《有理数的乘法》第二课时教学设计[合集5篇]

时间:2019-05-12 20:03:02下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《有理数的乘法》第二课时教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《有理数的乘法》第二课时教学设计》。

第一篇:《有理数的乘法》第二课时教学设计

第二章 有理数及其运算

7.有理数的乘法

(二)一、学生起点分析:

学生的知识技能基础:学生在小学已经学习过四则运算的五条运算律,并初步体验到了运算律可以简化运算,具备了对非负有理数运用运算律进行简便运算的意识和技能。在本章的第四节的第二课时又熟悉了有理数的加法交换律与加法的结合律,并经历了它们的探索活动过程,具有了探索学习有理数的乘法交换律、乘法结合律、乘法对加法的分配律的基本技能基础,尤其是上节课有理数的乘法法则更是重要的知识基础。

学生的活动经验基础:学生在探究有理数加法的交换律、结合律的活动过程中,已经有了切身的体验,积累了经验,丰富了阅历,并体会到了运算律对有理数加法的简化作用,这不仅在探索方法上提供了经验基础,而且从情趣意识、求知欲望上也为本节可增添了兴趣基础。另外上节课学生在有理数乘法法则的训练过程中曾经出现的问题和解决修正的过程,也是本节课学习的有用经验。

二、学习任务分析:

教科书在学生已掌握了有理数加法、减法、乘法运算的基础上,提出了本节课的具体学习任务:探索发现有理数长法的运算律,会运用运算律简化运算过程。本节课的教学目标是:

1、经历探索有理数的乘法运算律的过程,发展观察、归纳、猜想、验证等能力。

2、学会运用乘法运算律简化计算的方法,并会用文字语言和符号语言表述乘法运算律。

3、在合作学习过程中,发展合作能力和交流能力。

三、教学过程设计:

本节课设计了六个环节:第一环节:探究猜想,引入新课;第二环节:文字表达,理解运算律;第三环节:符号表达,熟悉运算律;第四环节:体验运算律简化计算作用;第五环节:课堂小结;第六环节:布置作业。

第一环节:探究猜想,引入新课

活动内容:(1)根据有理数乘法法则,计算下列各题,并比较它们的结果: ⑴(-7)×8与8×(-7);

(-5÷3)×(-9÷10)与(-9÷10)×(-5÷3)⑵[(-4)×(-6)]×5与(-4)×[(-6)×5];

[1÷2×(-7÷3)]×(-4)与1÷2×[(-7÷3)×(-4)];

⑶(-2)×[(-3)+(-3÷2)]与(-2)×(-3)×(-2)×(-3÷2);

5×[(-7)+(-4÷5)]与5×(-7)+5×(-4÷5);

(2)通过计算积的比较,猜想乘法运算律在有理数范围内是否适用。活动目的:复习巩固有理数的乘法法则,训练学生的运算技能,通过比较结果,探究猜想乘法交换律、结合律、分配律在有理数范围内使用的结论,从而引入本节课的课题:乘法运算律在有理数运算中的应用。

活动的注意事项:在以上的活动⑴中,学生在计算过程中肯定会有一些错误,教师应事先有所预料,可采取分组竞赛的方式进行活动以激发兴趣和提高运算准确性和述度,同时教师应有针对性的巡视,对有困难的学生加以指导和帮助,并对学生的表现给出正面评价。在活动⑵中,学生经过正确计算后,自然会发现计算结果分别相等。此时,教师应出示相等的算式,最好用投影展示:

⑴(-7)×8=8×(-7);

(-3÷5)×(-10÷9)×=(—10÷9)×(-3÷5); ⑵[(-4)×(-6)]×5=(-4)×[(-6)×(-5)]; [1÷2×(-7÷3)]×(-4)=1÷2×[(7÷3)×(-4);]

⑶(-2)×[(-3)+(-3÷2)]=(-2)×3+(-2)×(-3÷2);

5×[(-7)+(-4÷5)]=5×(-7)+5×(-4÷5)。

这样便于学生观察猜想,乘法的运算律在有理数范围内适用。

第二环节:文字表达,理解运算律

活动内容:通过回忆交流,相互补充,用文字语言准确表达乘法运算律。乘法运算律有三条,分别是乘法的交换律;乘法的结合律;乘法对加法的分配律。

乘法的交换律:两个数相乘,交换因数的位置,积不变;

乘法的结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变;

