第一篇:北师大课标版七年级数学下册教案游戏公平吗(一)
教学目标:
1.经历“猜测—试验—并收集试验数据—分析试验结果”的活动过程;
2.了解必然事件、不可能事件和不确定事件发生的可能性大小;
3.了解事件发生的等可能性及游戏规则的公平性.教学重点:对试验数据的分析处理和游戏对双方公平的认识.教学难点:游戏公平性的理解.教学过程:
一、分四组做游戏:
下图是两个可以自由转动的转盘,每个转盘被分成6个相等的扇形,利用这两个转盘做下面的游戏.游戏规则如下:
(1)甲自由转动转盘A,乙同时自由转动转盘B;
(2)转盘停止后,指针指向几,就顺时针走几格,得到一个数字,(如转盘A中,如果指针指向3,就按顺时针方向走3格,得到数字6);
(3)如果得到的数字是偶数,就得1分,否则不得分;
(4)转动10次后,记录每次得分的结果,得分高的为胜.想一想:这样的游戏对双方公平吗?说说你的理由.二、议一议:(题见课本)得到结论:
对于转盘A,“最终得到的数字是偶数”这个事件是必然的;
对于转盘B,“最终得到的数字是偶数”这个事件是不确定;由于转盘A、B使“最终得到的数字是偶数”事件发生的可能性不相同,所以这样游戏对双方是不公平的.
通常用1(或100%)来表示必然事件发生的可能性,用0表示不可能事件发生的可能性;用图表示如下:
三、按课本做一做内容做游戏,并画图表示
小结:
1.通过做实验知道三种事件发生的可能性大小.2.怎样评价一个游戏对双方是否公平?
教学后记:
学生在做实验时要注意控制好学生的注意力,要让学生有目标,有目的的做试验,学生对于游戏的公平性仍然存在一些问题,应加强这方面的实验.
第二篇:北师大课标版九年级数学下册教案4.3 游戏公平吗?
学习目标:
体会如何评判某件事情是否“合算”,并学会对一些游戏活动的公平性作出评判。
知识目标:
通过具体问题情境,让学生进一步体会如何评判某件事情是否“合算”,并利用它对一些游戏活动的公平性作出评判。
能力目标:
会如何评判某件事情是否“合算”。
德育目标:
对一些游戏活动的公平性作出评判。
学习重点:
本节重点是不仅对一些游戏活动的公平性作出评判,还要会合理的设计得分规则,使游戏公平.在生活中我们不仅要会评判事件,还要做出决策,对事件进行合理的设计,因而有很好的实用价值,也是我们在概率学习内容中的一个重要方面.对此只要能计算出双方获胜的概率,合理设计分数即可.
学习难点:
本节中,游戏获胜的概率可通过列表方法求得,如何设计得分规则是本节的难点.只要计算出双方的概率,如双方获胜概率为,则得分规则只需满足 ·a= ·b即可,即其获胜后的得分分别为a、b,则游戏公平.
学习方法:
实验——引导法.学习过程:
一、从学生原有的认知结构提出问题
判断游戏的公平性,在初一初二时我们已接触过。当时的问题相对简单一些,只需考虑游戏对双方获胜的概率大小。这节课,我们进一步讨论一些稍为复杂的问题,不仅考虑游戏的公平性,还要考虑他们获胜时的得分值。
二、师生共同研究形成概念
(一)复习旧知识
(二)书本引例 —— 掷骰子游戏
这个问题有承上启下的作用。由于双方获胜时的得分相同,因此可以只考虑双方获胜的概率大小。
(三)游戏如何才能公平
☆ 议一议 书本P 175 议一议
解决这个问题需要考虑双方每次游戏的平均得分。修改规则的关键是要使双方每次的平均得分相等,如当两枚骰子的点数之积为奇数时,小刚得3分,否则小明得1分。
☆ 做一做 书本P 175 做一做
这个游戏对小明不利;修改规则的方法不惟一,可以是:若配成紫色,小刚得8分,否则小明得17分。
☆ 想一想 书本P 176 想一想
小刚的决策不明智,因为同一个转盘转两次,配成紫色的概率为,配不成紫色的概率为。
(四)例题分析:
【例1】某一家庭有两个孩子,请问这两个孩子是一个男孩一个女孩的概率是多少?你是怎样知道的.
