人教版同底数幂的乘法教案

时间:2019-05-12 21:06:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《人教版同底数幂的乘法教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《人教版同底数幂的乘法教案》。

第一篇:人教版同底数幂的乘法教案

同底数幂的乘法

刘艳

教学目标

1、理解法则中“底数不变、指数相加”的意义;能熟练地应用同底数幂乘法法则进行计算。

2、从同底数幂乘法法则的推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力和逻辑推理能力。

重点 同底数幂的乘法法则及法则的正确应用。难点 同底数幂的乘法法则的推导。教学流程

一、复习与回顾

回忆乘方、幂等概念。

二、创设情境,引出课题,探索新知

师:看来同学们对以前所学的知识还有印象。哎,有一件事情虽然过去两年多了,但是我相信大家一定印象深刻——那就是2008年北京奥运会。你们还记得奥运场馆的标志性建筑是什么吗?——对,鸟巢和水立方!非常壮观,被列入北京十大建筑,同时也是世界上著名的节能环保建筑。你们认为他们最漂亮的是什么时候呢?(出示鸟巢和水立方的夜景图)到了晚上他们就更漂亮了,是因为什么?(灯光)可能大家有所不知,这里所需要的灯光大部分都不是来自发电厂,而是来自太阳能。

(出示: 中国奥委会为了把2008年北京奥运会办成一个环保的奥运会,很多建筑都做了节能的设计,据统计:奥运场馆一平方千米的土地上,一年内从太阳得到的能量相当于燃烧108千克煤所产生的能量。那么105平方千米的土地上,一年内从太阳得到的能量相当于燃烧多少千克煤?)

【利用鸟巢和水立方夜景图及例1,一方面可以集中学生注意力,使之较快进入课堂学习状态,另一方面不失时机加深学生的爱国主义教育和环保意识】 师:你们能列式吗?(学生讨论得出108×105)师:

8、5我们称之为什么?(幂)1010师:我们再来观察底数有什么特点?

生1:都是10 生2;是一样的

师:像这样底数相同的两个幂相乘的运算,我们把它叫做同底数幂的乘法。(揭示课题)

(一)合作学习、探索新知

1、探索 108×510 等于多少?(鼓励学生大胆猜想?)404013学生可能会出现以下几种情况: ① 100②10 ③100 ④10 【猜想产生疑问,激发兴趣,为学生推导公式作好情感铺垫。】

师:那到底谁得猜想是正确呢?小组合作讨论(师提示:根据幂的意义)生回答师板演: 8 5 10× 10

=(10× 10ׄ×10)×(10 × 10ׄ×10)(8个10)

(5个10)=10×10ׄ×10 13个10 =10 13 8 58+5 即:10× 10=10【师给出适当的提示后,相信学生能在已有的知识基础上,利用集体的智慧,找出猜想中的正确答案,并通过“转化”思想得出结论,也找到了正确的推理过程。】

2、出示问题:(学生口答,课件显示过程)6 9 a· a

=(a · a„a)×(a · a„a)

6个a 9个a =a · a„a

15个a =a

96+9即:a· a=a、观察以上两个式子,你有什么发现?()师:这是两个特殊的式子,他们的指数分别是8,5;6,9。同底的两数任何次幂相乘,都是底数不变,指数相加吗?能找到一个具有一般性,代表性的式子吗? am 6n · a怎么计算? 6 1598 5mn【a· a和 a · a 的推导过程由于10· 10 打好了坚实的基础而且推导过程也重复,所以我用填空的形式简化公式的推导过程,即避免了重复教学过程,也节约时间,同时也能达到让学生经历从具体到一般的推导过程。】 mn m+n板书:a · a= a(m、n都是正整数)师补充解释m、n都是正整数的原因,并请学生用自己的语言概括该结论,之后全体学生用精炼的文字概括表述。

板书:同底数幂相乘底数不变,指数相加。

【多名学生参与到全班学生参与,经历从理解法则的含义的概括到用十分准确简练的语言概括过程,从而发展全体学生数学语言和提高学生的表达能力。】

出示:

1、计算下列各式,结果用幂的形式表示: 5 m 3m+1 3

(1)(-9)×(-9)(2)x·x(3)(x+y)×(x+y)

