《三角形的中位线》教学设计与反思

时间:2019-05-12 21:08:57下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《三角形的中位线》教学设计与反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《三角形的中位线》教学设计与反思》。

第一篇:《三角形的中位线》教学设计与反思

《三角形的中位线》创新案例教学

在我的教学工作中,我紧密联系教科书的同时,又会有所创新,我将和大家分享《三角形的中位线》的教学。

《三角形的中位线》所要探究的三角形中位线定理是学生以前从未接触过的内容。因此,在教学中通过创设有趣的情境问题,激发学生的学习兴趣,注重新旧知识的联系,强调直观与抽象的结合,鼓励学生大胆猜想,大胆探索新颖独特的证明方法和思路,让学生充分经历“探索—发现—猜想—证明”这一过程,体会合情推理与演绎推理在获得结论的过程中发挥的作用,同时渗透归纳、类比、转化等数学思想方法。通过本节课的学习,应使学生理解三角形中位线定理不仅指出了三角形的中位线与第三边的位置关系和数量关系,而且为证明线段之间的位置关系和数量关系(倍半关系)提供了新的思路,从而提高学生分析问题、解决问题的能力。

而学生已经学习过有关平行四边形的性质和判定,所以我们要借助于平行四边形的有关知识进行探索和证明。在此过程中注重知识的迁移同时重点渗透转化、类比、归纳的数学思想方法,使学生的优势得以发挥,劣势得以改进,从而提高学生的整体水平。以下是我的教学过程:

(一)教学目标 1.知识目标

(1)了解三角形中位线的概念。

(2)掌握三角形中位线定理的证明和有关应用。2.能力目标(1)经历“探索—发现—猜想—证明”的过程,进一步发展推理论证能力。(2)能够用多种方法证明三角形的中位线定理,体会在证明过程中所运用的归纳、类比、转化等数学思想方法。

(3)能够应用三角形的中位线定理进行有关的论证和计算,逐步提高学生分析问题和解决问题的能力。

3.情感目标

通过学生动手操作、观察、实验、推理、猜想、论证等自主探索与合作交流的过程,激发学生的学习兴趣,让学生真正体验知识的发生和发展过程,培养学生的创新意识。

(二)教学重点与难点

教学重点:三角形中位线的概念与三角形中位线定理的证明.教学难点:三角形中位线定理的多种证明。

(三)教学方法与学法指导

对于三角形中位线定理的引入采用发现法,在教师的引导下,学生通过探索、猜测等自主探究的方法先获得结论再去证明。在此过程中,注重对证明思路的启发和数学思想方法的渗透,提倡证明方法的多样性,而对于定理的证明过程,则运用多媒体演示。

(四)教具和学具的准备

教具:多媒体、投影仪、三角形纸片、剪刀、常用画图工具。学具:三角形纸片、剪刀、刻度尺、量角器。

(五)、教学过程

1.一道趣题——课堂因你而和谐 问题:你能将任意一个三角形分成四个全等的三角形吗?这四个全等三角形能拼凑成一个平行四边形吗?(板书)

(这一问题激发了学生的学习兴趣,学生积极主动地加入到课堂教学中,课堂气氛变得较为和谐,课堂也鲜活起来了。)

学生想出了这样的方法:顺次连接三角形每两边的中点,看上去就得到了四个全等的三角形.

如图中,将△ADE绕E点沿顺(逆)时针方向旋转180°可得平行四边形ADFE。问题:你有办法验证吗?

2.一种实验——课堂因你而生动

学生的验证方法较多,其中较为典型的方法如下:

生1:沿DE、DF、EF将画在纸上的△ABC剪开,看四个三角形能否重合。生2:分别测量四个三角形的三边长度,判断是否可利用“SSS”来判定三角形全等。

生3:分别测量四个三角形对应的边及角,判断是否可用“SAS、ASA或AAS”判定全等。

引导:上述同学都采用了实验法,存在误差,那么如何利用推理论证的方法验证呢?

3.一种探索——课堂因你而鲜活

师:把连接三角形两边中点的线段叫做三角形的中位线.(板书)问题:三角形的中位线与第三边有怎样的关系呢?在前面图1中你能发现什么结论呢?

