1.3.3正弦型函数y=Asin(ψx+φ)的图象变换教学设计

时间:2019-05-12 20:53:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《1.3.3正弦型函数y=Asin(ψx+φ)的图象变换教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《1.3.3正弦型函数y=Asin(ψx+φ)的图象变换教学设计》。

第一篇:1.3.3正弦型函数y=Asin(ψx+φ)的图象变换教学设计

1.3.3正弦型函数y=Asin(ψx+φ)的图象变换教学设计

教学目标: 知识与技能目标:

能借助计算机课件,通过探索、观察参数A、ω、φ对函数图象的影响,并能概括出三角函数图象各种变换的实质和内在规律;会用图象变换画出函数y=Asin(ωx+φ)的图象。

过程与方法目标:

通过对探索过程的体验,培养学生的观察能力和探索问题的能力,数形结合的思想;领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。

情感、态度价值观目标:

通过学习过程培养学生探索与协作的精神,提高合作学习的意识。

教学重点:考察参数ω、φ、A对函数图象的影响,理解由y=sinx的图象到y=Asin(ωx+φ)的图象变化过程。这个内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生学习了函数y=Asin(ωx+φ)的图象,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。

教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。因为相对来说,、A对图象的影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这种图象变化,不会观察,造成认知的难点,在教学中,抓住“

对图象的影响”的教学,使学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。

学情分析:

本节课在高一第二学段,学生进入高中学习已经三个月,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但对于本节内容学生要理解并掌握三个参数对函数图象的影响,还要研究三个参数对函数图象的综合影响,且方法不唯一,知识密度较大,理解掌握起来难度较大。

教学内容分析: 三角函数是基本初等函数之一,是中学数学的重要内容。本节为三角函数图象与性质的重要内容,是一节函数图象探究的重要范例,同样也是提高学生识图、画图、数形结合等能力的一次锻炼。本节内容是在学生已经理解振幅变换、相位变换和周期变换的基础上,通过作图、观察、分析、归纳等方法,形成规律,得出从函数y=Asin(ωx+φ)图象的变换规律。观察函数、、的图象到正弦型函数、、图象间的关系,通过对比,探求有关性质以及图象的变换方法。鼓励学生大胆猜想,将直观问题抽象化,揭示本质,培养学生思维的深刻性。

利用计算机操作相关的课件,直观展示图象的变化,细致观察图象变化的数量,使学生学会观察。这就会使学生容易在学习的过程中把握图象变化的内在联系,进而理解本质的规律。首先对参数变化所引起的图象变化进行观察,获得参数对函数图象影响的大致感知,进而进行细致的量的变化的观察和分析,体现了对事物认识的螺旋式上升;从具体的函数出发,进而得出一般性的结论,体现了从特殊到一般,由感性到理性的过渡。

教学流程图:

教学过程:整个教学过程是“以问题为载体,以学生活动为主线”进行的。

(一)创设情境: 1.动画演示: 《用沙摆演示简谐运动的图象》

2.根据你的知识,你能解决函数哪些方面的问题?

学生分析:可以求这个函数的最小正周期、单调区间以及“五点法”作图。教师追问:作出它的图象还有其他的方法吗?

【设计意图】复习回顾,直接切入研究的课题。(板书课题:函数的图象)

问题1:函数学生思考,交流,正弦函数的特殊情况。

和我们熟知的正弦函数,有什么联系呢?

就是函数

在A=1,ω=1,=0【设计意图】采用《用沙摆演示简谐运动的图象》引出函数y=Asin(ωx+φ)的图象,体现该函数图象与生活实际的紧密联系,体现函数图象在物理学上的重要性,激发学生研究该函数图象的兴趣。引导学生思考y=Asin(ωx+φ)与正弦函数的一般与特殊的关系,进而引导学生探讨正弦曲线与函数y=Asin(ωx+φ)的图象的关系。

(二)建构数学 自主探究:

自主探究:由正弦曲线如何变化得到函数①问题提出:三种变换能否任意排序?

②对于你们小组提出的变换方式,你要怎样解决你呢? 的图象?

【设计意图】观察函数解析式学生容易发现三个参数、、都发生了变化,自然恰当地提出本节的核心问题——三种变换能否任意排序呢?

问题2:由正弦函数猜想(1)猜想(2)

图象如何变换得到函数的图象?

【设计意图】观察函数解析式,容易发现参数、都发生了变化,根据已有的知识基础,自然恰当地提出本节的核心问题:两种变换能否任意排序,最后确定研究方向。

A、自主实验,形成初步结论:小组合做,根据自己的兴趣在两种变换中选择一种进行研究: 问题3:按照第一种方法由函数按照第二种方法由函数的图象如何变换到的图像如何变换到函数的图象? 的图象?