【例2】在掷骰子的游戏中,当两枚骰子的和为质数时,小明得1分,否则小刚得1分.你认为该游戏对谁有利?如果当两枚骰子的点数之和大于7时,小刚得1分,否则小明得1分呢?
【例3】乘火车从A站出发,沿途经过3个车站方可到达B站,那么在A、B两站之间需要安排 种不同的车票.
【例4】某班53名学生右眼视力(裸视)的检查结果如下表所示:
则该班学生右眼视力的中位数是 .如果右眼视力在0.6以下(不含0.6)的同学都戴着眼镜,那么从中任意抽取1名学生戴着眼镜的概率为 .
【例5】小刚考试得了第一名,老师决定以精美的书作为奖励.现有3本书,老题告诉他,这三本书事先已给予了编号1,2,3(该编号只有老师知道),小刚可以从3本书中任挑一本;也可以把这三本书给以排序,自左向右的排列序号与书的编号一致的书,小明均可得到,但若排列号与书的编号没有一致的,则一本书也得不到.小刚当然想多得到几本书,他该如何选择呢?请你帮他出个主意.
(五)课内练习:
1.小东和小明设计了两个掷骰子的游戏,每个游戏每次都是掷两枚骰子.
游戏一:和为7或者8,则小东得1分;和是其他数字,小明得1分.
游戏二:和能够被3整除,小东得3分;和不能被3整除,小明得1分.
这两个游戏公平吗?说说你的理由;若不公平,你能将它们改为公平吗?
2.小明和小芳用如下转盘图进行配紫色游戏,分别转动两个转盘,若配成紫色则小明得1分,否则小芳得1分,这个游戏对双方公平吗?如果你认为不公平,如何修改得分规则才能使游戏对双方公平?
(六)课后练习:
1.从一幅扑克牌中任取一张,是梅花的概率为 .
2.连续掷硬币两次,其中两次结果相同的概率为,两次正面朝上的概率为 .
3.用图两个转盘进行“配紫色”游戏,配成紫色的概率是 .
4.一个人的生日是周日的概率为,两个人的生日都是星期日的概率为,两个人的生日是一周中同一天的概率为 .
5.将身高不同的三名同学任意排序,结果恰好是按身高由低到高排的概率为 .
6.某校初三(1)班有61名学生,其中男生32名,女生29名,体检时发现男生身高在 1.70米 以上的有23人,那么任意从这个班中抽取一名同学,是男生且身高在 1.70米 以上的概率为 .
7.小红小兰进行摸球游戏.在一个不透明的袋子里装有3个白球,3个黑球和1个红球,游戏规定两个每次可任意从口袋中摸出一个球(不再放回),谁先摸到红球谁获胜,若小红先摸球,她摸到红球的概率为 ;若小红摸出一球后发现是白球,则小兰继续摸球时,摸到红球的概率为 .
8.小明和小强进行掷骰子游戏,他们规定同时掷两枚骰子.若出现的点数之和为2的倍数时,小明得1分;若出现点数之和为3或5的倍数时,小强得1分.这个游戏对双方公平吗?如果你认为不公平,如何修改得分规则才能使该游戏对双方公平?
9.若|a| = 3,|b| = 5,则|a+b| = 8的概率是多少?
10.在一次数学竞赛中的单项选择题规定,选对者得4分,选错者扣1分,不选者不得分也不扣分,每道题都有四个备选答案.假如有一道题你不会做,你是猜一个答案写上去,还是放弃呢?请说明理由.
11.小明和小刚正在玩掷骰子游戏,两人各掷一枚骰子,则两枚骰子的点数之和为奇数的概率为,两枚骰子的点数之积为奇数的概率为 .