(学生的思维开始活跃起来,同学之间开始互相讨论,积极发言)学生的结果如下:DE∥BC,DF∥AC,EF∥AB,AE=EC,BF=FC,BD=AD,△ ADE≌△DBF≌△EFC≌△DEF,DE=BC,DF=AC,EF=AB „„

猜想:三角形的中位线平行于第三边,且等于第三边的一半。(板书)师:如何证明这个猜想的命题呢?

生:先将文字问题转化为几何问题然后证明。

已知:DE是ABC的中位线,求证:DE//BC、DE=BC。

学生思考后教师启发:要证明两条直线平行,可以利用“三线八角”的有关内容进行转化,而要证明一条线段的长等于另一条线段长度的一半,可采用将较短的线段延长一倍,或者截取较长线段的一半等方法进行转化归纳。

(学生积极讨论,得出几种常用方法,大致思路如下)

生1:延长DE到F使EF=DE,连接CF,由

可得AD

FC.

生2:延长DE到F使DE=EF,连接AF、CF、CD,利用对角线互相平分的四边形ADCF是平行四边形,可得AD

FC. 生3:将ADE绕E点沿顺(逆)时针方向旋转180°,使得点A与点C重合,即

ADE≌CFE,可得AD

FC.

FC,再由AD=BD,得BD

FC,所以上面通过三种不同方法得出AD

四边形DBCF是平行四边形,DF BC,又因DE,所以DE.师:还有其它不同方法吗?

(学生面面相觑,学生4举手发言)4.一种创新——课堂因你而美丽

生4:过点D作DF//BC交AC于点F ,则 ADF∽ABC 可得

E是AC中点 所以

AE=AF 即

E点与F点重合

1所以

DE//BC 且 DE=BC

2(笔者事先只局限于思考利用平行四边形及三角形相似的性质解决问题,没想到学生的发言如此精彩,为整个课堂添加了不少亮色。)

师:很好,好极了!这种证法在数学中叫做同一法,连老师也没想到。太棒了,大家要向生4学习,用变化的、动态的、创新的观点来看问题,努力去寻找更好更简捷的方法。

5.一种思考——课堂因你而添彩

问题:三角形的中位线与中线有什么区别与联系呢? 容易得出如下事实:都是三角形内部与边的中点有关的线段.但中位线平行于第三边,且等于第三边的一半,三角形的一条中位线与第三边上的中线互相平分.(学生交流、探索、思考、验证)

6.一种照应——课堂因你而完整 问题:你能利用三角形中位线定理说明本节课开始提出的趣题的合理性吗?(学生争先恐后回答,课堂气氛活跃)

7.一种应用——课堂因你而升华 做一做:任意一个四边形,将其四边的中点依次连接起来所得新四边形的形状有什么特征?

(学生积极思考发言,师生共同完成此题目的最常见解法。)已知:四边形ABCD,点E、F、G、H 分别是四边的中点,求证:四边形EFGH是平行四边形。证明:连结AC ∵ E、F分别是AB、BC的中点,∴ EF是ABC的中位线,∴ EF∥AC且EF=AC,同理可得:GH∥AC 且GH=AC,∴ EFGH,∴四边形EFGH为平行四边形。(板书)其它解法由学生口述完成。

8.一种引申——课堂因你而让人回味无穷 问题:如果将上例中的“任意四边形”改为“平行四边形、矩形、菱形、正方形”,结论又会怎么样呢?(学生作为作业完成。)

9.一句总结——课堂因你而彰显无穷魅力

学生总结本节内容:三角形的中位线和三角形中位线定理。(另附作业)本节课以“如何将一个任意三角形分为四个全等的三角形”这一问题为出发点,以平行四边形的性质定理和判定定理为桥梁,探究了三角形中位线的基本性质和应用。在本节课中,学生亲身经历了“探索—发现—猜想—证明”的探究过程,体会了证明的必要性和证明方法的多样性。在此过程中,笔者注重新旧知识的联系,同时强调转化、类比、归纳等数学思想方法的恰当应用,达到了预期的目的。

本节课中学生的“同一法”给了我们很多的启示:虽然在平时的教学中,笔者也尽力放手让学生们探索和创新.但仔细想想,他们的那些“创新”都局限于事先设计好的范围之内,而本节课中学生的“同一法”却是从变化的、动态的观点去看待问题,完全超出了笔者的“预设”,课堂因此而变得更精彩。笔者深深地感到一个理想的课堂应该是走进孩子们的心里、听到孩子们心声的课堂。因为只有融入了孩子们发自内心的感受和爱,课堂才会更加精彩!