学生投影回答,结合自己画的函数图像,说明变换方法。

①.把图象。的图象上的所有的点__左___平移 ___个单位长度,得到的②.再把标不变),得到③.再把坐标不变)得到的图象上各点的_横__坐标_缩短__的图象。的图象上所有点的_纵_坐标_伸长_的图象。

到原来的__倍(_纵_坐

到原来的__3_倍(__横_ 学生总结上述变换过程:相位变换 ①.把度,得到②.再把

周期变换

振幅变换

平行移动

个单位长的图象上的所有的点 向左 的图象。

或 向右 的图象上各点的_横_坐标__缩短_或_伸长_到原来的__倍(_纵_坐标不变),得到的图象。

或_缩短的图象。③.再把_ 的图象上所有点的_纵_坐标_伸长_为原来的_A_倍(_横_坐标不变)得到B、深入探究,讨论分析: 预设问题:

教学的班级为普通班,根据以往的教学经验,如果只研究一种顺序,有的学生会错误地认为由的图象向左

平移个单位得到的图象,说明学生没有真正理解函数图象的变化是看坐标(x,y)的变化量。预想到学生会犯这个错误,为了让学生更好地理解图象变化的实质,我选择不同的小组汇报,进而追问:为什么会有这种不同呢?原因是什么?学生们可以通过观察坐标表格中横坐标的变化,发现平移量。或者通过观察图象,发现平移量。因为在方案ω—中,先进行了横向的伸缩,即横坐标变为了原来的移个单位;从坐标和解析式上来看,点式,也可以得到这个结论。

倍,所以向左平

分别满足两个解析

把的图象。

问题4:第二种变换方法,平移量是,还是,为什么?

个单位;先的图象上所有的点__向左_平移_

_个单位长度,得到函数注意不同顺序中平移量的不同。先相位变换后周期变换时,需向左平移周期变换后相位变换时,需向左平移个单位而不是个单位。平移量是由的改变量确定的。

学生总结第二种变换的规律:周期变换

相位变换

振幅变换

把y=sinωx的图象上的所有的点 向左 个单位长度,得到y=sin(ωx+φ)的图象。

或 向右平行移动对比两种变换过程说明:先相位变换后周期变换平移先周期变换后相位变换平移

个单位长度。

个单位长度。

【设计意图】使学生由正弦曲线变化得到函数y=Asin(ωx+φ)(A>0,ω>0)的图象的不同方案有一个整体的认识,并在掌握图象变化实质的基础上,择优选择。

(三)知识运用,巩固强化

练习:

1、只需把函数数的图象。的图象上所有点(A),可以得到

函A、横坐标伸长到原来的2倍,纵坐标不变。

B、横坐标缩短到原来的倍,纵坐标不变

C、纵坐标伸长到原来的2倍,横坐标不变。

D、纵坐标缩短到原来的倍,横坐标不变

2、为了得到函数A、向左平移的图象,只需把函数的图象上所有点(B)

个单位长度 个单位长度

B、向右平移C、向左平移

3、把函数个单位长度

D、向右平移个单位长度

图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数 的图像,再把函数的图象上所有点向右平移个单位,得到函数

变式:把函数 的图象。

图象上所有点向右平移 的图象,再把函数

个单位长度,得到函数

图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数 的图像。

【设计意图】练习及变式练习是对本节课重点和难点知识的巩固,通过学生的回答,可了解学生对于函数图像变换的“形”、“数”思维的形成过程是否得到落实。

(四)归纳交流

1、学生谈本节课的学习体会。

2、正弦函数y=sinx的图象变换到函数y=Asin(ωx+φ)的图象:顺序可任意,平移尺度要注意。

3、数学思想:数形结合、从特殊到一般思想、化归思想。

(五)巩固作业

课本P49/2(写在作业本上),P50/1(写在书上)

(六)学习效果评价设计 1.在学生动手实践、观察、思考问题的过程中,关注学生发现问题、解决问题的能力;并在进一步的学习过程中,观察学生的类比学习能力;

2.在各组共同学习、解决问题的过程中,观察学生合作交流、学习的能力; 3.对不同方案的对比学习中,了解学生把握事物本质的能力;

4.通过课堂活动与交流,了解学生对知识的掌握程度,通过反馈,对易错、易混的知识点,做出启发性的指导;

5.通过课堂小结,学生说出自己的收获,与别人分享学习数学的体会,激发学习数学的积极性,建立自信心。

第二篇:函数y=Asin(ωx+φ)图象说课稿

函数y=Asin(ωx+φ)图象说课稿1

一、教材分析

1、教材的地位和作用

在学习这节课以前,我们已经学习了振幅变换。本节知识是学习函数图象变换综合应用的基础,在教材地位上显得十分重要。

y=asin(ωx+φ)图象变换的学习有助于学生进一步理解正弦函数的图象和性质,加深学生对函数图象变换的理解和认识,加深数形结合在数学学习中的应用的认识。同时为相关学科的学习打下扎实的基础。

2、教材的重点和难点

重点是对周期变换、相位变换规律的理解和应用。

难点是对周期变换、相位变换先后顺序的调整,对图象变换的影响。

3、教材内容的安排和处理

函数y=asin(ωx+φ)图象这部分内容计划用3课时,本节是第2课时,主要学习周期变换和相位变换,以及两种变换的综合应用。

二、目的分析

⒈知识目标

掌握相位变换、周期变换的变换规律。

⒉能力目标

培养学生的观察能力、动手能力、归纳能力、分析问题解决问题能力。

⒊德育目标

在教学中努力培养学生的“由简单到复杂、由特殊到一般”的辩证思想,培养学生的探究能力和协作学习的能力。

⒋情感目标

通过学数学,用数学,进而培养学生对数学的兴趣。

三、教具使用

①本课安排在电脑室教学,每个学生都拥有一台计算机,所有的计算机由一套多媒体演示控制系统连接,以实现师生、生生的相互沟通。

②课前应先把本课所需要的几何画板课件通过多媒体演示系统发送到每一台学生电脑。

四、教法、学法分析

本节课以“探究——归纳——应用”为主线,通过设置问题情境,引导学生自主探究,总结规律,并能应用规律分析问题、解决问题。

以学生的自主探究为主要方式,把计算机使用的主动权交给学生,让学生主动去学习新知、探究未知,在活动中学习数学、掌握数学,并能数学地提出问题、解决问题。

五、教学过程

教学过程设计:

预备知识

一、问题探究

⑴师生合作探究周期变换

⑵学生自主探究相位变换

二、归纳概括

三、实践应用

教学程序

设计说明

〖预备知识〗

1我们已经学习了几种图象变换?