乘法对加法的结合律:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。

活动目的:以讨论回顾的形式口头表达乘法运算律,一方面达到训练学生语言表达能力的目的,另一方面达到理解乘法运算律的目的,并为本课时下一环节的实施作准备。

活动的注意事项:学生在表述出现语言障碍,教师应设法给予帮助,但主要应由学生通过回忆、讨论、交流、修正、补充自己完成,而不能由教师代替。实践证明,只要相信学生,并适当引导,学生是能够完成任务的。

第三环节:符号表达,熟悉运算律

活动内容:(1)用投影片展示一组等式,请同学们判定等式成立的依据是哪条运算律,并口述对应运算律的内容。(2)思考如何用字母来表示每条运算律。下列等式成立吗?为什么?(1)(-765)×4=4×(-765);(2)[7×(-8)] 3=7 ×[(-8)×3];(3)(-5)×[1/2+(-1/3)]=(-5)×1/2+(-5)×(-1/3).你能用字母表示乘法运算律吗? 活动目的:这个环节的设计目的,一方面是让学生在具体等式中熟悉运算律,并再一次叙述运算律的内容,从而加深印象,明确应用;另一方面是让学生用符号语言来表达运算律。事实上,运算律是经过对具体算式的探索,猜想发现的一般化的表示形式,它有多种表达方法(文字语言、符号语言、图形语言),其中符号语言方法,更能简捷深刻地揭示问题的共性,有助于对一般问题的认识,而且为数学交流提供了有效途径,特别能有效地发展学生的符号感及运用符号解决问题的能力,进行推理判断的能力。

活动的注意事项:运算律的文字语言叙述一般问题不大,而符号语言的表达

学生会有困难,教师应有充分的预见性,并切实帮助学生正确的得到运算律的符号表达,至于学生采用那些字母,是否小写等等问题,教师不应求全责备,只要正确,就要鼓励,最后教师可将结论统一,用投影片展示规范的符号表达。

第四环节:体验运算律简化计算的作用 活动内容:(1)教科书第53页例3,计算:

⑴(-5÷6+3÷8)×(-24)

⑵(-7)×(-4÷3)×5÷14 用两种方法计算,并比较哪种方法较简便。

(2)教科书第53页“随堂练习”。

1、计算:

⑴ 0×(-5÷6);

⑵3×(-1÷3);

⑶(-3)×0.3 ;

⑷(-1÷6)×(-6÷7);

2、计算:⑴(-3÷4)×(-8);

⑵30×[(-1÷2)-(1÷3)];

⑶(0.25-2÷3)×(-36);

⑷8×(-4÷5)×1÷16。

活动目的:对有理数乘法法则的巩固和提高运算技能,对运算律的运用使计算简便。

活动的注意事项:例题讲解时,需对两种解法进行板书,以比较两种解法的过程,体现运算律可简化计算的作用,提高学生合理使用运算律的意识。另外对体现环节的练习题不宜补充复杂的计算题,因为有理数运算重点是对运算法则和运算律的理解,所以切记因为小数、分数的繁杂运算冲淡学生的主题,况且对于复杂的计算,我们提倡使用计算器,而不能过分讲究运算技巧,最后还应关注学生在计算过程中的情感态度,培养学生认真细心的良好习惯。

第五环节:课堂小结

活动内容:由学生进行课堂小结;⑴运算律的语言表述;⑵运算律的符号表示;⑶运算律的作用;

活动目的:培养学生的口头表达能力,提高学生的课堂主人翁精神和积极参与意识。

活动的注意事项:学生在小结过程中,可能会有畏难情绪,教师要鼓励学生

积极参与,并给予适时恰当的评价,特别要关注平时表现不积极不勇跃的同学,多给他们以帮助,鼓励和发言的机会,提高他们的自信。

第六环节:布置作业

活动内容:教科书第54页知识技能1,联系拓广1、2。活动目的:复习巩固检测本节知识,训练提高运算技能。

活动注意事项:联系拓广的第1题是乘法法则反过来思考,一方面培养学生逆向思维能力,从而进一步巩固乘法法则。另一方面是训练学生文字表达能力,一定要认真批阅这个作业,并及时反馈,纠正不当说法;第2题是训练学生符号语言表达能力,同样要关注。

四、教学反思:

1、要关注学生对有理数运算法则和运算律的理解水平,对法则和运算的学习评价,不应单纯考查记忆和具体计算,而应对运算的评价重点放在学生对算理的理解上,考察学生能否根据实际问题的特点选择合理简便的算法,2、本节习题中联系与拓广中两题带有“*”号,仅仅是面向学有余力有特殊数学学习需求的学生,并不要求所有学生都去完成它。在实际情况中也正说明这一点,收回的作业,学生的解答和理解有很大的差异,既增添批改的难度,又出现一些思维上的负面影响,所以对今后的作业布置,一定要区别对待,有所选择。