第二篇:《三角形中位线》教学设计

《三角形中位线》教学设计

一、教学目标:

1.使学生掌握三角形中位线概念,理解中位线定理,会运用它进行有关论证和计算.2.掌握添加辅助线解题的技巧.3.提高学生分析问题,解决问题的能力,增强学习兴趣.二、教学方法

探究式自主学习:以学生的自主探究为主,教师加以引导启发,在师生的共同探究活动中,完成本课的教学目标,提高学生的能力,使学生更好的适应新课程标准

三、教学内容﹑教材重、难点分析:

三角形中位线定理的学习是继学习习近平行四边形后的一个新内容,教材首先给出了三角形中位线的定义,并与三角形中线加以区分,接着以同一法的思想探索出三角形中位线定理,最后是利用中位线定理解答例一所给的问题.在今后的学习中要经常运用这个定理解决有关直线平行和线段倍分等问题.本节课的重点是三角形中位线定理,难点是定理的证明,关键在于如何添加辅助线,在今后的学习中要经常运用这个定理解决有关直线平行和线段倍分等问题.四、教学媒体的选择和设计

通过多媒体课件,打开学生的思路,增加课堂的容量,提高课堂效率。

以实际生活为出发点,激发学生的思维从而引出本节课的内容.通过媒体动态的效果引发学生的思路,猜想出结论,并且从添加辅助线的角度思考开始,分析条件,得出证明的方法,帮助学生用多种方法解题.再借助多媒体帮助学生分析题意,学生自己动手尝试利用三角形中位线解决实际问题.特点是:打破以前数学课上老师一言谈的现象,学生能够积极参与学习,并且在媒体的作用下,学生的思维可以得到充分的展示,媒体动态的演示教会学生探究知识的方法:猜想—归纳—研究—结论.同时运用多媒体大大增强了课堂的容量,这是一般教学所难以实现的.五、教学步骤

(一)导入:

老师今天准备了一块三角形蛋糕平均分给四个人,该如何分?好,你们的方法很多,能给老师用数学知识解释一下你们分法的理由吗?对于第三种是不是合理,大家解释起来有困难,通过下面的学习后我想请大家解释给我听.(二)1.我们把刚才第三种切法中所提到的三条线段叫三角形中位线.哪个同学能给我们用语言叙述清楚.结合图形用几何语言表述三角形中线概念,它与三角形中线有什么区别?

2.好,看了三角形中位线会有什么性质呢?请同学们看下面的实验:老师把一个三角形沿一条中位线分开,并绕一个中点旋转180°,观察图形变成了什么图形?由此你可以发现三角形中位线有什么特性.用一句话说出来.该如何证明呢?对,我们可以通过旋转的方法构造平行四边形,用平行四边形知识进行证明.这种添加辅助线的方法叫割补法.请问还有什么添加方法? 证明了我们的猜想,下面我们结合图形用几何语言把三角形中位线定理叙述出来.请大家注意它与前面复习的推论(2)的关系?

(三)好,下面,我想请同学们帮助老师解决两个问题:1,我想测量一条湖面的宽度,能不能用三角形中位线知识设计一个方案,并说明这样做的理由.2.请问前面切蛋糕方法(3)是否合理,为什么?