教学(1)指名回答,师板演完整步骤

(2)(3)学生独立完成,要求书写完整的解答步骤。师概括底数a可以是任意有理数,也可以是单项式或多项式。出示:

2、计算下列各式,结果用幂的形式表示:

363 5(1)a·a ·a(2)(-m)×(-m)×(-m)教学(1)学生齐答,师板演完整步骤

(2)学生独立完成后师提问:你对法则有什么新的认识吗? 出示:

3、计算下列各式,结果用幂的形式表示: 2 6 23(1)-m×(-m)(2)a·(-a)·(-a)教学 :小组合作,讨论完成。

问:此类题有何特征?解题时应注意哪些问题?

第1题(1)的教学活动目的让学生掌握解题的书写步骤,(2)(3)让学生独立完成进一步巩固解题的书写步骤,第3题小组合作解题。本例的教学活动既有教师的引导,学生独立思考又有学生的合作交流,从而优化学生的思维体现了思维的合理化、严格化、程序化,特别是小组合作,能使学生在同伴交流过程中也培养了团体合作意识。88师问: a+a等于多少? 16生可能会快速回答:等于a 88师追问 aa等于多少? 16 生:等于a16生在回答a时立即发现了问题 8888师再追问:那么说a+a= aa? 生思考片刻:888a+a=2a

该教学活动让学生产生思想冲突,并又教师的追问使他们自己产生疑问,再让学生经过“比较”解决冲突,也避免了以后出现同类项与同底数幂相乘产生混淆。

三、巩固新知

课件出示下面计算对吗?如果不对,应怎样改正?

(1)a3a32a3

236(2)aaa66(3)aaa()()8311((7)4)(-7)7()

师:思考一至二分钟举手回答,可挑选自己喜欢的题目回答。

给学生充足的思维空间,养成思考习惯,让学生自主挑选回答主要是让后进生也能在课堂上体验成功,有成就感;且该教学活动亦能培养学生仔细观察问题的习惯。

四、活用法则

课件出示:已知 am = 3 , an =5 , 求 am+n 的值。

(1)让学生在新知识的基础上结合旧知识解题。培养学生综合分析。同时也进一步巩固了同底数幂乘法公式的理解和应用。

五、归纳小结

1、同桌之间用今天学到的知识,每人出一个最好的题让同伴解答。看谁出题最好、又看谁解答最棒!

2、叙述本节课的收获。

另一方式的归纳总结法、既能让学生自己总结应用课堂所学的知识,也能让学生体验成功的喜悦。

教学反思:

本课我采用探究合作教学法进行教学,充分发挥了学生的主体作用,积极为学生创设一个和谐宽松的情境,学生在自主的空间里自由的奔放地想象思维和学习取得交好的效果。

在这次教学的导入环节,我利用多媒体为学生创设美观热点生活情境,充分调动了学生的兴趣和积极性;在同底数幂乘法公式推导过程中学生思维经历了猜测、质疑。推理论证的科学发现过程,也渗透了转化和从特殊到一般的数学辩论思想,充分体现了自主探究的学习方式;而在巩固深化环节上精心设计开放式题目。通过学生独立思考,小组合作等手段,让学生个个动手、人人参与,充分调动学生学习数学的积极性。同时也使各层次的学生有不同的收获。

总之,学生的思维空间需要我们去开拓,学生身上闪耀出的智慧火花也另我倍受鼓舞。

同底数幂的乘法说课稿 1. 教材分析

同底数幂的乘法这节课要求学生推导出同底数幂的乘法的运算性质,理解和掌握性质的特点,熟练运用运算性质解决问题。在教学中改变以往单纯的模仿与记忆的模式,体现以学生为主体,引导学生动手实践、自主探索与合作交流的教学理念。通过练习形成良好的应用意识.同底数幂的乘法是在学习了有理数的乘方和整式的加减之后,为了学习整式的乘法而学习的关于幂的一个基本性质,又是幂的三个性质中最基本的一个性质,学好了同底数幂的乘法,对其他两个性质以及整式乘法和除法的学习能形成正迁移。因此,同底数幂的乘法性质既是有理数幂的乘法的推广又是整式乘法和除法的学习的重要基础,在本章中具有举足轻重的地位和作用。