2这些变换的规律是什么?

帮助学生巩固、理解和归纳基础知识,为后面的学习作铺垫。促使学生学会对知识的归纳梳理。

〖问题探究〗

(一)师生合作探究周期变换

(1)自己动手,在几何画板中分别观察①y=sinx→y=sin2x;②y=sinx→y=sin

x图象的变换过程,指出变换过程中图象上每一个点的坐标发生了什么变化。

(2)在上述变换过程中,横坐标的伸长和缩短与ω之间存在怎样的关系?

(二)学生自主探究相位变换

(1)我们初中学过的由y=f(x)→y=f(x+a)的图象变换规律是怎样的?

(2)令f(x)=sinx,则f(x+φ)=sin(x+φ),那么y=sinx→y=sin(x+φ)的变换是不是也符合上述规律呢?请动手用几何画板加以验证。

设计这个问题的主要用意是让学生通过观察图象变换的过程,了解周期变换的基本规律。

设计这个问题意图是引导学生再次认真观察图象变换的过程,以便总结周期变换的规律。

师生合作探究已经让学生掌握了探究图象变换的基本方法,在此基础上,由学生自主探究相位变换规律,提高学生的综合能力。

〖归纳概括〗

通过以上探究,你能否总结出周期变换和相位变换的一般规律?

设计这个环节的意图是通过对上述变换过程的探究,进而引导学生归纳概括,从现象到本质,总结出周期变换和相位变换的一般规律。

〖实践应用〗

(一)应用举例

(1)用五点法作出y=sin(2x+)一个周期内的简图。

(2)我们可以通过哪些方法完成y=sinx到y=sin(2x+)的图象变换

(3)请动手验证上述方法,把几何画板所得图象与用五点法作出的简图作比较,观察哪些方法是正确的,哪些方法是错误的。

(4)归纳总结

从上述的变换过程中,我们知道若f(x)=sin2x,则f(___)=sin(2x+),由f(x)→f(x+a)的变换规律得从y=sin2x→y=sin(2x+)的变换应该是_____.(二)分层训练

a组题(基础题)

如何完成下列图象的变换:

①y=sin3x→y=sin(3x+1)

②y=sin(x+1)→y=sin(3x+1)

b组题(中等题)

如何完成下列图象的变换:

①y=sin3x→y=sin(3x+1)

②y=sin(x+1)→y=sin(3x+1)

③y=sinx→y=sin(3x+1)

c组题(拓展题)

①如何完成下列图象的变换:

y=sinx→y=sin(3x+1)

②我们知道,从f(x)到f(x)+k的变换可通过图象的上下平移(k>0上移)(k<0下移)|k|个单位得到。那么由y=f(x)→y=af(x)+k的变换中,振幅变换和上下平移变换是不是也有先后顺序呢?请通过实例加以验证。

让学生用五点法作出这个图象是为了验证变换方法是否正确。

给出这个问题的用意是开拓学生的思维,让学生从多角度思考问题。

这个步骤主要目的是培养学生的探究能力和动手能力。

这个问题的.解决,是突破本课难点的关键。通过问题的解决,让学生理解如果先进行周期变换,而后进行相位变换,应特别关注x的变化量。

a组题重在基础知识的掌握,由基础较薄弱的同学完成。

b组比a组增加了第③小题,重在对两种变换的综合应用。

c组除了考查知识的综合应用,还要求学生对新问题进行探究,有较大难度,适合基础较好的同学完成。

作业:

(1)必做题

(2)选做题

作业分为两种形式,体现作业的巩固性和发展性原则。选做题不作统一要求,供学有余力的学生课后研究。

六、评价分析

在本节的教与学活动中,始终体现以学生的发展为本的教育理念。在学生已有的认知基础上进行设问和引导,关注学生的认知过程,注意学生的品德、思维和心理等方面的发展。重视动手能力的培养,重视问题探究意识和能力的培养。同时,考虑不同学生的个性差异和发展层次,使不同的学生得到不同的发展,体现因材施教原则。

调节与反馈:

⑴验证两种变换的综合时,可能会出现有些学生无法观察到两种变换的区别这种情况,此时,教师除了加以引导外,还需通过教师演示和详细讲解加以解决。

⑵教学中可能出现个别学生无法正确操作课件的情况,这种情况下一定要强调学生的协作意识。

附:板书设计

函数y=Asin(ωx+φ)图象说课稿2

一、教学理念

新的课程标准明确指出 “数学是人类文化的重要组成部分,构成了公民所必须具备的一种基本素质.”其含义就是:我们不仅要重视数学的应用价值,更要注重其思维价值和人文价值.