(四)好,下面,请大家我们就要自己动手,来练习一下,看对三角形中位线定理是不是理解了.请大家看例1,要证明平行四边形有什么方法,从这个图形中我们能够分解出两个基本图形.如何解答,请一位同学说,老师写.下面看例2,题目中的中点如何才能运用起来.对,通过连接中点构造中位线来解决,请大家自己写出过程,用实物投影仪进行点评.刚才的例2使我们看到中位线与对角线的关系,请大家观察下面图形的变化,讨论变化后的图形是什么四边形.小结:三角形中位线定理的结论有两个方面:1,证明平行,2证明倍份关系.(五)思考题:要解决这样的倍份问题常常通过添加辅助线,借助三角形中位线解题.(六)小结,布置作业:P188 5,6,7

六、教学流程图 问题引入概念

Flash动画

明确三角形中位线概念

三角形中位线定理的证明

三角形中位线定理的简单运用

讨论判断练习2

教师总结、布置作业

练习1

讲解例1

讲解例2

七、教学评价:

1.先从学生已经学过的知识入手,为进一步学习奠定基础,同时也为学生的知识体系进行一次简单的梳理

2.通过一幅形象生动的图画带来的问题引发学生的思考,可以增加学生的参与性,有许多平时不爱思考学生,此刻都愿意想,愿意说。更加的体现数学来源于生活,生活中充满数学知识,3.教师是学生学习的组织者和参与者,在本节课中,动画的演示调动了学生的思维,为打开解题思路提供了一把钥匙,而不是生硬的传授知识.4.信息量扩大了,课堂容量大了。教师可以在短时间讲清讲透知识点,并可以借助媒体切换的方便快捷性,讲解较多题目,学生也不觉得累,同时对于知识间的相互联系性,能够帮助学生理解和掌握.是传统学模式所不能达到的。

5.计算机辅助教学可以让学生有新鲜感,比较感兴趣,使得课堂教学比较有活力,学生的印象也深刻,从而更好的达到教学目标。

6.计算机辅助教学能够有效提高教学效果,提高学生的综合能力,但也容易分散学生的注意点,因此要求课件上能为教学服务而设计,不能为了运用媒体而用,那样会失去它的真正意义.

第三篇:三角形中位线反思

《三角形中位线》教学反思

李红梅

课改下新课标的实施,不但要求每个教师在课堂教学设计上、对学生评价问题上、学生学习方式上等方方面面都要有一个全新的认识和改变。更是要求教与学后教师与教师之间、教师与学生之间有所沟通、有所总结、有所思进。就这些方面下面就是我对“三角形中位线”的课后反思。

在《三角形中位线》的教学中,在《三角形中位线》的教学中,新课程在教材上紧紧围绕着三个目标设计的。这节课的教学目标有以下三点:1.经历概念的发生过程,提高分析能力,理解三角形的中位线概念,知道三角形的中线和中位线的区别。2.经历三角形中位线性质的探索过程,进一步提高和发展逻辑思维能力和推理论证的表达能力;体会转化的思想方法,进一步感受图形的运动对构造图形的作用。3.掌握三角形中位线的性质定理,能运用三角形中位线定理进行计算和论证,解决简单的现实生活的问题,增强应用能力和创新意识。本节的教学重点和难点有以下两点:

1、本节教学的重点是三角形的中位线定理。

2、三角形的中位线定理的证明、运用有较高的难度,是本节教学的难点。

在课堂导入中,我以创设问题情景的形式,激起学生探索的欲望,激发学习的兴趣。问题是:探索如何测量一个池塘的边上AB两点之间的宽度?办法是只要在池塘外取一点C,取 CA的中点D,在取CB的中点E,此时只需求的DE的长度,就可知AB的长度,这是为什么呢?此时教材体现的是人人是在学习有用的数学。对于导入中设计的这个问题,班级里即使是基础非常差的学生也被吸引到思考的队伍中。引入恰到好处,体现了数学的实用性,数学来源于生活,同时充分激发了学生的学习兴趣。

带着强烈的学习动机,学生们进行合作学习,内容如下:剪一刀,将一张三角形纸片剪成一张三角形和一张梯形纸片,(1)如果要求剪得的两张纸片能拼成平行四边形,剪痕的位置有什么要求?(2)要把所剪得的两个图形拼成一个平行四边形,可将其中的三角形作怎样的图形变换?这样安排的目的一是能出现三角形中位线,引出本节学习的课题;二是为证明三角形中位线的定理埋下伏笔,也是有助于用运动的思想来思考数学问题。此时教学体现的是人人都能获得必需的数学。探究新知识时,采用猜想—验证—归纳—应用的教学步骤,使学生的思维一直处于兴奋状态。特别在讨论后的交流这个环节中,让学生发挥自己的主观能动性。三角形的中位线的性质定理的简单应用,学生们也都能掌握,这个定理在实际生活中的应用事非常广泛的,这一安排体现了标准中的一、二。但是三角形中位线的证明并不是很多学生能想到的,教师的分析不管如何精彩,辅助线的添法不管如何巧妙,学生能否在证明中提高能力,这是个长久的过程,所以此时教学体现的是不同的人在数学上有不同的发展。