12.依据闯关游戏规则,请你探索闯关游戏的奥秘:
(1)用列表的方法表示所有可能的闯关情况;(2)求出闯关成功的概率.
闯关游戏规则
如图所示的面板上,有左右两组开关按钮,每组中的两个按钮均分别控制一个灯泡和一个发音装置.同时按下两组中各一个按钮:当两个灯泡都亮时闯关成功;当按错一个按钮时,发音装置就会发出“闯关失败”的声音.
13.某市民政部门今年元宵节期间举行了“即开式社会福利彩票”销售活动,设置彩票3000万张(每张彩票2元).在这些彩票中,设置了如下奖项:
如果花2元钱购买1张彩票,那么能得到8万元以上(包括8万元)大奖的概率是 .
14.李勇的爸爸出差回来,向他讲了这样一件事情,在一个地方有一种“摸彩”活动.一个人手提一个袋子,身边立着一块牌子,边指边说:“我这口袋里有10个红球10个白球,哪位愿意来摸球做游戏,一次交10元,但不白交.请你不要看,从口袋里摸出10个球,按牌子上的结果安排:
10个都是红球退还10元外再送你10元线;
9个红球1个白球退还10元外再送你8元;
8个红球2个白球退还10元外再送你6元;
7个红球3个白球退还10元外再送你4元;
6个红球4个白球退还10元不再送了;
5个红球5个白球算你运气不好,不退还了;
4个红球6个白球退还10元不再送了;
3个红球7个白球退还10元外再送你4元;
2个红球8个白球退还10元外再送你6元;
1个红球9个白球退还10元外再送你8元;
10个都是白球退还10元外再送你10元.
共十一种可能,八种可能让你赢钱,只有一种可能输,这么便宜的事,谁来试试啊?李勇的爸爸亲眼看见有几个青年人掏钱试了试,结果都输了,且谁摸的次数越多,谁就输得越多.爸爸让李勇利用所学的概率统计知识计算一下,这是为什么?请你也计算一下,找出其中的原因.
小结:修改游戏规则的方法。
第三篇:北师大课标版七年级数学下册教案整式的除法(一)
教学目标:
知识目标:经历探索整式除法运算法则的过程,会进行简单的整式除法运算.
能力目标:理解整式除法运算的算理,发展有条理的思考及表达能力.
情感目标:培养学生独立思考的学习习惯.
教学重点:可以通过单项式与单项式的乘法来理解单项式的除法,要确实弄清单项式除法的含义,会进行单项式除法运算.
教学难点:确实弄清单项式除法的含义,会进行单项式除法运算.
教学过程:
一、探索练习,计算下列各题,并说明你的理由
讨论:通过上面的计算,该如何进行单项式除以单项式的运算?
学生总结、归纳,教师板书
结论:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.
二、例题与练习
采用书中例题
练习:
1.计算:
(1)−12xyz÷(−4xyz)(2)−34222
abc÷ 2ac
643
(3)(2m)÷8m
2.计算: n+132n+1(4)6(a−b)÷
(a−b)
(1)(3a)•b÷8ab 323
(2)(8abc)÷(2ab)•(−4323
abc)
小结:弄清单项式除法的含义,会进行单项式除法运算.
第四篇:北师大课标版七年级数学下册教案探索直线平行的条件(一)
教学目标:
1.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,推理能力和有条理表达的能力;
2.会认由三线八角所成的同位角;
3.经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些问题.教学重点:会认各种图形下的同位角,并掌握直线平行的条件是“同位角相等,两直线平行”
教学难点:判断两直线平行的说理过程
教学用具:几何画板课件、三角板、活动木条
活动准备:学生预先做好三根活动木条
教学过程:
一、课前复习:
(1)在同一平面内,两条直线的位置关系是.(2)在同一平面内,两条直线的是平行线.二、创设情景:
如书中彩图,装修工人正在向墙上钉木条,如果木条b与墙壁边缘垂直,那么木条a与墙壁边缘所夹的角为多少度时才能使木条a与木条b平行?