因此,创造性地使用教材,积极开发、利用各种教学资源,创设教学情境,让学生通过主动参与、积极思考、与人合作交流和创新等过程,获得情感、能力、知识的全面发展.本节课力图打破常规,充分体现以学生为本,全方位培养、提高学生素质,实现课程观念、教学方式、学习方式的转变.

二、教材分析

三角函数是中学数学的重要内容之一,它既是解决生产实际问题的工具,又是学习高等数学及其它学科的基础.本节课是在学习了任意角的三角函数,两角和与差的三角函数以及正、余弦函数的图象和性质后,进一步研究函数y=Asin(ωx+φ)的简图的画法,由此揭示这类函数的图象与正弦曲线的关系,以及A、ω、φ的物理意义,并通过图象的变化过程,进一步理解正、余弦函数的性质,它是研究函数图象变换的一个延伸,也是研究函数性质的一个直观反映.共3课时,本节课是继学习完振幅、周期、初相变换后的第二课时.

本节课倡导学生自主探究,在教师的引导下,通过五点作图法正确找出函数y=sin x到y=sin(ωx+φ)的图象变换规律是本节课的重点.

难点是对周期变换、相位变换先后顺序调整后,将影响图象平移量的理解.因此,分析清不管哪种顺序变换,都是对一个字母x而言的变换成为突破本节课教学难点的关键.

依据《课标》,根据本节课内容和学生的实际,我确定如下教学目标.

三、教学目标

[知识与技能]

通过“五点作图法”正确找出函数y=sin x到y=sin(ωx+φ)的图象变换规律,能用五点作图法和图象变换法画出函数y=Asin(ωx+φ)的简图,能举一反三地画出函数y=Asin(ωx+φ)+k和y=Acos(ωx+φ)的简图.

[过程与方法]

通过引导学生对函数y=sin x到 y=sin(ωx+φ)的图象变换规律的探索,让学生体会到由简单到复杂,特殊到一般的化归思想;并通过对周期变换、相位变换先后顺序调整后,将影响图象变换这一难点的突破,让学生学会抓住问题的主要矛盾来解决问题的基本思想方法.

[情感态度与价值观]

课堂中,通过对问题的自主探究,培养学生的独立意识和独立思考能力;小组交流中,学会合作意识;在解决问题的难点时,培养学生解决问题抓主要矛盾的思想.在问题逐步深入的研究中唤起学生追求真理,乐于创新的情感需求,引发学生渴求知识的强烈愿望,树立科学的人生观、价值观.

四、教学过程(六问三练)

1、设置情境

【函数y=Asin(ωx+φ)图象说课稿】相关文章:

1.函数y=Asin(ωx+φ)图象优秀说课稿

2.《函数y=Asin(ωx+φ)的图象》说课稿

3.二次函数y=ax2+bx+c的图象相关练习题

4.二次函数y=ax2的图象和性质试题及答案

5.《二次函数y=ax2+bx+c 的图象》教学设计

6.数学教案设计:二次函数y=ax2+bx+c 的图象

7.二次函数y=ax2的图象和性质的评课稿

8.一次函数图象的应用的说课稿

9.高一数学函数图象的平移说课稿

第三篇:《函数y=Asinωx+φ的图象》的教学设计理念

《函数y=Asinωx+φ)的图象》的教学设计理念

一、教材分析

本节内容是人教版A版数学必修4第一章第五节《函数y=Asin(ωx+φ)的图象》.它是在学习了正弦函数的图象和性质的基础上,对正弦函数图象的深化和拓展.通过学习y=Asin(ωx+φ)与y=sinx的图象间的变换关系,从而揭示图象变换的内在联系,通过向学生展示观察归纳类比等数学方法,使学生掌握函数图象变换综合应用的基础.二、学情分析

学生已经学习了y=sinx的图象和五点作图法,并且具有了一定的画图能力,但是学生对于ω、φ对图象带来的影响在理解上有一定的难度.为此让学生通过动手画图,在实际的操作过程中体会并发现对应变化点的坐标之间的联系,从而理解变换的实质.三、教学目标

1.知识目标:利用“五点法”作图,使学生掌握y=sinx与y=Asin(ωx+φ)的图象的变换规律.2.能力目标:通过对函数握y=sinx到y=Asin(ωx+φ)的图象变换规律的探索使学生体会由简单到复杂、由特殊到一般的化归思想,培养学生归纳分析、解决问题的能力.3.情感目标:通过对问题的探究,培养学生独立解决问题的能力,并通过分组合作提高学生的合作意识.四、教学重点、难点

1.函数y=sinx与y=Asin(ωx+φ)的图象的变换过程;

2.参数ω、φ对y=Asin(ωx+φ)的图象的影响.五、教学设计理念

根据“问题探究教学”的教学模式,教学过程以“探究――归纳――应用”为主线,给学生创设问题情境,使学生通过自主探究,在大量的数学活动中去体会和发现问题的实质,激发学生的成就感.六、教学手段

利用课件,通过多媒体演示形象直观地为学生提供更感性的材料有利于重难点的突破.七、教学过程

1.复习回顾,如何在直角坐标系中画出正弦曲线?