2.教学目标

1、知识目标:了解同底数幂乘法的性质,能正确地运用性质解决一些实际问题。

2、能力目标:经历探索同底数幂乘法运算性质的过程,在探索过程中, 发展学生的数感和符号感,培养学生的观察、发现、归纳、概括、猜想等探究创新能力,发展推理能力和有条理的表达能力。

3、情感目标:通过同底数幂乘法性质的推导和应用,使学生初步理解“特殊~~一般~~特殊”的认知规律和辨证唯物主义思想,体会科学的思想方法,激发学生探索创新精神。3.教学重点、难点

同底数幂的乘法同其他幂的运算性质一样,都是在有理数的基础上讨论的,它既有对数的通性的概括,又有从数到式的抽象,而学生在此之前对字母表示数的广泛意义已有初步认识,但用字母表示幂的指数还是初次遇到,所以他们会对同底数幂的乘法性质感到抽象,不易理解,因此正确地理解同底数幂的乘法性质既是本课的重点也是难点。突破它的关键是利用幂的意义通过从特殊到一般地推导性质,再从一般到特殊地运用性质,使学生理解并掌握性质的条件和结论。同时,由于受思维定势的影响,学生计算时易忽略条件,以及把它与数的乘法相混淆而将指数相乘。因此,性质的正确应用是本节课学习中的又一个难点,突破的方法一是剖析性质的特征,和通过一组诊断题让学生判断,并要求学生分析错误,比较异同,让学生总结出运用性质时的注意事项。4. 教法分析

根据教学目标,要让学生经历探索性质的过程,因此,在性质的推导过程,采用让学生尝试的教学方法,以问题的形式,引导学生进行思考、探索,再通过交流、讨论,发现性质,使学生的学习过程成为再发现、再创造的过程,使学生在学习的过程中掌握学习与研究的方法,养成良好的学习习惯,从而学会学习,学会思考,学会合作,学会创新;而对于推导出的性质及其语言叙述,则以一种较轻松而又富有挑战性的方式指导他们理解记忆,在教学方法上采用学生讨论与教师的讲授相结合。而在整个教学中,分层次地渗透了归纳和演绎的数学思想方法,以培养学生养成良好的思维习惯。

5.学法指导

教学的矛盾主要方面是学生的学,学是中心,会学是目的,因此,在教学中要不断指导学生学会学习。

本节课主要是教给学生“动手做,动脑想,多合作,大胆猜,会验证” 的研讨式学习方法。这样做增加了学生的参与机会,增强了参与意识,教给了学生获取知识的途径和思考问题的方法,使学生真正成为学习的主体。以及通过动手实践,理解记忆和强化训练的学法掌握本节课内容。

6.教学手段

由于本课的引入是一个有趣的问题,有精美的图片,以及为了使性质的推导过程更形象和清晰,所以借助多媒体来进行教学。

7.教学过程

一 创设情景,提出问题:

运用多媒体从天文中的有趣问题引入同底数幂的乘法运算。通过引导学生观察式子特点,引入本节课题。鼓励学生根据幂的意义独立求出问题中105×107=?。(在这个过程中)根据学生实际情况,提醒并纠正学生的错误认识:不要将a+a+a与a·a·a相混淆。设计意图:

通过天文中的有趣的问题激发学生的兴趣,使学生的注意由有无意注意向有意注意转化。同时由问题引入同底数幂的乘法运算,渗透底数、指数这些幂的组成要素,为后续的找规律作好铺垫。

二 探索交流,发现新知

首先把学生分小组,按步骤讨论探索和解决下面的四个问题:

1、提出新任务:(课本P12做一做1)。过程中注意了解学生对幂的意义的理解程度,要求学生说明每一步的理由。计算下列各式:

(1)102×103(2)105×108(3)10m×10n(m, n都是正整数)

2、提高任务难度:(P12做一做2)。同时注意引导学生观察计算前后底数和指数的关系,并鼓励其运用自己的语言加以描述。2m×2n =?

m× n =?(m, n都是正整数)

3、提出挑战:能否用一个比较简洁的式子概括出你所发现的规律?