巩固新知时的练习设计,对不断变化的图形的中点四边形进行探索,能使学生从中总结方法,发现规律,提高能力。

不足之处:

课前应让学生做好预习,以便课堂上有更多的时间独立思考定理的其他证法,在开课的时候介绍中位线的时候,老师的速度偏慢,而且没有让学生对于性质的证明给予具体的操作。

课件的练习题有几个没有把答案打到上面,学生没有看到。

课后对所得、所失、不足,只有常思才能不断更新自我,才能使新课标的要求不只是一句空话。我相信教学反思应该让每个人都能从中学到一些有益的东西。

第四篇:三角形的中位线》教学设计

《三角形的中位线》教学设计

仪征市金升外国语实验学校 蒋月兰

教学目标:

① 知识与能力

1. 探索并掌握三角形的中位线的概念、性质 2. 会利用三角形中位线的性质解决有关问题

3. 经历探索三角形中位线性质的探索过程,发展学生观察能力及抽象思维能力 ② 过程与方法

经历探索活动,在实际操作中通过观察得出三角形中位线的性质。通过实战演练感受三角形中位线对数学解题的重要作用;体会转化思想在数学解题中的作用。

③ 情感与价值观要求

在探索三角形中位线性质的过程中,从中心对称的角度认识数学对象,提高学生的数学素养。

教学重点:

利用三角形中位线性质解决有关问题 教学难点:

从三角形中位线性质的探索过程中抽象出三角形中位线的性质 教学方法:

活动——观察——探索相结合

通过自己实际操作从图形中观察出结论并利用结论解决问题。教学过程:

(一)情景创设

怎样将一张三角形纸片剪成两部分,使分成的两部分能拼成一个平行四边形?

(二)探索活动,引入新课

1、动手操作

(1)剪一个三角形记为△ABC;

(2)分别取AB、AC的中点D、E,连接DE;(3)沿DE将△ABC剪成两部分,将△ADE绕点E旋转180°,得四边形BCFD,如图Ⅰ

ADADBECBECF

(Ⅰ)

2、观察思考

(1)图Ⅰ中有哪性质

① 四边形BCFD是平行四边形吗?请说明理由。② 从边上考虑?从角上考虑? ……

……

观察探索得出: 边:AD=BD、AE=EC、DE=EF、BD=CF、DF=BC

DF∥BC、DE∥BC、EF∥BC 角:∠B=∠F、∠ADE=∠B、∠AED=∠C…… ……

……

(2)图Ⅰ中哪些线段较特殊,为什么?

DF平行且等于BC

EF平行且等于BC的一半

DE平行且等于BC的一半

……

……

三角形中位线:连接三角形两边中点的线段

三角形中位线性质:

三角形的中位线平行于第三边,并且等于它的一半

ADBEC

即:若AD=DB、AE=EC,则DE∥BC且DE=

1BC 2从今天开始我们就一起研究这样一条特殊的线段——三角形的中位线(3)说一说三角形的中线与三角形的中位线的区别

如图: 三角形中线是一条连接顶点与对边中点的线段

三角形中位线是一条连接两边中点的线段

ADBAECBDC

(三)实战演练

1、根据图中的条件,回答问题。(1)如图(a),已知D、E分别为AB和AC的中点,DE=5,求BC的长。

(2)如图(b),D、E、F分别为AB、AC、BC的中点,AC=8,∠C=70°,求DF的长和∠EDF的度数。

(3)如图(c),若△DEF的周长为10cm,求△ABC的周长;

若△ABC的面积等于20cm,求△DEF的面积。

ADCBFAECBADFECEB

(a)

(b)

(c)

解:(1)BC=10(2)DF=4,∠EDF=70°

(3)△ABC的周长为20cm;△DEF的面积为5cm

点评:①三角形三条中位线围城的三角形叫中点三角形;