设计意图:让学生回忆“五点作图法”,为后面的学习做好准备.2.创设情境,启发诱导,探索规律

将学生分为三个小组,分组合作探讨下列图象的变换过程.问题一:在同一直角坐标系中画出y=sinx,y=2sinx,y=12sinx的图象(如图1所示),并寻找三个图象的区别和联系.问题二:在同一直角坐标系中画出y=sinx,y=sin(x+π3),y=sin(x-π3)的图象,并寻找三个图象的区别和联系.问题三:在同一直角坐标系中画出y=sinx,y=2sin2x,y=sin12x的图象,并寻找三个图象的区别和联系.分组汇报研究成果,用课件展示,学生分析并回答参数A、ω、φ分别对函数y=sinx造成的影响,得出结论并将其一般化.设计意图:互动探究将参数A、ω、φ对图象变换的影响进行分解,让学生结合图象体会变换

问题四:通过“五点作图法”画出y=sin(x+π3)与y=sin(2x+π3)的图象,并探索两个图象之间的关系,汇报研究成果,理性思考函数图象之间为什么有这样的关系.设计意图:学生通过填表,将ω、φ对图象的影响进行分解,让学生体会ω对图象的影响,并着重分析“先平移后伸缩”的变换过程.用课件展示图象.学生得出结论并将其一般化:所有点的纵坐标不变,横坐标缩短为原来的1ω倍.问题五:利用“五点作图法”在同一直角坐标系中画出y=sin2x与y=sin(2x+π3)的图象,并探索两个图象之间的关系,汇报研究成果,理性思考函数图象之间为什么有这样的关系.设计意图:学生通过填表,将ω、φ对图象的影响进行分解,让学生体会φ对图象的影响,并着重分析“先伸缩后平移”的变换过程.用课件展示图象.学生得出结论并将其一般化:所有点的纵坐标不变,横坐标向左(右)平移|φω|个单位长度.问题六:总结填表y=sinx→y=Asin(ωx+φ)(其中A>0,ω>0)的变换过程.(1)五点法作图;(2)利用图象变换作图.2.用参数思考探究y=Asin(ωx+φ)的图象变换过程.设计意图:梳理本节所学知识强化教学重点,培养学生的概括总结能力.九、设计反思

三角函数是中学数学教学的重要内容之一,它既是解决生产实际问题的工具,又是学习高等数学的基础.本节内容作图量大,所以在作图过程中采用分组合作的模式,使学生主体参与、合作交流,提高课堂效率.同时,借助计算机展示图象的变化过程,弥补了传统教学在直观感、立即感、动态感方面的不足,很容易地化解了教学难点,让学生更系统直观地感受到各种参数对函数图象的影响.

第四篇:正弦型函数教学设计

正弦型函数y=Asin(ψx+φ)的图象变换教学设计

北京市昌平区第一中学 陈爱民

教学目标: 知识与技能目标:

能借助计算机课件,通过探索、观察参数A、ω、φ对函数图象的影响,并能概括出三角函数图象各种变换的实质和内在规律;会用图象变换画出函数y=Asin(ωx+φ)的图象。

过程与方法目标:

通过对探索过程的体验,培养学生的观察能力和探索问题的能力,数形结合的思想;领会从特殊到一般,从具体到抽象的思维方法,从而达到从感性认识到理性认识的飞跃。

情感、态度价值观目标:

通过学习过程培养学生探索与协作的精神,提高合作学习的意识。

教学重点:考察参数ω、φ、A对函数图象的影响,理解由y=sinx的图象到y=Asin(ωx+φ)的图象变化过程。这个内容是三角函数的基本知识进行综合和应用问题接轨的一个重要模型。学生学习了函数y=Asin(ωx+φ)的图象,为后面高中物理研究《单摆运动》、《简谐运动》、《机械波》等知识提供了数学模型。所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁。

教学难点:对y=Asin(ωx+φ)的图象的影响规律的发现与概括是本节课的难点。因为相对来说,、A对图象的影响较直观,ω的变化引起图象伸缩变化,学生第一次接触这种图象变化,不会观察,造成认知的难点,在教学中,抓住“对图象的影响”的教学,使学生学会观察图象,经历研究方法,理解图象变化的实质,是克服这一难点的关键。

学情分析:

本节课在高一第二学段,学生进入高中学习已经三个月,对于高中常用的数学思想方法和研究问题的方法已经有初步的了解,并且逐步适应高中的学习方式和教师的教学方式,喜欢小组探究学习,喜欢独立思考,探究未知内容,学习欲望迫切。关于函数图象的变换,学生在学习第一模块时,接触过函数图象的平移,有“左加右减”,“上加下减”这样一些粗略的关于图象平移的认识,但对于本节内容学生要理解并掌握三个参数对函数图象的影响,还要研究三个参数对函数图象的综合影响,且方法不唯一,知识密度较大,理解掌握起来难度较大。教学内容分析:

三角函数是基本初等函数之一,是中学数学的重要内容。本节为三角函数图象与性质的重要内容,是一节函数图象探究的重要范例,同样也是提高学生识图、画图、数形结合等能力的一次锻炼。本节内容是在学生已经理解振幅变换、相位变换和周期变换的基础上,通过作图、观察、分析、归纳等方法,形成规律,得出从函数、的图象到正弦型函数y=Asin(ωx+φ)图象的变换规律。观察函数、、、图象间的关系,通过对比,探求有关性质以及图象的变换方法。鼓励学生大胆猜想,将直观问题抽象化,揭示本质,培养学生思维的深刻性。

利用计算机操作相关的课件,直观展示图象的变化,细致观察图象变化的数量,使学生学会观察。这就会使学生容易在学习的过程中把握图象变化的内在联系,进而理解本质的规律。首先对参数变化所引起的图象变化进行观察,获得参数对函数图象影响的大致感知,进而进行细致的量的变化的观察和分析,体现了对事物认识的螺旋式上升;从具体的函数出发,进而得出一般性的结论,体现了从特殊到一般,由感性到理性的过渡。

教学流程图:

教学过程:整个教学过程是“以问题为载体,以学生活动为主线”进行的。

(一)创设情境: 1.动画演示: 《用沙摆演示简谐运动的图象》

2.根据你的知识,你能解决函数哪些方面的问题?