4、提出更高挑战:要求学生能从幂的意义这个角度加以解释、说明,验证它的正确性。设计意图:

通过四个有层次的问题,突出重点,引导学生合作交流,探索发现同底数幂乘法的性质,使学生获得成功。

然后要求学生按步骤独立思考和探索:

1、比一比,赛一赛识记性质

2、除了记得准、记得快之外,衡量记忆力好坏还有两个很重要的标准:持久性和准备性。回想一下你是用什么办法记住的?用这个办法能否持久?针对此问题,引导学生反思能否提出一个更有建设性的改进措施?借此激发学生的主观能动性,使他们自发地产生对性质特点的探求的一种自身需要,并积极思索和回顾性质的得来过程,达到对性质的剖析:

(条件是①乘法②同底数幂; 结果是①底数不变②指数相加)(目的是为了化解难点)

3、再识记。(在理解的基础上,结合性质的特点和语言叙述,有目的地提取记忆。)

4、提问:“你认为这个性质的应用,应特别注意什么?”给点时间思考。(目的是让学生记住这个问题,可以不急于回答,让学生带着问题进行练习,之后再作回答)设计意图:

通过问题引导学生反思对运算性质特点的探求,积极思考和回顾运算性质的得来过程,达到对运算性质的剖析,增强理解。

三 应用练习,促进深化

1、展示课本P13 例1,可由学生自行讲练,教师辅助。

2、与实际生活相结合,创设例2生活背景,进一步培养学生的数感。

练习设计:

1、完成课本P14 随堂练习1,2、闯关练习:

①x³+x³;②x²·x³;③x³·x³;④x³·y³;⑤x²·y³。

3、问题①:am·an·ap =?

问题②:am+n 可以写成哪两个因式的积?

3、如果 xm =3, xn =2, 那么 xm+n =____ 设计意图:

前两个练习是为了帮助学生巩固所学知识,克服思维定势,消除负迁移,引导学生从条件和结论两方面来辨析性质的特点。

后面两个问题和练习的提出,是为了检测对性质的理解程度及熟练程度,培养举一反三和逆向思维的数学品质。

四 提炼小结,完善结构

“通过本节课的学习,你在知识上有哪些收获,你学到了哪些方法?”引导学生自主总结,组织学生互相交流各自的收获与体会,成功与失败。设计意图:

使学生对本节课所学知识的结构有一个清晰的认识,能抓住重点进行课后复习。以及通过对学习过程的反思,掌握学习与研究的方法,学会学习,学会思考。五 布置作业,延伸学习

1、完成课本P14习题;

2、整理同底数幂乘法的探索过程,写一篇小论文。

3、自编一道最能代表个人水平的题目。设计意图:

使学生巩固本节课所学地知识,展示学习成果,总结学习与研究的方法,培养学生良好的学习习惯,

第二篇:同底数幂的乘法教案

教学目标

1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算;

2.在推导“性质”的过程中,培养学生观察、概括与抽象的能力.

教学重点和难点

幂的运算性质.

课堂教学过程设计

一、运用实例 导入新课

引例 一个长方形鱼池的长比宽多2米,如果鱼池的长和宽分别增加3米,那么这个鱼池的面积将增加39平方米,问这个鱼池原来的长和宽各是多少米?

学生解答,教师巡视,然后提问:这个问题我们可以通过列方程求解,同学们在什么地方有问题?

要解方程(x+3)(x+5)=x(x+ 2)+39必须将(x+3)(x+ 5)、x(x+2)展开,然后才能通过合并同类项对方程进行整理,这里需要要用到整式的乘法.(写出课题:第七章 整式的乘除)

本章共有三个单元,整式的乘法、乘法公式、整式的除法.这与前面学过的整式的加减法一起,称为整式的四则运算.学习这些知识,可将复杂的式子化简,为解更复杂的方程和解其它问题做好准备.

为了学习整式的乘法,首先必须学习幂的运算性质.(板书课题:7.1 同底数幂的乘法)在此我们先复习乘方、幂的意义.

二、复习提问

1.乘方的意义:求n个相同因数a的积的运算叫乘方,即

2.指出下列各式的底数与指数:

(1)34;(2)a3;(3)(a+b)2;(4)(-2)3;(5)-23.

其中,(-2)3 与-23 的含义是否相同?结果是否相等?(-2)4 与-24 呢

三、讲授新课

1.利用乘方的意义,提问学生,引出法则

计算103×102.