3、本节课的设计中,教师是以组作者,引导者的身份出现在每一个环节,在这个过程中培养了学生观察、归纳、验证的能力。并通过用自己的语言描述运算律,培养了学生的语言表达能力,用符号的语言描述运算律,发展了学生的符号感。在学习活动中,学生获得了成功的体验,增强了自信。

第二篇:《有理数乘法》教学设计(第1课时)

一、内容和内容解析

1.内容

有理数乘法法则.2.内容解析

有理数的乘法是继有理数的加减法之后的又一种基本运算.有理数乘法既是有理数运算的深入,又是进一步学习有理数的除法、乘方的基础,对后续代数学习是至关重要的.与有理数加法法则类似,有理数乘法法则也是一种规定,给出这种规定要遵循的原则是使原有的运算律保持不变.本节课要在小学已掌握的乘法运算的基础上,通过合情推理的方式,得到要使正数乘正数(或0)的规律在正数乘负数、负数乘负数时仍然成立,那么运算结果应该是什么的结论,从而使学生体会乘法法则的合理性.与加法法则一样,正数乘负数、负数乘负数的法则,也要从符号和绝对值来分析.由于绝对值相乘就是非负数相乘,因此,这里关键是要规定好含有负数的两数相乘之积的符号,这是有理数乘法的本质特征,也是乘法法则的核心.基于以上分析,可以确定本课的教学重点是两个有理数相乘的符号法则.二、目标及其解析

1.目标

(1)理解有理数乘法法则,能利用有理数乘法法则计算两个数的乘法.(2)能说出有理数乘法的符号法则,能用例子说明法则的合理性.2.目标解析

达成目标(1)的标志是学生在进行两个有理数乘法运算时,能按照乘法法则,先考虑两乘数的符号,再考虑两乘数的绝对值,并得出正确的结果.达成目标(2)的标志是学生能通过具体例子说明有理数乘法的符号法则的归纳过程.三、教学问题诊断分析

有理数的乘法与小学学习的乘法的区别在于负数参与了运算.本课要以正数、0之间的运算为基础,构造一组有规律的算式,先让学生从算式左右各数的符号和绝对值两个角度观察这些算式的共同特点并得出规律,再以问题要使这个规律在引入负数后仍然成立,那么应有为引导,让学生思考在这样的规律下,正数乘负数、负数乘正数、两个负数相乘各应有什么运算结果,并从积的符号和绝对值两个角度总结出规律,进而给出有理数乘法法则,在这个过程中体会规定的合理性.上述过程中,学生对于为什么要讨论这些问题、什么叫观察下面的乘法算式、从哪些角度概括算式的规律等,都会出现困难.为了解决这些困难,教师应该在如何观察上加强指导,并明确提出从符号和绝对值两个角度看规律的要求.本课的教学难点是:如何观察给定的乘法算式;从哪些角度概括算式的规律.四、教学过程设计

问题1 我们知道,有理数分为正数、零、负数三类.按照这种分类,两个有理数的乘法运算会出现哪几种情况?

教师引导学生从有理数分类的角度考虑,区分出有理数乘法的情况有:正数乘正数、正数与0相乘、正数乘负数、负数乘正数、负数乘负数.设计意图:有理数分为正数、零、负数,由此引出两个有理数相乘的几种情况,既复习有关知识,为下面的教学做好准备,又渗透了分类讨论思想.问题2 下面从我们熟悉的乘法运算开始.观察下面的乘法算式,你能发现什么规律吗?

33=9,32=6,31=3,30=0.追问1:你认为问题要我们观察什么?应该从哪几个角度去观察、发现规律?

如果学生仍然有困难,教师给予提示:

(1)四个算式有什么共同点?左边都有一个乘数3.(2)其他两个数有什么变化规律?随着后一个乘数逐次递减1,积逐次递减3.设计意图:构造这组有规律的算式,为通过合情推理,得到正数乘负数的法则做准备.通过追问、提示,使学生知道如何观察如何发现规律.教师:要使这个规律在引入负数后仍然成立,那么,3(-1)=-3,这是因为后一乘数从0递减1就是-1,因此积应该从0递减3而得-3.追问2:根据这个规律,下面的两个积应该是什么?