学生分析:可以求这个函数的最小正周期、单调区间以及“五点法”作图。教师追问:作出它的图象还有其他的方法吗?

【设计意图】复习回顾,直接切入研究的课题。(板书课题:函数问题1:函数学生思考,交流,正弦函数

和我们熟知的正弦函数,有什么联系呢?

就是函数

在A=1,ω=1,=0的特殊情况。的图象)

【设计意图】采用《用沙摆演示简谐运动的图象》引出函数y=Asin(ωx+φ)的图象,体现该函数图象与生活实际的紧密联系,体现函数图象在物理学上的重要性,激发学生研究该函数图象的兴趣。引导学生思考y=Asin(ωx+φ)与正弦函数的一般与特殊的关系,进而引导学生探讨正弦曲线与函数y=Asin(ωx+φ)的图象的关系。

(二)建构数学 自主探究:

自主探究:由正弦曲线如何变化得到函数①问题提出:三种变换能否任意排序?

②对于你们小组提出的变换方式,你要怎样解决你呢? 的图象?

【设计意图】观察函数解析式学生容易发现三个参数、、都发生了变化,自然恰当地提出本节的核心问题——三种变换能否任意排序呢?

问题2:由正弦函数猜想(1)猜想(2)

图象如何变换得到函数的图象?

【设计意图】观察函数解析式,容易发现参数、都发生了变化,根据已有的知识基础,自然恰当地提出本节的核心问题:两种变换能否任意排序,最后确定研究方向。

A、自主实验,形成初步结论:小组合做,根据自己的兴趣在两种变换中选择一种进行研究: 问题3:按照第一种方法由函数按照第二种方法由函数的图象如何变换到的图像如何变换到函数的图象? 的图象?

学生投影回答,结合自己画的函数图像,说明变换方法。

①.把的图象上的所有的点__左___平移 ___个单位长度,得到的图象。

②.再把的图象上各点的_横__坐标_缩短__的图象。

到原来的__倍(_纵_坐标不变),得到③.再把的图象上所有点的_纵_坐标_伸长_的图象。

到原来的__3_倍(__横_坐标不变)得到

学生总结上述变换过程:相位变换 ①.把

周期变换

振幅变换 或 向右

平行移动

个单位长度,得到的图象上的所有的点 向左 的图象。②.再把坐标不变),得到③.再把的图象上各点的_横_坐标__缩短_的图象。的图象上所有点的_纵_坐标_伸长_的图象。

或_伸长_到原来的__倍(_纵_

或_缩短_为原来的_A_倍(_横_坐标不变)得到

B、深入探究,讨论分析: 预设问题:

教学的班级为普通班,根据以往的教学经验,如果只研究一种顺序,有的学生会错误地认为由的图象向左

平移个单位得到的图象,说明学生没有真正理解函数图象的变化是看坐标(x,y)的变化量。预想到学生会犯这个错误,为了让学生更好地理解图象变化的实质,我选择不同的小组汇报,进而追问:为什么会有这种不同呢?原因是什么?学生们可以通过观察坐标表格中横坐标的变化,发现平移量。或者通过观察图象,发现平移量。因为在方案ω—中,先进行了横向的伸缩,即横坐标变为了原来的单位;从坐标和解析式上来看,点论。

倍,所以向左平移个

分别满足两个解析式,也可以得到这个结

把的图象上所有的点__向左_平移_

_个单位长度,得到函数的图象。

问题4:第二种变换方法,平移量是,还是,为什么?

个单位;先周期变换后相位变注意不同顺序中平移量的不同。先相位变换后周期变换时,需向左平移换时,需向左平移个单位而不是个单位。平移量是由的改变量确定的。

学生总结第二种变换的规律:周期变换

相位变换

振幅变换

把y=sinωx的图象上的所有的点 向左 到y=sin(ωx+φ)的图象。

或 向右平行移动个单位长度,得对比两种变换过程说明:先相位变换后周期变换平移先周期变换后相位变换平移

个单位长度。

个单位长度。

【设计意图】使学生由正弦曲线变化得到函数y=Asin(ωx+φ)(A>0,ω>0)的图象的不同方案有一个整体的认识,并在掌握图象变化实质的基础上,择优选择。

(三)知识运用,巩固强化

练习:

1、只需把函数的图象上所有点(A),可以得到

函数的图象。

A、横坐标伸长到原来的2倍,纵坐标不变。

B、横坐标缩短到原来的倍,纵坐标不变。C、纵坐标伸长到原来的2倍,横坐标不变。

D、纵坐标缩短到原来的倍,横坐标不变。

2、为了得到函数A、向左平移的图象,只需把函数的图象上所有点(B)

个单位长度 个单位长度

B、向右平移C、向左平移个单位长度

D、向右平移个单位长度

3、把函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数 的图像,再把函数变式:把函数把函数的图象上所有点向右平移个单位,得到函数