解:103×102=(10×10×10)+(10×10)(幂的意义)

=10×10×10×10×10(乘法的结合律)

=105.

2.引导学生建立幂的运算法则

将上题中的底数改为a,则有

a3·a2=(aaa)·(aa)

=aaaaa=a5,即a3·a2=a5=a3+2.

用字母m,n表示正整数,则有

=am+n,即am·an=am+n.

3.引导学生剖析法则

(1)等号左边是什么运算?(2)等号两边的底数有什么关系?

(3)等号两边的指数有什么关系?(4)公式中的底数a可以表示什么?

(5)当三个以上同底数幂相乘时,上述法则是否成立?

要求学生叙述这个法则,并强调幂的底数必须相同,相乘时指数才能相加.

四、应用举例 变式练习

例1 计算:

(1)107×104;(2)x2·x5.

解:(1)107×104=107+4=1011;(2)x2·x5=x2+5=x7.

提问学生是否是同底数幂的乘法,要求学生计算时重复法则的语言叙述.

课堂练习

计算:

(1)105·106;(2)a7·a3;(3)y3· y2;

(4)b5· b;(5)a6·a6;(6)x5·x5.

例2 计算:

(1)23×24×25;(2)y· y2· y5.

解:(1)23×24×25=23+4+5=212.(2)y· y2 · y5 =y1+2+5=y8.

对于第(2)小题,要指出y的指数是1,不能忽略.

五、小结

1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.

2.解题时要注意a的指数是1.

六、作业

第三篇:同底数幂的乘法教案

同底数幂的乘法

马塘镇邱升中学 陈飞飞

教学目标:

1、经历探索同底数幂乘法运算性质的过程,发展符号感和推理意识。

2、能用符号语言和文字语言表述同底数幂乘法的运算性质,会根据性质 计算同底数幂的乘法。

3、理解同底数幂乘法的性质,能正确地运用性质解决一些问题。教学重点:探究并理解同底数幂的乘法的运算法则 教学难点:同底数幂的乘法运算法则的灵活运用 教学方法:创设情境—主体探究—应用提高。

教学过程:

一、创设情境,揭示课题

今天街道管理处的李叔叔请同学们帮忙解决这样一个问题:

问题1:为了扩大绿地面积,要把街心花园的一块长pm,宽bm的长方形绿地,向两边分别加宽am和cm,你能用几种方法表示扩大后的绿地面积? p(a+b+c)= pa+pb+pc 这就是我们这一章要学习的内容-整式的乘法, 李叔叔经过测量后发现原先街心花园是一块长500m,宽100m的长方形绿地,现向两边分别加长300m和200m,你会表示出扩大后的绿地面积吗? 100×(300+500+200)=100×1000=100000(m2)用科学计数法表示为:102×103=105(m2)李叔叔为了感谢同学们,带大家去参观街道管理处的电脑房: 问题2: 一种电子计算机每秒可进行1015次的运算,它工作103秒可进行多少次运算?

1015×103= 猜想结果 1018(次)

观察这两个式子,这节课我们共同研究:同底数幂的乘法。

二、合作探究

(一)复习

an 表示的意义是什么?其中a、n、an分别叫做什么? 回忆:

1、2×2×2=23

2、a·a·a·a·a = a5

3、a•a • · · · • a = an 再回忆:

1、25=2×2×2×2×2 2、103=10×10×10

3、a4=a·a·a·a(二)探究算法(让学生经历算一算,说一说)

1、学生演算详细的计算过程,并引导学生说出每一步骤的计算依据。102×103=(10×10)×(10×10×10)(乘方意义)=10×10×10×10×10(乘法结合律)=105(乘方意义)

2、寻找规律

请同学们先认真计算下面各题,① 25×22 = ② a3×a2= ③5m﹒5n= 观察下面各题左右两边,底数、指数有什么关系?

3、归纳法则

①、你能根据规律猜出答案吗?