3(-2)=,3(-3)=.练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.设计意图:让学生自主构造算式,加深对运算规律的理解.追问3:从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?

先让学生观察、叙述、补充,教师再总结:都是正数乘负数,积都为负数,积的绝对值等于各乘数绝对值的积.设计意图:先得到一类情况的结果,降低归纳概括的难度,同时也为后面的学习奠定基础.问题3观察下列算式,类比上述过程,你又能发现什么规律?

33=9,23=6,13=3,03=0.鼓励学生模仿正数乘负数的过程,自己独立得出规律.设计意图:为得到负数乘正数的结论做准备;培养学生的模仿、概括的能力.追问1:要使这个规律在引入负数后仍然成立,你认为下面的空格应各填什么数?

(-1)3=,(-2)3=,(-3)3=.练习:请你模仿上面的过程,自己构造出一组算式,并说出它的变化规律.追问2 :类比正数乘负数规律的归纳过程,从符号和绝对值两个角度观察这些算式(指师生给出的所有含正数乘负数的算式),你能说说它们的共性吗?

先让学生观察、叙述、补充,教师再总结:都是负数乘正数,积都为负数,积的绝对值等于各乘数绝对值的积.追问3:正数乘负数、负数乘正数两种情况下的结论有什么共性?你能把它概括出来吗?

设计意图:让学生模仿已有的讨论过程,自己得出负数乘正数的结论,并进一步概括出异号两数相乘,积的符号为负,积的绝对值等于各乘数绝对值的积.既使学生感受法则的合理性,又培养他们的归纳思想和概括能力.问题4 利用上面归纳的结论计算下面的算式,你能发现其中的规律吗?

(-3)3=,(-3)2=,(-3)1=,(-3)0=.追问1:按照上述规律填空,并说说其中有什么规律?

(-3)(-1)=,(-3)(-2)=,(-3)(-3)=.设计意图:由学生自主探究得出负数乘负数的结论.因为有前面积累的丰富经验,学生能独立完成.问题5总结上面所有的情况,你能试着自己给出有理数乘法法则吗?

学生独立思考后进行课堂交流,师生共同完成,得出结论后再让学生看教科书.追问:你认为根据有理数乘法法则进行有理数乘法运算时,应该按照怎样的步骤?你能举例说明吗?

学生独立思考、回答.如果有困难,可先让学生看课本第29页有理数乘法法则后面的一段文字.设计意图:让学生尝试归纳乘法法则,明确按法则计算的关键步骤.例1计算:

(1);(2);(3).学生独立完成后,全班交流.教师说明:在(3)中,我们得到了

=1.与以前学习过的倒数概念一样,我们说

与-2互为倒数.一般地,在有理数中仍然有:乘积是1的两个数互为倒数.追问:在(2)中,8和-8互为相反数.由此,你能说说如何得到一个数的相反数吗?

设计意图:本例既作为巩固乘法法则,又引出了倒数的概念(因为这个概念很容易理解),同时说明了求一个数的相反数与乘-1之间的关系(反过来有-8=8(―1)).例2 用正数、负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1km气温的变化量为-6C,攀登3km后,气温有什么变化?

设计意图:利用有理数乘法解决实际问题,体现数学的应用价值.小结、布置作业

请同学们带着下列问题回顾本节课的内容:

(1)你能说出有理数乘法法则吗?

(2)用有理数乘法法则进行两个有理数的乘法运算的基本步骤是什么?

(3)举例说明如何从正数、0的乘法运算出发,归纳出正数乘负数的法则.(4)你能举例说明符号法则负负得正的合理性吗?

设计意图:引导学生从知识内容和学习过程两个方面进行小结.作业:教科书第30页,练习1,2,3;第37页,习题1.4第1题.五、目标检测设计

1.判断下列运算结果的符号:

(1)5(-3);

(2)(-3)3;

(3)(-2)(-7);

(4)(+0.5)(+0.7).设计意图:检测学生对有理数乘法的符号法则的理解.2计算:

(1)6(-9);(2)(-6)0.25;(3)(-0.5)(-8);

(4);(5)0(-6);(6)8.

