第一篇:新课标人教版七年级数学上册《有理数乘法》教学设计
(一)、研究有理数乘法法则
一只蜗牛沿着直线l爬行,它现在的位置恰在l上的原点o,为区分方向,规定:向左为负,向右为正;为区分时间,规定:现在前为负,现在后为正。问题1 如果蜗牛一直以每分2cm的速度向右爬行,3分钟后它在什么位置? 学生小组讨论、思考:得出蜗牛在原点o的右侧6cm处(记为+6),可以用式子表示:(+2)×(+3)=+6 问题2 如果蜗牛一直以每分2cm的速度向左爬行,3分钟后它在什么位置? 学生小组讨论、思考:得出蜗牛在原点o的左侧6cm处(记为-6),可以用式子表示:(-2)×(+3)=-6 问题3 如果蜗牛一直以每分2cm的速度向右爬行,3分钟前它在什么位置? 学生小组讨论、思考:得出蜗牛在原点o的左侧6cm处(记为-6),可以用式子表示:(+2)×(-3)=-6 问题1 如果蜗牛一直以每分2cm的速度向左爬行,3分钟前它在什么位置? 学生小组讨论、思考:得出蜗牛在原点o的右侧6cm处(记为+6),可以用式子表示:(-2)×(-3)=+6 此外,(-2)×0=0.
综合上面各种情况,引导学生小组讨论、自己归纳出有理数乘法的法则: 两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0.
有理数乘法时更需时时强调:先定符号后定值.
(二)、运用举例,变式练习例计算:
(1)(-4)×5
(2)(-5)×(-7)
(3)(-1/5)×(-5)
方法:先确定积的符号,再把绝对值相乘 归纳得出:互倒的定义
今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正
第二篇:七年级数学上册《有理数的乘法》教学反思
上周和薛校长还有数学组的几个同事一起听了杜超老师和夏纪超老师的《有理数的乘法》这节课,感触颇深。听完课后薛校长和我们一起在数学组交流了一番。薛校长提出了两句话我比较受启发:方向比努力重要,努力比观望重要!
奔着校长的思路昨天(9、26)我试着上了同样的这节课,感觉比较成功的地方主要有两个方面:
一是课堂气氛比较活跃。七年级是新分的班,以前上的一节课(有理数的减法),感觉学生不太好调动,课堂气氛有点沉闷,就担心自己上课时,本身又不熟悉学生,学生会不会不配合。备课时充分考虑了这一点,导入设计考虑到学生的年龄特征,从学生熟悉的上下楼梯入手,激发学生的学习兴趣,教学过程中,不断鼓励他们敢于表达,勇于展示自己,以至于同学们都抢着板演,抢着回答问题。
二是学生的主体地位体现得比较充分,整节课就是以引导为主,把问题不断的“抛给学生”,让学生去思考,暴露学生的思维过程,进行适时引导。
反观这节课,最不成功的地方,应该是在乘法法则的探究过程中,我设计的是:通过观察两组算式(正数乘以正数,负数乘以正数)发现规律:两数相乘,当一个因数变成它的相反数时,乘积变成原来积的相反数。很多同学看出并有两位同学回答出了这一规律,没想到第三位同学直接说出了乘法法则“两数相乘,同号得正,异号得负,并把绝对值相乘”。说心里话,听到这位学生的回答,我真后悔再让第三位同学回答,当时我就有点懵,下面还怎么探究呀?思维急速旋转,问了一句你是怎么发现的,学生解释是通过上面两组题目对比发现。本想追问:仅仅观察了正数乘以正数,负数乘以正数就能确定任意两数相乘都适用吗?比如一个因数是0又该如何计算呢?由此我产生了一个疑问:数学课,学生自学、预习之后应该怎么上?自学、预习之后再怎么引导学生探究?
通过这节课让我进一步认识到充分备课的重要性,这节课也让我认识到,学习研究教材的重要性,领会编写专家的意图,丰富教学视野,真正做到“用教材教,而不是教教材”。同时要加强理论学习,站得高,方能看得远。
第三篇:七年级数学上册 有理数乘法运算练习题
相信自己,趁着冷静,快速答题!