猜想:am·an=?(m、n都是正整数)写出计算过程,证明你的猜想是正确的。am·an=(aa„a)·(aa„a)(乘方意义)m个a n个a = aa„a(m+n)个a(乘法结合律)=am+n(乘方意义)

即:am·an= am+n(m、n都是正整数)

②、让学生通过辨别运算的特点,用自己的语言归纳法则 A、am·an 是什么运算?——乘法运算

B、数am、an形式上有什么特点?——都是幂的形式 C、幂am、an有何共同特点?——底数相同 D、所以am·an叫做同底数幂的乘法。师:同学们觉得它的运算法则应该是? 生:同底数幂相乘,底数不变,指数相加。

教师强调:幂的底数必须相同,相乘时指数才能相加。例如:43×45=43+5=48

三、知识应用 例

1、计算:

(1)x2·x5(2)a·a6

(3)(-2)×(-2)4×(-2)3(4)x m·x3m+1(5)(y-x)2·(x-y)3 请两个学生上黑板板演:

师生共同分析:1.a= a1 2.同底数幂的乘法中的底数和指数可以是一个数、字母或式子 例2.填空:

(1)8 = 2x,则 x = ;(2)8× 4 = 2x,则 x = ;(3)3×27×9 = 3x,则 x =.学生观察,小组讨论,师生交流,得出答案。例3:已知3a=9,3b=27,求3a+b的值.

学生独立完成,师生交流,教师板书,共同解决。练习

(一)计算:(抢答)

(1)32×33(2)b5 · b

(3)5m· 5n(4)a8 · a3 · a

(二)下面的计算对不对?如果不对,怎样改正?

(1)a · a= 2a()(2)x2 ·y5 = xy7()

(3)a +a = a2()(4)a3 · a3 = a9()(5)a3+a3 = a6()(6)a3 · a3 =a6()闯关游戏 第一关 填空:

(1)x5 ·()=x 8(2)a ·()=a6(3)x · x3()=x7(4)xm ·()=x3m 第二关

计算

(1)b3+b3(2)(a-b)2×(a-b)(3)(-3)4×(-3)5(4)(-6)4×63(5)(-3)7 × 32(6)am-2 · a7 第三关

计算:

1(1)a·a3+a2·a2(2)a4·(-a)3·(-a3)m-n2n+1m-14-n72、如果x·x=xn,且y·y=y.求m和n的值 师生共同分析存在问题。

四、归纳小结、布置作业

这节课你学到了什么内容?有什么收获? 作业:课本96页练习教学设计说明: 一.教材分析

同底数幂的乘法是在学习了有理数的乘方和整式的加减之后,为了学习整式的乘法而学习的关于幂的一个基本性质,又是幂的三个性质中最基本的一个性质,学好了同底数幂的乘法,对其他两个性质以及整式乘法和除法的学习能形成正迁移。因此,同底数幂的乘法性质既是有理数幂的乘法的推广又是整式乘法和除法的学习的重要基础,在本章中具有举足轻重的地位和作用。所以这节课要求学生经历推导出同底数幂的乘法的运算性质,理解和掌握性质的特点,熟练运用运算性质解决问题。二.学情分析

从学生的知识情况来看,一是指数概念早已学过,但由于时间和自身的原因,对指数概念中所含名称:底数、指数、幂的含义并不十分明确;二是再加上以前学过的系数的概念,增加了正确理解法则的困难;三是同底数幂的乘法法则容易与合并同类项混淆,这更给学生熟练掌握并运用法则增添了障碍。三.教学设想

在教学中改变以往单纯的模仿与记忆的模式,体现以学生为主体,引导学生动手实践、自主探索与合作交流的教学理念并通过练习形成良好的应用意识.1、培养学生探究的能力 本节课学生的探究活动比较多,既要全局把握,又要顺其自然,千万不可拔苗助长,为了后面多做几道练习而人为的主观裁断时间安排,其实法则的探究活动本身既是对学生能力的培养,又是对法则的识记过程,而且还可以提高他们的应用法则的本领。因此,不但不可以节省,而且还要充分挖掘,以使不同程度的学生都有事情做且乐此不疲,更加充分的参与其中。

2、培养学生合作交流的能力 在同底数幂乘法法则的探求过程中,学生会表现出观察角度的差异:有的学生只是侧重观察某个单独的式子,把它孤立地看,而不知道将几个式子联系地看;有些学生则既观察入微,又统揽全局,表现出了较强的观察力。抓住这个契机,发挥小组合作的作用,使学生学习积极性空前高涨,同组成员之间频繁交流,在合作交流的过程中,师生共同得出同底数幂的乘法的法则。