三、新课:
学生动手操作移动活动木条,完成书中的做一做内容.改变图中∠1的大小,按照上面的方式再做一做,∠1与∠2的大小满足什么关系时,木条a与木条b平行?小组内交流.
由∠1与∠2的位置引出同位角的概念,如图∠1与∠
2、∠5与∠
6、∠7与∠
8、∠3与∠4等都是同位角.练习:如图,哪些是同位角?
几何画板动画演示两直线平行的条件——同位角相等.例:找出下图中互相平行的直线,并说明理由.小结:本节课学习了两直线平行的条件是同位角相等;要特别注意数形结合.
教学后记:学生基本会找同位角,也能找出平行的直线,但说理方面欠条理性.
第五篇:北师大课标版八年级数学下册教案相似三角形
●课 题
§4.5 相似三角形
●教学目标
(一)教学知识点
1.掌握相似三角形的定义、表示法,并能根据定义判断两个三角形是否相似.2.能根据相似比进行计算.(二)能力训练要求
1.能根据定义判断两个三角形是否相似,训练学生的判断能力.2.能根据相似比求长度和角度,培养学生的运用能力.(三)情感与价值观要求
通过与相似多边形有关概念的类比,渗透类比的教学思想,并领会特殊与一般的关系.●教学重点
相似三角形的定义及运用.●教学难点
根据定义求线段长或角的度数.●教学方法
类比讨论法
●教学过程
Ⅰ.创设问题情境,引入新课
[师]上节课我们学习了相似多边形的定义及记法.现在请大家回忆一下.[生]对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.[师]很好.请问相似多边形指的是哪些多边形呢?
[生]只要边数相同,满足对应角相等、对应边成比例的多边形都包括.比如相似三角形,相似五边形等.[师]由此看来,相似三角形是相似多边形的一种.今天,我们就来研究相似三角形.Ⅱ.新课讲解
1.相似三角形的定义及记法
[师]因为相似三角形是相似多边形中的一类,因此,相似三角形的定义可仿照相似多边形的定义给出,大家可以吗?
[生]可以.三角对应相等,三边对应成比例的两个三角形叫做相似三角形(similar triangles).如△ABC与△DEF相似,记作△ABC∽△DEF
其中对应顶点要写在对应位置,如A与D,B与E,C与F相对应.AB∶DE等于相似比.[师]知道了相似三角形的定义,下面我们根据定义来做一些判断.2.想一想
如果△ABC∽△DEF,那么哪些角是对应角?哪些边是对应边?对应角有什么关系?对应边呢?
[生]由前面相似多边形的性质可知,对应角应相等,对应边应成比例.所以∠A=∠D、∠B=∠E、∠C=∠F.3.议一议
.(1)两个全等三角形一定相似吗?为什么?
(2)两个直角三角形一定相似吗?两个等腰直角三角形呢?为什么?(3)两个等腰三角形一定相似吗?两个等边三角形呢?为什么?