②中点三角形的周长等于原三角形周长的一半,面积等于原三角形面积的四分之一;

③可以进一步探索出AF与DE间互相平分的关系。

类例:书131页练习2、3两题

2、如图,在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点。四边形EFGH是平行四边形吗?为什么? D

解: 四边形EFGH是平行四边形。

HA

连接AC。

因为E、F分别是AB、BC中点,G即EF是△ABC的中位线,E

所以EF∥AC且EF=

1AC 2BFC

理由是:三角形的中位线平行于第三边,并且等于它的一半。

在△ADC中,同样可以得到HG∥AC且HG= AC

2所以EF∥HG且EF=HG

所以四边形EFGH是平行四边形

理由是:一组对边平行且相等的四边形是平行四边形。

点评:①通过连接对角线将四边形中的问题转化到三角形中(未知转化为已知)

②次连接四边形各边中点的四边形是中点四边形;

③可以进一步探索中点四边形形状的特殊性与原四边形的对角线有关:

对角线相等的四边形的中点四边形为菱形; 对角线垂直的四边形的中点四边形为矩形。

(四)课时小结

通过今天的学习,同学们有何收获和体会。(1)学习了三角形中位线的性质;

(2)利用三角形中位线的概念和性质解决有关问题;

(3)经历了探索三角形中位线性质的过程,体会转化的思想方法。

(五)课后作业

课本134页1、3、4

第五篇:《三角形中位线》教学设计

《三角形中位线》教学设计

顺德区乐从镇沙滘初级中学 刘福斌

教材分析:

“三角形中位线”是九年义务教育北师大版九年级数学上册第三章《证明

(三)》第三课时。这一节的内容非常重要,它既是上节“平行四边形性质”的应用,也为今后进一步学习其他相关的几何知识奠定了基础。对于本课时所要探究的三角形中位线性质定理,学生以前从未接触过。因此,在学习过程中先通过创设有趣的情境问题,激发学生的学习兴趣,让学生参与其中;引导学生通过动手操作去猜想问题的结论;鼓励学生通知对旧知识的迁移,用化归、类比等方法去解决问题。通过本节课的学习,应使学生理解本定理不仅指出了三角形的中位线与第三边的位置关系和数量关系,而且为今生后证明线段之间的位置关系和数量关系提供了新的思路。

学情分析:

学生已知学习了相似三角形的性质与判定、平行四边形的性质与判定,但对这部分知识的应用只停留在浅层次的地方,当需要迁移这部分知识去解决新问题时,学生便觉困难。教学目标 :

1、了解三角形中位线的概念。

2、能够用多种方法证明三角形的中位线定理,体会在证明过程中所运用的归纳、类比、转化 等数学思想方法。

3、能够应用三角形的中位线定理进行有关的论证和计算,逐步提高学生分析问题和解决问题的能力。

情感目标:

学生通过动手操作、观察、猜想、论证等自主探索与合作交流的过程,激发学生的学习兴趣,让学生真正体验知识的发生和发展过程,培养学生的创新意识。教学重点:三角形中位线的概念与三角形中位线定理的证明 教学难点:三角形中位线定理的多种证明 教学准备:

三角形纸片、剪刀、刻度尺、量角器

教学过程:

一、创设问题,激发学生兴趣

问题1:你能将一个任意的三角形分成四个全等的三角形吗?(由问题激发学生的学习兴趣,学生主动加入到课堂活动中)

通过巡堂发现,展示学生中出现的方法: 顺次连接三角形每两边的中点,看上去就得到了四个全等的三角形. 如图:

引出定义:连接三角形两边中点的线段,叫做三角形的中位线。如上图中:DE、DF、EF分别是△ABC的中位线。

二、齐齐动手,探索新知。

问题2:下图中的DE与BC在位置上、数量上有什么关系。请通过如下活动找出答案。

1、画△ABC;

2、画△ABC 的中线DE;

3、量出DE和BC 的长度,量出∠ADE和∠B的度数;