3、培养学生观察和运用的能力 对于公式使用的条件既要把握好“度”,又要把握好“方向”。对于公式中的字母指数的取值范围,不必过分强调,而对于公式的特点,则应当左右兼顾,特别是公式的左边,它是正确应用公式的前提,却往往不被重视,结果造成几个类似公式的混淆,给正确解题设置了障碍。通过引导学生观察发现特点并在运用中再提高对法则的认知。

第四篇:《同底数幂的乘法》教案

《同底数幂的乘法》教案

教学目标:

理解同底数幂的乘法的性质的推导过程;

2能运用性质来解答一些变式练习;

3能运用性质来解决一些实际问题

教学重难点:

利用同底数幂的乘法的性质解决问题。

教学过程:

一.复习回顾

回顾一下有关幂的基本概念:电子白板出示,让学生回忆思考后,一组师友回答,学友先说,学师补充或评价。

二.自主学习

认真学习本P9内容,学完后独自完成《作业与测试》自主预习部分。(7—10分钟)。完成后学师学友相互检查并请举手!教师进行简单评价。

三.应用展示

电子白板出示练习题:想让学生观察思考,独自写出答案。

完成后学师学友相互检查,如有不同答案讨论解决,意见一致后举手示意,教师根据学生举手情况,让学生回答,教师可写在黑板之上,最后教师强调过程中出现的问题及解题的过程方法,注意常出现的一些问题及注意事项。

四.小试牛刀(堂练习)

本后练习题:根据学生举手情况,让两组师友到黑板上演示习题,其他学生在练习本上写解题过程,教师巡视学生做题情况,适当指导学生,尤其是差生。

学生完成练习题后,先由学师评价学友的练习题,如出现问题,怎么解决,解决不了,老师指导,最后教师评价学生。

五.拓展提高

电子白板出示提高性练习题:先让学生独立思考几分钟,看看能不能解决,如果不能解决,师友之间可以讨论,如果还不能解决,可以扩展到小组内讨论,能解决的学生举手说出解题方法及过程,电子白板出示。

如果有些题还是解决不了,教师给学师详细解答并说明理由,最后电子白板出示解题过程。

六.谈谈收获

几组师友总结本节的主要内容,学友先说,学师补充评价,其他师友组补充或评价,教师最后总结或评价学生。

七.布置作业

后作业:《作业与测试》

第五篇:同底数幂的乘法教案

15.1同底数幂的乘法

八(2)吴传容

一教学目标: 知识目标:经历探索同底数幂乘法运算性质的过程,发展符号感和推理意识。

能力目标:能用符号语言和文字语言表述同底数幂乘法的运算性质,会根据性质计算同底数幂的乘法。

情感目标: 在变式训练中体验化归思想。

教学重点:同底数幂的乘法运算法则。

教学难点:同底数幂的乘法运算法则的灵活运用。教学方法:创设情境—主体探究—应用提高。二教学过程设计

(一)、复习旧知

an 表示的意义是什么?其中a、n、an分别叫做什么? an

= a × a × a ׄ a(n个a相乘)

52表示什么?

10×10×10×10×10 可以写成什么形式? 10×10×10×10×10 =.32式子10×10的意义是什么? 这个式子中的两个因式有何特点?

(二)、探究新知

1、探究算法(让学生经历算一算,说一说)

让学生演算详细的计算过程,并引导学生说出每一步骤的计算依据。103×102=(10×10×10)×(10×10)(乘方意义)

=10×10×10×10×10

(乘法结合律)

=105(乘方意义)

2、寻找规律 请同学们先认真计算下面各题,观察下面各题左右两边,底数、指数有什么关系?

① 103×102=

② 23×22= ③ a3×a2= 提问学生回答,并以“你是如何快速得到答案的呢?”引导学生归纳规律:底数不变,指数相加。

3、定义法则

①、你能根据规律猜出答案吗? 猜想:am·an=?