人教版七年级数学上册 有理数乘法运算
1、(+14)×(-6);
2、(-12)×(134); 3、212(313);
4、(-2)×(-7)×(+5)×(17); 5、531(29)(21115)(42)
6、(-12)×(-15)×0×(123245)
7、(-125)×28.8×(2525)×(72)
8、(0.25)[(3)8(40)(13)]12.5
9、(-6)×(+8)-(-5)×(-9);
10、(2)(7)(5)(17)
11、(10)(31110250.01)
12、(311454)×(813-0.4+33); 13、5(13)(35)(513)513(135)
14、(-13)×(-6)
15、-1213×0.1
16、(+13)×(-15)
快乐的学习,快乐的考试!
相信自己,趁着冷静,快速答题!117、3×(-1)×(-)
18、-2×4×(-1)×(-3)
319、(-2)×5(-5)×(-2)×(-7)20、(-6)×(+25)×(-0.04)21、23、(-
12141425、(-+-)×-(-1)×(-)12
26、×0.2; 27、234545533)×(-2.4)×(+)24、9×(-12)6543241×(-)×(-)
22、(-2)×(-7)×(+5)×(-)4757
114328、(-7.23)×(+1)×(-1)×0; 29、1.2×(-2)×(-2.5)×(-)
3357
113554730、(-+-+)×(-24);
31、(-3)×(+)×(-1)×(-4)×[-(-)] 26812659
快乐的学习,快乐的考试!
相信自己,趁着冷静,快速答题!
32、(-100)×(-20)-(-6)
33、(-7)×(-222222)+19×(-)-5×(-)
77734、(-413)×(-112)×34
35、(-0.08)×(-2)×2×(-0.25)
36、(-354-16+78)×48
37、(-125)×(-25)×(-5)×2×(-4)×8
38、(-36)×(-4956712)
39、(-56)×(-32)+(-44)×32 40、-5×111315 41、4×(-96)×(-0.25)×1248
42、(-9)×3
43、(213)×(-0.26)
44、(-2)×31×(-0.5)45、13×(-5)×(-3)
快乐的学习,快乐的考试!3
相信自己,趁着冷静,快速答题!
46、(-4)×13×(-10)×0.5×(-3)
47、(-348)×3×(-1.8)
48、(-0.25)×(47)×4×(-7)
49、(3477)×(5)×(12)50、(-8)×4×(12)×(-0.75)51、4×(-96)×(-0.25)×148
52、(457-118+314)×56
53、(6―34―79)×36
54、(-66)×〔12122-(13)+(511)〕
55、(-36)×(4579+6-12)
56、(34)×(843-0.4)57、25×3114-(-25)×2+25×4
58、(718+34-56+7132859)×72 59、3×(214-7)×(5)×(16)快乐的学习,快乐的考试!
相信自己,趁着冷静,快速答题!
七年级上数学专题训练 有理数乘法运算
参考答案
1、84; 2、21;
3、251;
4、10;
5、; 6、0 ; 337、20; 8、1000;
9、93;
10、10; 11、0.1 ;
12、7.2; ; 14、78;
15、;
16、2 ; 17、1 ;
18、24 ; 1330269、700 ; 20、6 ;
21、;
22、10;
23、;
24、-117 ; 13、525、1 ; 26、425; 27、1 ; 28、0 ; 2931、-14 ; 32、2006;
33、-22 ; 34、398 ; 3537、1000000 ; 38、7; 39、384; 40、59;
43、0.04 ; 44、31 ; 45、5 ;
46、-20 ;
49、15 ; 50、6 ; 51、2 ;
52、-19 ;
55、25;
56、-4.7 ; 57、752 ; 58、78 ;快乐的学习,快乐的考试!5、185; 30、0.08;、2 ; 42、910 ;、-25 ;、928;、7;、2 ;、6 ;、4 ;、-121 ;
59
第四篇:七年级数学 1.2.1 有理数教学案 人教新课标版
1.2.1 有理数
[教学目标] 1.掌握有理数的概念,会对有理数按照一定的标准进行分类;
2.了解分类的标准与分类结果的相关性,初步了解“集合”的含义; 3.体验分类是数学上常用的处理问题的方法。[教学重点] 正确理解有理数的概念 [教学难点] 正确理解分类的标准和按照定的标准进行分类 [教学过程]
一、创设情境,引入新课(2分钟)在前两个学段,我们已经学习了很多不同类型的数,通过上节课的学习,又知道了现在的数包括了负数。现在请同学们任意写出3个数(找3个同学在黑板上写),把它们分类,并说出你的理由。
二、出示自学提纲(8分钟)认真阅读课本P7-8内容,完成P8练习并回答下面的问题: 有理数有几种分类方法?分类的标准是什么?