[师]请大家互相讨论.[生]解:(1)两个全等三角形一定相似.因为两个全等三角形的对应边相等,对应角相等,由对应边相等可知对应边一定成比例,且相似比为1,因此满足相似三角形的两个条件,所以两个全等三角形一定相似.(2)两个直角三角形不一定相似.因为虽然都是直角三角形,但也只能确定有一对角即直角相等,其他的两对角可能相等,也可能不相等,对应边也不一定成比例,所以它们不一定相似.两个等腰直角三角形一定相似.因为两个等腰直角三角形Rt△ABC和Rt△DEF中,∠C=∠F=90°,则∠A=∠B=∠D=∠E=45°,所以有∠A=∠D,∠B=∠E,∠C=∠F.再设△ABC中AC=b,△DEF中DF=a,则
AC=BC=b,AB=b
DF=EF=a,DE=a
∴
所以两个等腰直角三角形一定相似.(3)两个等腰三角形不一定相似.因为等腰只能说明一个三角形中有两边相等,但另一边不固定,因此这两个等腰三角形中有两边对应成比例,两底边的比不一定等于对应腰的比,因此不用再去讨论对应角满足什么条件,就可以确定这两个等腰三角形不一定相似.两个等边三角形一定相似.因为等边三角形的各边都相等,各角都等于60度,因此这两个等边三角形一定有对应角相等、对应边成比例,所以它们一定相似.[师]由上可知,在特殊的三角形中,有的相似,有的不相似.两个全等三角形一定相似.两个等腰直角三角形一定相似.两个等边三角形一定相似.两个直角三角形和两个等腰三角形不一定相似.4.例题
2.如图,已知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC=70 cm,∠BAC=45°,∠ACB=40°,求
图4-21
(1)∠AED和∠ADE的度数;(2)DE的长.解:(1)因为△ABC∽△ADE.所以由相似三角形对应角相等,得 ∠AED=∠ACB=40° 在△ADE中,∠AED+∠ADE+∠A=180° 即40°+∠ADE+45°=180°,所以∠ADE=180°-40°-45°=95°.(2)因为△ABC∽△ADE,所以由相似三角形对应边成比例,得
即所以 DE==43.75(cm).5.想一想
在例2的条件下,图中有哪些线段成比例?
[师]请大家试一试.[生]成比例线段有
图中有互相平行的线段,即DE∥BC.因为△ABC∽△ADE,所以∠ADE=∠B.由平行线的判定方法知DE∥BC.Ⅲ.课堂练习
2.等腰直角三角形ABC与等腰直角三角形A′B′C′相似,相似比为3∶1,已知斜边AB=5 cm,求△A′B′C′斜边A′B′上的高.图4-23
解:如图所示:CD、C′D′分别是△ABC与△A′B′C′斜边AB与A′B′边上的高.因为在Rt△ABC中,∠A=45°,CD⊥AB.所以CD=AD=AB=(cm)
同理可知:C′D′=A′D′=A′B′.又因为△ABC∽△A′B′C′,且相似比为3∶1.所以.即,得
A′B′=
所以C′D′=A′B′=(cm)
Ⅳ.课时小结
相似三角形的判定方法——定义法.Ⅴ.课后作业
习题4.6
1.解:因为△ABC∽△DEF
所以,有.而AB=3 cm,BC=4 cm,CA=2 cm,EF=6 cm.得.解,得DE=
DF=3(cm)(cm)
2.解:因为两个三角形相似,所以它们的对应角相等,若两内角为50°、60°,则另一内角为180°-50°-60°=70°,这个三角形的最大内角和最小内角就是另一个三角形的最大内角和最小内角.因此,另一个三角形的最大内角为70°,最小内角为50°.Ⅵ.活动与探究
引理:平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例.如图
图4-24
已知:DE∥BC,交AB于D、AC于E.则有:
定理:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.已知:如图,如果DE∥BC,DE交AB、AC于D、E
图4-25
求证:△ADE∽△ABC.证明:∵DE∥BC.由引理得
且∠ADE=∠B,∠AED=∠C.又∵∠A=∠A.∴由相似三角形的定义可知
△ADE∽△ABC.●板书设计
.§4.5 相似三角形
一、1.相似三角形的定义及记法 2.想一想
3.议一议(特殊三角形是否相似)4.例题
二、课堂练习
三、课时小结
四、课后作业
●备课资料
参考练习
1.△DEF∽△MNH,∠D=50°,∠E=105°,则∠H=____________;
图4-26
2.如图4-26,△ADB∽△ABC,若∠A=75°,∠D=45°,则∠CBD=____________.3.△ABC∽△A1B1C1,相似比为比为____________.参考答案:,△A1B1C1∽△A2B2C2,相似比为,则△ABC∽△A2B2C2,其相似
1.25° 2.15° 3.