(m、n都是正整数)

师:口说无凭,写出计算过程,证明你的猜想是正确的。am·an=(aa„a)·(aa„a)(乘方意义)

m个a n个a = aa„a(m+n)个a(乘法结合律)

=am+n

(乘方意义)

即:am·an= am+n

(m、n都是正整数)

②、让学生通过辨别运算的特点,用自己的语言归纳法则 A、am·an 是什么运算?——乘法运算

B、数am、an形式上有什么特点?——都是幂的形式 C、幂am、an有何共同特点?——底数相同 D、所以am·an叫做同底数幂的乘法。

引出课题:这就是这节课咱们要学习的内容《同底数幂的乘法》 师:同学们觉得它的运算法则应该是? 生:同底数幂相乘,底数不变,指数相加。

教师强调:幂的底数必须相同,相乘时指数才能相加。例如:43×45=43+5=48

4、知识应用 例

1、计算 25 35(1)3×3(2)(-5)×(-5)请两个学生上黑板板演:

师生共同分析:公式中的底数和指数可以代表一个数、字母、式子等 练习一 计算:(抢答)356(1)10×10(2)a ·a(3)x5 5

5·x(4)b ·b

当三个或三个以上同底数幂相乘时,是否也具有这一性质呢? 怎样用公式表示?

23例2:计算(1)a · a · a(2)(a+b)(a+b)师生共同分析底数也可以是一个多项式

例3:世界海洋面积约为3.6亿平方千米,约等于多少平方米? 练习二

下面的计算对不对?如果不对,怎样改正? 55

510(1)b · b= 2b()(2)b+ b = b()5 5 255 5 10

(3)x ·x= x

()

(4)y · y= 2y()3 3 4

(5)c · c= c()

(6)m + m= m()

(三)闯关游戏 第一关.2008 437 1.(1)x()= x(2)x· x= 2求X的值 第二关

2.计算 a‧a+ a‧a第三关.n-2n+12113.如果a‧a ‧a=a,则n= 第四关

4.已知:a=2,a=3.求 : a师生共同分析存在问题。mn

m+n

4 8

3三、归纳小结、布置作业

小结:同底数幂的乘法法则。作业:课本p148习题15.1 第1题

下载人教版同底数幂的乘法教案word格式文档
下载人教版同底数幂的乘法教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《同底数幂的乘法》的教案

    同底数幂的乘法 课型:新授课 教学目标: 1.理解同底数幂的乘法的性质及推导过程; 2.能运用性质解题. 教学重点:同底数幂的乘法的运算性质。 教学难点:同底数幂的乘法的运算性质......

    同底数幂的乘法教案

    第十四章 整式的乘法与因式分解 14.1.1 同底数幂的乘法 一、教学目标 知识与技能目标:在推理判断中得出同底数幂乘法的法则,并能正确地运用法则进行有关计算以及解决一些实际......

    同底数幂的乘法大全

    CommandBut《同底数幂的乘法》导学案 学情分析 从学生的知识情况来看,一是指数概念早已学过,但由于时间和自身的原因,对指数概念中所含名称:底数、指数、幂的含义并不十分明确;二......

    同底数幂的乘法

    《同底数幂的乘法》教学设计 执教教师:屠旭华(杭州市采荷中学教育集团) (浙教版《义务教育课程标准实验教科书·数学》七年级下册)一、 教学内容解析 《整式的乘除》是七年级上......

    1.1同底数幂的乘法教案

    第一章 整式的乘除 1.1同底数幂的乘法 学习目标: 1.了解同底数幂乘法的运算性质,并能解决一些实际问题 2.能够在实际情境中,抽象概括出所要研究的数学问题,增强学生的数感符号感,通......

    9.7同底数幂的乘法教案

    9.7(2)同底数幂的乘法 教学目标 1.熟练掌握同底数幂的乘法的运算性质并能运用它进行快速计算.2.能运用公式熟练地进行计算. 3.初步形成分析问题和解决问题的能力,渗透数学公式的结......

    新课标教案_同底数幂的乘法[范文大全]

    同底数幂的乘法 一、教学目标 (一)教学目标 1.经历探索同底数幂的乘法运算性质的过程,进一步体会幂的意义. 2.了解同底数幂乘法的运算性质,并能解决一些实际问题. (二)能力目......

    同底数幂的乘法教学案(全文5篇)

    1.3 同底数幂的乘法教学案 教学目标: 1.使学生在了解同底数幂乘法意义的基础上,掌握幂的运算性质(或称法则),进行基本运算; 2.在推导“性质”的过程中,培养学生观察、概括与抽象......