4、猜想DE和BC 之间有什么关系。猜想:DE∥BC,DE= BC

2三、合作交流,学习新定理

1如图△ABC中,点D、E分别是AB与AC的中点,证明:DE∥BC,DE= BC。2 2

学生思考后,教师启发:要证明两条直线平行,可以利用“三线八角”的有关内容进行转化,而要证明一条线段的长等于另一条线段长度的一半,方法通常有两种:

1、将较短的线段延长一倍

2、截取较长线段的一半等方法进行转化归纳。

学生通过积极讨论,得出几种常用方法:

1、利用△ADE∽△ABC 且相似比为 1:2得DE=得 DE∥BC。(此种方法不用作任何辅助线)

2、延长 DE 到 F 使 EF=DE,连接 CF 由 △ADE≌△CFE(SAS)得 AD=FC 从而 BD=FC 所以,四边形 DBCF 为平行四边形 得 DF=BC 可得 DE=1BC,且DE∥BC。21 BC,由∠ADE=∠ABC2

3、将△ADE 绕 E 点沿顺(逆)时针方向旋转180°,使得点 A 与点 C 重合,即△ADE≌△CFE,可得 BD=CF,得平行四边形 DBCF 得 DF=BC,可得 DE=1BC,且DE∥BC.2学生可能会用其它方法,可作适当鼓励表扬。结论:

三角形中位线性质定理:三角形的中位线平行于第三边,并且等于第三边的一半。

四、应用巩固,熟悉方法。

1、课本P91随堂练习1

2、利用上述定理,证明刚才分割的的四个小三角形全等。

3、课本P91做一做:任意作一个四边形,将其四边的中点依次连接起来,得到一个新的四边形,这个新的四边形的形状有什么特征?(学生积极思考后交流意见,然后由代表发言,师生共同完成此题目。)

五、课堂小结,提炼升华。

让学生对本节课的重点再做一次回顾

六、布置作业:

如果将

四、第3题中的“任意四边形”改为“平行四边形、矩形、菱形、正方形”,结论又会怎么样呢?

下载《三角形的中位线》教学设计与反思word格式文档
下载《三角形的中位线》教学设计与反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《三角形的中位线》教学设计

    《三角形的中位线》教学设计 (一)教材分析 本课时在教学中注重新旧知识的联系,强调直观与抽象的结合,鼓励学生大胆猜想,大胆探索新颖独特的证明方法和思路,让学生经历“探索—发......

    三角形中位线的教学设计★

    三角形中位线的教学设计 教学目标: 1.知识与技能 让学生通过动手操作,画出三角形的中线及中位线从而体验三角形中位线的概念以及与三角形中线的区别,掌握三角形中位线定理;通过......

    《三角形的中位线定理》教学反思

    本节课我通过直接介绍三角形的中位线的定义,然后让学生在手中三角形上画出来,画出后又去发现图形中隐藏的中位线定理,学生经过实际的操作,体会到了学数学和做数学的乐趣,在一定程......

    三角形的中位线教学设计(通用)[5篇范文]

    三角形的中位线教学设计(通用5篇)作为一名教职工,时常要开展教学设计的准备工作,教学设计是把教学原理转化为教学材料和教学活动的计划。怎样写教学设计才更能起到其作用呢?以下......

    三角形中位线定理》的教学设计

    案例三角形中位线 连云港市外国语学校 杨佩 【课题】:义务教育课程标准实验教科书数学(苏科版)八年级上册第三章第6节(第一课时) 一、 教学目标设计: 运用多媒体辅助教学技术创设......

    《三角形中位线的应用》教学设计

    《三角形中位线的应用》教学设计沧县树行中学 赵志玲教学内容:三角形中位线的应用课型:复习习题课教学目标:(1)掌握三角形中位线的性质,会应用三角形的中位线性质解决简单的问题。......

    《三角形中位线》教案

    《三角形中位线》教案 教学目的: 1、.理解三角形中位线的概念,掌握它的性质定理。 2.初步运用三角形的中位线定理进行求解与推理。 3、经历探索、猜想、证明过程,发展推理论证......

    三角形中位线论文

    三角形中位线的前因后果 三角形的中位线平行于第三边,并且等于第三边的一半。 已知:如图(一),△ABC中,M,N分别是AB,AC两边中点。 求证:MN平行于BC且等于BC/2. A 图二 MN CB 图一 图......