第三篇:有理数乘法教学设计

有理数的乘法

一、学情分析

在此之前,本班学生已有探索有理数加法法则的经验,多数学生能在教师指导下探索问题。由于学生已了解利用数轴表示加法运算过程,不太熟悉水位变化,故改为用数轴表示乘法运算过程。

二、课前准备

把学生按组间同质、组内异质分为10个小组,以便组内合作学习、组间竞争学习,形成良好的学习气氛。

三、教学目标

1、知识与技能目标 掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、能力与过程目标 经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、情感与态度目标 通过学生自己探索出法则,让学生获得成功的喜悦。

四、教学重点、难点

重点:运用有理数乘法法则正确进行计算。难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

五、教学过程

1、创设问题情景,激发学生的求知欲望,导入新课。教师:由于长期干旱,水库放水抗旱。每天放水2米,已经放了3天,现在水深20米,问放水抗旱前水库水深多少米? 学生:26米。教师:能写出算式吗? 学生:…… 教师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题(教师板书课题)

2、小组探索、归纳法则(1)教师出示以下问题,学生以组为单位探索。以原点为起点,规定向东的方向为正方向,向西的方向为负方向。a.2 ×3 2看作向东运动2米,×3看作向原方向运动3次。结果:向 运动 米 2 ×3= b.-2 ×3-2看作向西运动2米,×3看作向原方向运动3次。结果:向 运动 米-2 ×3= c.2 ×(-3)2看作向东运动2米,×(-3)看作向反方向运动3次。结果:向 运动 米 2 ×(-3)= d.(-2)×(-3)-2看作向西运动2米,×(-3)看作向反方向运动3次。结果:向 运动 米(-2)×(-3)= e.被乘数是零或乘数是零,结果是人仍在原处。(2)学生归纳法则 a.符号:在上述4个式子中,我们只看符号,有什么规律?(+)×(+)=()同号得(-)×(+)=()异号得(+)×(-)=()异号得(-)×(-)=()同号得 b.积的绝对值等于。c.任何数与零相乘,积仍为。(3)师生共同用文字叙述有理数乘法法则。

3、运用法则计算,巩固法则。(1)教师按课本P75 例1板书,要求学生述说每一步理由。(2)引导学生观察、分析例1中(3)(4)小题两因数的关系,得出两个有理数互为倒数,它们的积为。(3)学生做 P76 练习1(1)(3),教师评析。(4)教师引导学生做P75 例2,让学生说出每步法则,使之进一步熟悉法则,同时让学生总结出多因数相乘的符号法则。多个因数相乘,积的符号由 决定,当负因数个数有 ,积为 ; 当负因数个数有 ,积为 ;只要有一个因数为零,积就为。

4、讨论对比,使学生知识系统化。有理数乘法 有理数加法 同号 得正 取相同的符号 把绝对值相乘(-2)×(-3)=6 把绝对值相加(-2)+(-3)=-5 异号 得负 取绝对值大的加数的符号 把绝对值相乘(-2)×3=-6(-2)+3=1 用较大的绝对值减小的绝对值 任何数与零 得零 得任何数

5、分层作业,巩固提高。

六、教学反思

节课由情景引入,使学生迅速进入角色,很快投入到探究有理数乘法法则上来,提高了本节课的教学效率。在本节课的教学实施中自始至终引导学生探索、归纳,真正体现了以学生为主体的教学理念。本节课特别注重过程教学,有利于培养学生的分析归纳能力。教学效果令人比较满意。如果是在法则运用时,编制一些训练符号法则的口算题,把例2放在下一课时处理,效果可能更好。

【点评】:本节课张老师首先创设了一个密切社会生活的问题情景—抗旱,由此引入新课,并利用学生熟悉的数轴去探究有理数的乘法法则,充分体现了课程源于生活,服务于生活,学生的学习是在原有知识上的自我建构的过程等理念,教学要面向学生的生活世界和社会实践,教学活动必须尊重学生已有的知识与经验,学生原有的知识和经验是学习的基础,学生的学习是在原有知识和经验基础上的自我生成的过程。探索有理数乘法法则是本节课的重点,同时它又是一个具有探索性又有挑战性的问题,因此张老师在这一教学环节花了大量的时间,精心设计了问题训练单,将学生按组间同质、组内异质的原则分学习小组开展学习合作学习,使学生经历了法则的探索过程,获得了深层次的情感体验,建构知识,获得了解决问题的方法,培养了学生的探索精神和创新能力。为了让学生将获得的新知识纳入到原有的认知结构中去,便于记忆和提取,在教学的最后环节,张老师组织学生对有理数的乘法和有理数的加法进行对比,通过讨论、比较使知识系统化、条理化,从而使自己的认知结构不断地得以优化。学生自己建构知识,是建构主义学习观的基本观点,当新知识获得之后,必须按一定方式加以组织,为新知识找到“家”,并为新知识“安家落户”。学生是一个活生生的人,是一个发展中的人,学生间的发展是极不平衡的,为了尊重学生的差异,以学生个体发展为本,张老师在教学中利用学生的个人性格不同,采用异质分组,使不同性格的学生组对交流、互换角色,达到了性格互补的目的。采取分层作业的方式,让不同的人在数学学习中得到了不同的发展,使每个人的认识都得到完善,这正是新课程发展的核心理念──为了每一位学生的发展的具体体现。本节课我们也同时看到在新课引入和法则探究两个教学环节中,张老师的设计与教材完全不同,充分体现了教师是用教材,而不是教教材,这也是新课程所倡导的教学理念。教师“教教科书”是传统的“教书匠”的表现,“用教科书教”才是现代教师应有的姿态。我们教师应从学生实际出发,因材施教,创造性地使用教材,大胆对教材内容进行取舍、深加工、再创造,设计出活生生的、丰富多彩的课来,充分有效地将教材的知识激活,形成有教师个性的教材知识。既要有能力把问题简明地阐述清楚,同时也要有能力引导学生去探索、去自主学习。