的图象。

的图象,再 的图像。图象上所有点向右平移个单位长度,得到函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到函数

【设计意图】练习及变式练习是对本节课重点和难点知识的巩固,通过学生的回答,可了解学生对于函数图像变换的“形”、“数”思维的形成过程是否得到落实。

(四)归纳交流

1、学生谈本节课的学习体会。

2、正弦函数y=sinx的图象变换到函数y=Asin(ωx+φ)的图象:顺序可任意,平移尺度要注意。

3、数学思想:数形结合、从特殊到一般思想、化归思想。

(五)巩固作业

课本P49/2(写在作业本上),P50/1(写在书上)

(六)学习效果评价设计

1.在学生动手实践、观察、思考问题的过程中,关注学生发现问题、解决问题的能力;并在进一步的学习过程中,观察学生的类比学习能力;

2.在各组共同学习、解决问题的过程中,观察学生合作交流、学习的能力; 3.对不同方案的对比学习中,了解学生把握事物本质的能力;

4.通过课堂活动与交流,了解学生对知识的掌握程度,通过反馈,对易错、易混的知识点,做出启发性的指导;

5.通过课堂小结,学生说出自己的收获,与别人分享学习数学的体会,激发学习数学的积极性,建立自信心。

第五篇:《函数y=Asin(ωx+φ)的图象》的教学反思

《函数y=Asin(ωx+φ)的图象》的教学反思

数学组 张淑文

教师不能只把教案写得详细周全,满足于“今天我上完课了,改完作业了,完成教学任务了。”而应该常常反思自己的教育教学行为,记录教育教学过程中的所得、所失、所感,不断创新,不断地完善自己,不断提高教育教学水平。新课程标准要求我们将新理念转化为实际的教学行为,要有效地实现知识与技能,过程与方法,情感、态度与价值观的三位一体的课程目标。

这次公开课我讲的是人教版高中数学必修(4)第一章第五节的内容──函数y=Asin(ωx+φ)的图象,函数y=Asin(ωx+φ)的图象是高中数学的重点内容,是三角函数知识解决实际问题的重要工具。经过这次教研活动,在展示自己的基础上,对公开课作了认真准备,有了一定的提高同时发现了自身存在的不足,需要我在今后的教学实践中去不断的积累和完善。本着新课标的精神,我浅谈一下我对这节公开课的几点反思:

1、创设情境、激发学生的兴趣。

长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学, 所以我从一开始就引入物理的内容:简谐运动中单摆对平衡位置的位移y与时间x的关系、交流电的电流y与时间x的关系等都是形如y=Asin(ωx+φ)的函数(其中A, ω, φ都是常数)。演示课件《弹簧振子位移——时间的图象》,这有助于学生认清函数y=Asin(ωx+φ)与正弦函数的图象内在联系,并把有探究价值的问题留给学生,激发学生探求知识的强烈欲望和创新意识.

2.钻研教材、建构符合学生认知的教学设计

应该怎样对学生进行教学,教师会说要因材施教。可实际教学中,又用一样的标准去衡量每一位学生,要求每一位学生都应该掌握哪些知识,要求每一位学生完成同样难度的任务等等,每一位学生固有的素质,学习态度,学习能力都不一样,对学习有余力的学生要帮助他们要更高层次前进。平时布置任务时,让优生做完基本的任务要求,再加上两三个有难度的要求,让学生多多思考,提高思考含量。对于学习有困难的学生,则要降低任务要求,努力达到基本要求。

教师不仅是知识的传授者,而且也是学生学习的引导者、组织者和合作者,丰富学生的学习方式、改进学生的学习方法,这些都是高中数学课程追求的基本理念,首先,我试图将学生的主体性得到充分体现,让他们自己探索总结由正弦函数图象到函数y=Asin(ωx+φ)的图象变化规律。让学生自己感受发现问题——分析问题——解决问题的过程,培养他们科研素质。而我作为学生学习的引导者、组织者和合作者.学生不再是知识的接受器,教学完全建立在学生认知水平基础之上.最后由学生自己观察,分析出变化趋势,总结规律。课后,我思考是否能让学生的主体性发挥的更彻底一些,在创设教学情景方面,作为学生学习的引导者、组织者,我与老教师的差距是明显的,比如在课堂上,在由函数y=sin(x+φ)的的函数图象到函数y=sin(ωx+φ)的图象图象变换的规律总结上,教师很自然的想到把曲线的纵坐标不变,横坐标伸长或缩短到原来的1倍,但是学生往往只能发现五个“特殊点”的变化,而认识不到整个函数的变化趋势,变化多少?是变化倍还是变化倍?这时候就需要教师的引导,而我当时感1觉是引导少了一些传授多了一些,老教师的课我也经常听,感到在对学生的启发引导我还要下功夫。

3.尊重学生,突出评价的激励和发展功能

数学教育是学生真切生活的体验,是师生情感的交流,是学生持续发展的体现.只有在民主、平等的气氛中,学生的言行才能得到尊重与宽容。学生天生好问,但由于知识经验、思维能力有限,有时的回答可能显得幼稚,教学中,应该不急于将结果直接呈现给学生,让学生观察、归纳、猜想、论证,处处闪烁着学生的思维火花.有学生和教师,学生与学生之间的平等对话,处处体现出教师以人为本,尊重学生个性差异,关注学生未来发展的理念。但是在注重和学生的交流这一点上我是做得很不够,这方面,我欠缺在尊重学生个性差异,通过课堂的提问,很少由学生的个性差异出发,而脑海中对每个学生以“他掌握了”“他没掌握”或“他哪里没掌握”作为评价选项,而没有注重学生个性差异而加以引导。通过这次教研活动,特别是这节公开课,感觉到自身的不足,在今后的教学中还应该多干、多想、多积累。

