363636(分配律)29612=-18+108+20-30+21 =149-48=101 例
2、计算
51(1)1237 26100.1
63124330 44.9912
235分析:(1)(2)用乘法的交换、结合律;(3)(4)用分配律,4.99写成5-0.01 学生板书完成,并说明根据什么?略
例
3、某校体育器材室共有60个篮球。一天课外活动,有3个班级分别计划借篮球总数的和
11,231。请你算一算,这60个篮球够借吗?如果够了,还多几个篮球?如果不够,还缺几个? 4解:
111601234
111601606060234=60-30-20-15 =-5 答:不够借,还缺5个篮球。练习巩固:第41页1、2、7、探究活动(1)如果2个数的积为负数,那么这2个数中有几个负数?如果3个数的积为负数,那么这3个数中有几个负数?4个数呢?5个数呢?6个数呢?有什么规律?
(2)逆用分配律 第42页
5、用简便方法计算
(三)课堂小结
通过本节课的学习,大家学会了什么?
本节课我们探讨了有理数乘法的运算律及其应用.乘法的运算律有:乘法交换律:a×b=b×a;乘法结合律:(a×b)×c=a×(b×c);分配律:a×(b+c)=a×b+a×c.在有理数的运算中,灵活运用运算律可以简化运算.(四)作业:课本42页作业题
乐成二中 陈也已
第四篇:有理数的乘法 (新人教七上)教案
有理数的乘法(2)(新人教七上)教案
以下是查字典数学网为您推荐的1.4.1 有理数的乘法(2)(新人教七上)教案,希望本篇文章对您学习有所帮助。1.4.1 有理数的乘法(2)(新人教七上)【教学目标】
1.巩固有理数乘法法则;2.探索多个有理数相乘时,积的符号的确定方法.【对话探索设计】 〖探索1〗
1.下列各式的积为什么是负的?(1)-2345(2)2(-3)4(-5)6789(-10).2.下列各式的积为什么是正的?(1)(-2)(-3)456(2)-2345(-6)78(-9)(-10).〖观察1〗 P38.观察 〖思考归纳〗
几个不是0的数相乘,积的符号与负因数的个数之间有什么关系?(见P38.思考)与两个有理数相乘一样,几个不等于0的有理数相乘,要先确
第 1 页 定积的符号,再确定积的绝对值 〖例题学习〗 P39.例3 〖观察2〗 P39.观察 〖练习〗 P39.练习〖作业〗
P46.7.(1),(2)(3),8,9,10,11.〖补充练习〗
1.(1)若a = 3,a与2a哪个大?若 a= 0 呢? 又若 a=-3呢?(2)a与2a哪个大?(3)判断:9a一定大于2a;(4)判断:9a一定不小于2a.(5)判断:9a有可能小于2a.2.几个数相乘,积的符号由负因数的个数决定 这句话错在哪里? 3.若ab,则acbc吗?为什么?请举例说明.4.若mn=0,那么一定有()(A)m=n=0.(B)m=0,n0.(C)m0,n=0.(D)m、n中至少有一个为0.5.利用乘法法则完成下表,你能发现什么规律?
第 2 页 3210-1-2-3 39630-3 2622 1321-1-2-3 6.(1)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为-a,你认为哪家商店该彩电的降价的百分率大?为什么?(2)经过调查发现,若甲商店某种彩电降价的百分率记为a,则乙商店这种彩电降价的百分率可记为1.2a,你认为哪家商店该彩电的降价的百分率大?为什么?
第 3 页
第五篇:《有理数乘法》教学设计(第1课时)
一、内容和内容解析
1.内容
有理数乘法法则.2.内容解析
有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的.与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是使原有的运算律保持不变.本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析.由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心.基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则.二、目标及其解析
1.目标
(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法.(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性.2.目标解析
达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果.达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程.三、教学问题诊断分析
有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题要使这个规律在引入负数后仍然成立,那么应有为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.上述过程中,学生对于为什么要讨论这些问题、什么叫观察下面的乘法算式、从哪些角度概括算式的规律等,都会出现困难.为了解决这些困难,教师应该在如何观察上加强指导,并明确提出从符号和绝对值两个角度看规律的要求.本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律.四、教学过程设计
问题1 我们知道,有理数分为正数、零、负数三类.按照这种分类,两个有理数的乘法运算会出现哪几种情况?
教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数.设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想.问题2 下面从我们熟悉的乘法运算开始.观察下面的乘法算式,你能发现什么规律吗?
33=9,32=6,31=3,30=0.追问1:你认为问题要我们观察什么?应该从哪几个角度去观察、发现规律?
如果学生仍然有困难,教师给予提示:
(1)四个算式有什么共同点?左边都有一个乘数3.(2)其他两个数有什么变化规律?随着后一个乘数逐次递减1,积逐次递减3.设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备.通过追问、提示,使学生知道如何观察如何发现规律.教师:要使这个规律在引入负数后仍然成立,那么,3(-1)=-3,这是因为后一乘数从0递减1就是-1,因此积应该从0递减3而得-3.追问2:根据这个规律,下面的两个积应该是什么?
3(-2)=,3(-3)=.练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.设计意图:让学生自主构造算式,加深对运算规律的理解.追问3:从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?
先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的绝对值等于各乘数绝对值的积.设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础.问题3观察下列算式,类比上述过程,你又能发现什么规律?
33=9,23=6,13=3,03=0.鼓励学生模仿正数乘负数的过程,自己独立得出规律.设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力.追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?
(-1)3=,(-2)3=,(-3)3=.练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.追问2 :类比正数乘负数规律的归纳过程,从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?
先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积.追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?
设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积.既使学生感受法则的合理性,又培养他们的归纳思想和概括能力.问题4 利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?
(-3)3=,(-3)2=,(-3)1=,(-3)0=.追问1:按照上述规律填空,并说说其中有什么规律?
(-3)(-1)=,(-3)(-2)=,(-3)(-3)=.设计意图:由学生自主探究得出负数乘负数的结论.因为有前面积累的丰富经验,学生能独立完成.问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?
学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书.追问:你认为根据有理数乘法法则进行有理数乘法运算时,应该按照怎样的步骤?你能举例说明吗?
学生独立思考、回答.如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字.设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤.例1计算:
(1);(2);(3).学生独立完成后,全班交流.教师说明:在(3)中,我们得到了
=1.与以前学习过的倒数概念一样,我们说
与-2互为倒数.一般地,在有理数中仍然有:乘积是1的两个数互为倒数.追问:在(2)中,8和-8互为相反数.由此,你能说说如何得到一个数的相反数吗?
设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘-1之间的关系(反过来有-8=8(―1)).例2 用正数、负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km气温的变化量为-6C,攀登3km后,气温有什么变化?
设计意图:利用有理数乘法解决实际问题,体现数学的应用价值.小结、布置作业
请同学们带着下列问题回顾本节课的内容:
(1)你能说出有理数乘法法则吗?
(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?
(3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则.(4)你能举例说明符号法则负负得正的合理性吗?
设计意图:引导学生从知识内容和学习过程两个方面进行小结.作业:教科书第30页,练习1,2,3;第37页,习题1.4第1题.五、目标检测设计
1.判断下列运算结果的符号:
(1)5(-3);
(2)(-3)3;
(3)(-2)(-7);
(4)(+0.5)(+0.7).设计意图:检测学生对有理数乘法的符号法则的理解.2计算:
(1)6(-9);(2)(-6)0.25;(3)(-0.5)(-8);
(4);(5)0(-6);(6)8.