正整数、0、负整数统称_______,正分数和负分数统称__________ 整数和分数统称____________
三、检查自学效果(10分钟)
1.把下列各数填入它所属于的集合的圈内: 15,-
1213,-5,,0.1,-5.32,-80,123,2.333.9158 2.把下列数填在相应的大括号里:-4,0.001,0,-1.7,15,3.2正数集合{ …},负数集合{ …}, 正整数集合{ …},分数集合{ …}
3.0是整数吗?自然数一定是整数吗?0一定是正整数吗?整数一定是自然数吗?
四、讨论更正,合作探究(8分钟)1.学生自由更正,各抒已见。
2.引导学生讨论,说出错因和更正的道理。
3.引导学生归纳,上升为理论,指导以后的运用。
五、课堂小结(2分钟)教师指导学生总结归纳本节课所学知识
六、当堂检测(见下页)(12分钟)
七、布置作业
预习P8-9数轴,完成P14习题1.2第1题
当堂检测内容:
1.下列各数,哪些是整数?哪些是分数?哪些是正数?哪些是负数? +7,-5,7112 ,,79,0,0.67,1,+5.1 2363.最小的自然数是_______,最大的负整数是_______,最小的非负整数是_______。4.-2.18是.(A)是负数不是分数(B)不是分数是有理数(C)是负数也是分数(D)是分数不是有理数 5.下列说法正确的是.(A)零是最小的整数(B)有这样的一种数,它既是正数也是负数(C)有这样的一种数,它既不是正数也不是负数(D)有理数中有最小的数,没有最大的数
6.在下列各数中,所属集合正确的是.-2,0.23,-1,0,8,-0.1,3,-2.5 3(A)正整数集合:{0,3,8}(B)整数集合:{-2,0,3,8}(C)负数集合:,0.1,2.5(D)负分数集合:
7.图中两个圆圈分别表示正整数集合和整数集合,请写并填入两个圆圈的重叠部分.你能说出这个重叠部分表示什么数的集合吗?
正数集合 整数集合 1313
第五篇:人教七年级数学上册教案人教版-1.4.1 有理数的乘法(共)
1.4 有理数的乘除法
有理数的乘法(1)1.4.1 有理数的乘法(1)
授课时间:____________
【教学目标】 1.经历探索有理数乘法法则的过程,发展归纳、猜测等能力;2.能运用法则进行有理数乘法运算;3.能用乘法解决简单的实际问题.【对话探索设计】 〖探索 1〗(1)商店降价销售某种产品,若每件降 5 元,售出 60 件,问与降价前比,销售额减少了多少?(2)商店降价销售某种产品,若每件提价-5 元,售出 60 件,与提价前比,销售额增加了多少?(3)商店降价销售某种产品,若每件提价 a 元,售出 60 件,问与提价前比,销售额增加了多少? 〖探索 2〗(1)登山队攀登一座高峰,每登高 1km,气温下降 6℃,登高 3km 后,气温下降多少?(2)登山队攀登一座高峰,每登高 1km,气温上升-6℃,登高 3km 后,气温上升多少?(3)登山队攀登一座高峰,每登高 1km,气温上升-6℃,登高-3km 后,气温有什么变化? 〖探索 3〗(1)2×3=__;(2)-2×3=__;(3)2×(-3)=___;(4)(-2)×(-3)=____;(5)3×0=_____;(6)-3×0=_____.〖法则归纳〗 两数相乘,同号得______,异号得_______,并把________相乘.任何数同 0 相乘,都得______.〖旧课复习〗 1.满足什么条件的两个数互为倒数?0.2 的倒数是多少?7.29 的倒数呢? 2.满足什么条件的两个数互为相反数? 0.2 的相反数是多少? 〖探索 4〗 在有理数范围内,我们仍然规定:乘积是 1 的两个数互为倒数.-0.2 的倒数是多少?-7.29 的倒数呢? 的倒数是______;0 的倒数________.呢? 的倒数呢?
3._____________的两个数互为相反数._______的两个数互为倒数.若 a+b=0,则 a、b 互为_____数,若 ab=1,则 a、b 互为_____数.4.计算:(1)(-6)×4=______=____;(2)=_________=_____.
5.在数-5,1,-3,5,-2 中任取 3 个相乘,哪 3 个数相乘的积最大? 哪 3 个数相乘的积最小?