第四篇:“乘法分配律”第二课时教学设计

“乘法分配律”第二课时教学设计

——乘法分配律的拓展运用

【教学内容】新北师大版小学数学四年级上册第56——58页 【教学目标】

1.通过知识回顾,在深化理解乘法分配律思想内涵的同时,沟通知识之间的内在联系,发展学生的思维能力和创造能力。

2.经历提出猜想、验证规律的探索与发现过程,通过类比、说理、举例论证,总结概括出相关的运算规律并能用简洁的符号或字母表示,发展学生的符号意识。

3.欣赏数学运算的简洁美,体验“乘法分配律”的价值所在,提高学习数学的兴趣和主动性。【学情分析】

四年级学生思维正在由具体向抽象过度,具备了“探索与发现”运算定律的基本条件,但其抽象思维和符号意识还不够健全,在理解和运用规律时有一定困难。学完新知后,如果能温故知新,让学生感受到运算律在课本中呈现的脉络,体验到其丰富内涵和价值,就能更好地建构知识意义,提出新的合理猜想,在探索和验证结果的过程中,培养创新意识和逻辑思维能力。【设计背景】

《数学课程课标》(2011年版)指出:“课程内容要反映社会的需要、数学的特点,要符合学生的认知规律。它不仅包括数学的结果,也包括数学结果的形成过程和蕴含的数学思想方法。”关于本课,教材中呈现了丰富的生活情境,引导学生借助现实背景和已有知识经验,建构运算定律的模型。教材从三年级乘法教学开始,已逐步渗透乘法分配律的思想,只不过当时重在感悟,并未揭开其面纱,内容的编排上凸显着“前有隐伏、中有突破、后有发展”的特点。

然而,很多教师更多关注的是乘法分配律知识层面的显性内容,即重视推导规律并进行简便计算,强化技能训练,却忽视其所蕴含的数学思想方法。笔者认为:只有在分析其知识结构和思想方法的基础上,寻找出核心的价值内容,才能真正对学生展开良好的数学教育。基于上述思考,设计了第二课时的教学,旨在展现运算定律的发生发展过程,并拓展学生的思维。【教学过程】

一、导入

1.化装舞会上,下面的三个算式改变了形象。猜猜看,哪个算式和原来是一样的?

根据学生回答连线。结合(13+9)+6与13+(9+6)、(9×25)×4与9×(25×4)的相等关系,复习已经学过的运算定律,并板书字母公式。

2.提出问题,为什么你认为(18+12)×2与18×2+12×2这两个式子是相等的?你能举个具体的例子来说明吗?

引导学生举例说明,并利用方格图进行解释。

(18+12)×2与18×2+12×2

二、探究 回顾一:

师:古人云:“温故而知新”,就是说温习学过的旧知识,可以得到新的启发。其实,乘法分配律其实并不是我们这个学期才学习的新知识,我们来回顾一下吧。

师:还记得我们在三年级是如何推导出长方形周长计算公式的吗?出示右图:这是一块长方形菜地,在它的四周围上栅栏,怎样计算它栅栏的长度?

根据学生的回答板书:12×2+8×2;(12+8)×2 师:为什么可以用(12+8)×2来计算这个周长?