4、借助几何画板,多途径解决数学问题,拓展学生视野。本节课若采用传统的方法讲授,作图量大,耗时多。所以,本人主要运用计算机中“几何画板”软件探究“函数y=Asin(ωx+φ)的图象变换”的课例。借助信息技术强大的作图和分析功能,让学生充分利用“几何画板”的动画功能,对其三角函数图象的变化能直接进行“数学实验”的操作,培养学生探究和解决实际问题的能力充分体现数学源于实践,源于生活;充分体现“以学生发展为本”的新课标要求。由y=sinx到y=Asin(ωx+φ图象变换是一个动态的过程。借助几何画板的课件演示可以直观地让学生感受变换的过程,加深对变换的理解。当学生用利用几何画板来自已输入各个参数,可以既可以从形的角度解决图象的变换,又要可以检验数学推理是否正确。

通过这堂研讨课,让我认识到作为教学活动的主导者,只有在日常的教学中不断加强自身的专业修养、勇于创新,才能优化课堂教学,提高课堂教学效果。

5、与老教材相比有优越也有瑕疵

以前该部分内容的教学通常是通过取值、列表、描点、画图然后静态的让学生观察、总结,最后得出它们之间图象变化的特点,不仅教学内容少,而且课时多(以前至少需要2课时)、课堂气氛枯燥、学生参与的活动少、学习的积极性较低.通过信息技术的使用,改变常规教学中处理方式,通过几何画板的辅助教学演示,使得振幅变换、伸缩变换、平移变换变得形象、直观,学生易于理解和掌握,不仅一节课完成了三种变换而且学生的兴趣浓厚、参与活动多、课堂气氛活跃,使课堂教学落到了实处,主体作用得到了真正的体现,综合能力和素质也得到了培养,这充分体现了信息技术具有的优势.但值得商榷的是:原来教学的“五点作图法”绘制函数图象,再讨论参数所起的作用,这里用技术马上就画出函数图象,并观察规律得出结论,学生可能会怀疑真的是如此?这时可用“五点作图法”来确定

最后,有时侯想尽量让学生喜欢数学,在上课之前,告诉自己要面带微笑,要讲得行云流水。但有时还会有不尽人意的地方。

“吾日三省吾身”,“学而不思则罔,思而不学则怠。”通过教学反思我会不断提高我的教学水平,成长为一名优秀的人民教师。

下载1.3.3正弦型函数y=Asin(ψx+φ)的图象变换教学设计word格式文档
下载1.3.3正弦型函数y=Asin(ψx+φ)的图象变换教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    函数y=Asin(ω某+φ)图象的说课稿

    函数y=Asin(ω某+φ)图象的说课稿 函数y=Asin(ω某+φ)图象的说课稿1 一、教材分析1·教材的地位和作用在学习这节课以前,我们已经学习了振幅变换。本节知识是学习函数图象变......

    课题:函数y=Asin(ωx+φ)的图象教案

    学案---------高一年级(上)数学NO.39 课题:函数y=Asin(ωx+φ)的图象教案 学习目标 : ①掌握φ、ω、Α的变化对函数图象的形状及位置的影响。 ②进一步研究由φ变换、ω变换、Α......

    正弦函数余弦函数图象教学设计

    正弦函数、余弦函数的图象的教学设计 一、 教学内容与任务分析 本节课的内容选自《普通高中课程标准实验教科书》人教A版必修四第一章第四节1.4.1正弦函数、余弦函数的图象......

    4示范教案:函数y=Asin(ψx+φ)的图象

    课题:函数yAsin(x)的图象 1、教学目标: 知识目标: ①理解三个参数A、ω、φ对函数yAsin(x)图象的影响; ②揭示函数yAsin(x)的图象与正弦曲线的变换关系。 能力目标: ①增强学生的......

    高二数学教案:《函数y=Asin(ωx+φ)的图象》说课稿

    3eud教育网http://www.3edu.net 50多万教学资源,完全免费,无须注册,天天更新! 《函数y=Asin(ωx+φ)的图象》说课稿 广州市第十四二中学 周拥军 尊敬的各位评委、老师大家好!我叫......

    正弦函数、余弦函数的图象教学设计5则范文

    正弦函数、余弦函数的图象 一、教材分析: 本节课是高中新教材《数学》第一册(下)§4.8《正弦函数、余弦函数的图象和性质》 的第一节,是学生在已掌握了一些基本函数的图象及其......

    正弦函数图像变换教学设计

    府谷中学“六环节”分层导学高一数学教学设计 设计人:呼建强 审核人:徐尚志 函数yAsin(x)的图像(第2课时)教学设计 【设计理念】 《标准》已明确指出在数学教学过程中注重培养......

    《正弦函数图像变换》教学设计

    1.5正弦型函数y=Asin(ψx+φ)的图象变换教学设计 精河县高级中学韩英 教学目标: 知识与技能目标: 能借助计算机课件,通过探索、观察参数A、ω、φ对函数图象的影响,并能概括出三......