学生交流后,利用课件动态演示图1变成图2。让学生直观理解图中有两个(12+8),所以可以用(12+8)×2来计算它的周长。

图1 图2 继而板书:(12+8)×2 =12×2+8×2 回顾二:

师:是啊,我们在计算长方形的周长时已经运用到乘法分配律的知识了,其实不仅如此,更早一些的时候,我们在学习乘法计算时也运用到乘法分配律,只不过今天才揭开她神秘的面纱。

逐步出示下图,解释竖式中每一步的思考过程以及它运用到的规律。由此,学生认识到乘法分配律在竖式计算中的重要作用。

运用一:

师:既然我们已经了解了这么多关于乘法分配律的知识,我们一起来做两道练习吧。你能够运用乘法分配律让计算变得更简便吗?

(60+4)×25 34×72+34×28 猜想与验证:

师:我想问问,你怎么理解乘法分配律中“分配” 这个词语?

师:的确,乘法分配律说完整其实是乘法对加法的分配律。简称“乘法分配律”。它与我们之前学过的乘法交换律、结合律有本质的不同,表述的是一种乘加的关系。

大胆猜想:1.乘法分配律仅仅只能表示乘法对加法的分配关系吗?你能否提出新的猜想并进行验证?

2.在小组内交流你的想法,看大家是否同意你的观点?

预设:引导学生从两个方面来思考,并从举例的方法到算理理解的方法来证明。1.两个数的差与一个数相乘。

2.多个数的和或差与一个数相乘。放手让学生大胆猜想,并细心求证。针对学生的发现,引导辨析并相机板书。

三、运用

1.你会填空吗? 根据乘法分配律把式子填完整。

(1)(25—7)×8=25×8○7×8(2)□×25+□×9 = 4×(25+9)(3)12×48﹢12×12﹦(□﹢□)×□

2.我们都来对口令。把下面的式子补充完整,使它可以用乘法分配律计算。

(1)34×28+□×□(例如可以补充:34×72)

(2)9×37+□×□(3)55×14—□×□

四、小结 师:今天我们进一步探索和发现了什么运算定律?请选择一个你认为最能代表今天研究成果的算式,来说说你今天的收获。

师:你们的发现真了不起,让我们对乘法分配律的了解更加深刻了。杜威说过:科学的每一项巨大成就,都是以大胆的猜想为出发点的。你们今天不仅能够提出合理的猜想,还能够积极验证,并在运用中提高,这是一个伟大的探索过程。只要我们在学习中也能够大胆猜想并小心求证,一定也能够为这个世界创造出美丽的果实。

第五篇:有理数乘法运算教学设计

2.9 有理数的乘法

第1课时 有理数的乘法法则

(设计者:李开聪)

授课时间:2010年12月26日 授课地点:保山市腾冲县荷花中学 授课教师:李开聪

教学模式:参与式教学

教学理念:以教材为依据 教学目标:

1.使学生经历有理数乘法这一知识的产生过程,规律的发现过程,了解有理数乘法的实际意义,探索有理数的乘法法则,培养学生独立自主学习知识的能力。

2.使学生理解掌握有理数的乘法法则,熟练进行有理数的乘法运算。

教学重点:有理数的乘法运算。

教学难点:确定积的符号。

设计思路:

本节课是在小学已接触到的乘法、初中刚学习过的有理数的加、减法的基础上进行的。通过观察乘法算式,引导学生探索有理 数的乘法法则。本次活动十分注重学生的自主探究、合作交流、归纳总结以及参与意识的培养,使其充分体会到知识的产生和规律的发现过程,让学生能够积极参与到数学活动中来,主动融入到数学学习中去。

教学用具:大白纸和彩色书写笔

教学过程:

一、教师导入:

1、提出问题:(口述提问)

(1)3个2是多少?(让学生用加法计算)学生回答:2+2+2=6(再让学生列出乘法算式)

(板书)3×2=6

(2)3个-2是多少?(让学生用加法计算)学生回答:-2+(-2)+(-2)=6(再让学生列出乘法算式)(板书)3×(-2)=-6(板书课题)§2.9-1有理数的乘法法则

2、总结归纳:(口述结论)

比较上面两个算式,我们发现:

若把一个因数变成它的相反数,则所得的积也变成原来的积的相反数。

3、变换练习:(板书)

对于3×2=6,若把因数3换成它的相反数,则积6也变成原来的相反数-6。即:-3×2=-6

以此类推则有:-3×(-2)=6

(引导学生观察算式,以便发现规律,得出乘法法则,让学生口述)

3×2=6

-3×(-2)=6

同号得正,并把绝对值相乘。-3×2=-6

3×(-2)=-6

异号得负,并把绝对值相乘。

二、学生活动:(组织学生分组,6—8人为一组,全班分成8个组)

根据法则分组计算下列各题,各小组把解题过程和发现的规律写在大白纸(第1组和第6组)

1、①-2/9×0

②-6/5×(-5/2)(先计算结果,再寻找规律)

规律:0因数的结论和带分数的计算方法和小学学过的一样。

(第2组和第5组)

2、①-1×8

②-9/8×(-1)(先计算结果,再寻找规律)

规律:一个数乘以-1等于它的相反数。(第3组和第8组)

3、①-6×(-1/6)

②-7/8×(-8/7)(先计算结果,再寻找规律)

规律:倒数问题和小学学过的一样。(第4组和第7组)

4、①-2×(-3)×4

②-2×(-3)×(-5)(先计算结果,再寻找规律)

规律:几个有理数相乘,积的符号由负因数的个数确定。

(在学生分组活动时写出法则)

两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数与零相乘,都得零。

三、师生互动:

1、每个小组按次序展示活动成果,各派一名发言代表进行讲述。

(每个小组的发言时间不超过2分钟)

2、教师点评。

四、巩固练习:

课本第52页练习的第1、2、3题。(让学生独立完成练习)

充分体现:参与的目的是为了提高学生独立自主学习知识的能力。

五、课堂小结:

1.本节课我们经历了有理数乘法法则的探索与发现,并且能够熟练进行有理数的乘法运算。

2.同时我们发现:倒数和0因数的结论,在有理数范围内仍然成立。

那么,我们以前所学的乘法运算律,在有理数范围内是否成立呢?

预知详情如何?下一节课再说!(设置悬念)

六、布置作业:课本第57页习题2.9 的第1、2、3题。

六、教学反思

本节课通过学生的自主探究、合作交流、归纳总结,充分体会到知识的产生和规律的发现过程,能够积极参与到数学活动中来,主动融入到数学学习中去。这样免去了教师苦口婆心的讲解却起不到好的效果,使得师生合作得到很好的诠释。

参与式教学设计

姓名:李开聪

学校:腾冲县荷花民族中学

下载《有理数的乘法》第二课时教学设计[合集5篇]word格式文档
下载《有理数的乘法》第二课时教学设计[合集5篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    有理数的乘法教学设计

    有理数的乘法教学设计 教学目标 (一)知识与技能: 1、使学生去探索乘法交换律,结合律和分配律。 2、掌握多个有理数相乘的法则,能运用运算律进行简化运算。 (二)过程与方法: 1、回......

    《有理数的乘法》教学设计

    参加全国“教学中的互联网搜索”优秀教案评选 《有理数的乘方》教学设计——陕西省渭南市实验初中马珂 一、 教材分析 《有理数的乘方》是北师大版七年级上册的内容。该单......

    《有理数的乘法》教学设计[模版]

    有理数的乘法教学设计与反思 教材分析 本节课教学的基本目的是让学生掌握有理数乘法的符号法则和运算律。为完成这一教学目标,可以采用直接传授的方法,即教师清楚明白地把乘法......

    有理数的乘法教学设计

    有理数的乘法教学设计 有理数的乘法教学设计1 教学目标1、会把有理数的加减法混合运算统一为加法运算;2、会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;3......

    有理数的乘法教学设计

    《有理数的乘法》教学设计 (本课获威海优质课比赛二等奖,执教人:文登二中 邢妍妍) 教学目标: (1)知识与技能目标: 理解有理数乘法法则,并能熟练运用法则进行运算. (2)过程与方法目标: 经......

    有理数的乘法(一)教学设计

    第二章 有理数及其运算 有理数的乘法(一) -、 学生起点分析: 学生的知识技能基础: 学生在小学已经学习过非负有理数的四则运算以及运算律,在本章的前几节课中,又学习了数轴、相反......

    有理数乘法运算律教学设计

    七年级数学(上)教学设计 课题:2.92有理数乘法的运算律(交换律和结合律) 课型:新授 主讲人:禹文改 时间:2017年9月 学习目标 1,理解有理数乘法的交换律和结合律,并学会应用. 2,掌握多个有......

    有理数的乘法(二)教学设计

    8.有理数的乘法(二) 一、学生起点分析: 学生的知识技能基础:学生在小学已经学习过四则运算的五条运算律,并初步体验到了运算律可以简化运算,具备了对非负有理数运用运算律进行简便......