新北师大版四年级上册数学《数图形的学问》教学设计[五篇材料]

时间:2019-05-12 21:13:07下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《新北师大版四年级上册数学《数图形的学问》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《新北师大版四年级上册数学《数图形的学问》教学设计》。

第一篇:新北师大版四年级上册数学《数图形的学问》教学设计

新北师大版四年级上册数学《数图形的学问》教学设计 数图形的学问 教学目标:

1.体会有条理数法的多样性,并能运用有序的数法数出给定图形的 个数。2.能按一定的规律或分类去数,做到不重复、不遗漏。

3.学习活动中获得积极的情感体验,提高学生对数学学科的兴趣,增强学习自信心。教学重点: 有规律地数,不重复不遗漏。

教学难点:引导学生在按一定规律数的基础上发现数图形的规律。教学过程:

一、游戏设疑,激趣导入

1.师:同学们,课前我们来做一个游戏吧,请你们拿出纸和笔,在纸上任意点出8个点,并将它们每两个点连成一条线,再数一数,看看连成了多少条线段。

2.师:同学们,有结果吗?(学生表示:太乱了,都数昏了)大家别着急,今天,我们就一起来用数学的思考方法去研究这个问题。

二、探究新知(谈话引入例题)

人们都说:“兰州的黄河大桥好!”那么,你去过兰州吗?你们是乘坐什么交通工具去的? 学生回答后,教师用多媒体出示:一列火车从兰州到打柴沟的途中要停靠永登、天祝2个车站,按照两站间的地名不同设置票价,有多少种不同的票价? 1.大胆猜测 2.说说想法

3.可以画一条线段,在线段上标出4个点,数数共有几条线段。4.独立数,小组讨论交流 5.成果汇报(指明代表发言)6.分小组讨论,合作探究(优化组合)

第一种是按A、B、C等一定的顺序,一次为左端点,往下数,即按顺序数数;第二种是按线段的组成不同来数,即分类数。

7.“一列火车从兰州到上海的途中要停靠8个站”如果再按此法来数,你有什么想法?是否有什么简捷的方法呢?下面我们就来研究数线段。

三、展开 1.填表(1)独立填

(2)分小组交流讨论,汇成公认的表格 2.探索规律

提问:从表格中你们发现了什么?(1)基本线段=点数-1(2)第一个加数刚好比点数少1,然后每个加数少1,依次加下去,直到1为止。

(点数-1)+……+2+1(3)线段总条数就是1道基本线段所有自然数的和。3.试做

(1)线段上共有100个点,请问共有多少条线段?(指明学生板演)

(2)师板书:

第一种做法:99+98+97+……+2+1=4950(条)第二种做法:(99+1)×99÷2=4950(条)4.师问:我们用哪种方法计算比较简单?(用第二种方法比较简单)

5.我们用“点数×基本线段数÷2”的方法更简便。

四、自主学习

1.试做求票价题(同桌一个人出题,另一个人解答)2.途中有几条线段,你怎么想出来的?

五、归纳小结 板书设计:

数图形的学问

化难为易 有序思考 发现规律

第二篇:北师大版小学数学四年级上册《数图形的学问》)

教学内容:北师大版小学数学四年级上册《数图形的学问》

教学目标:

1、结合问题情境,经历把生活中的现实问题抽象成数图形的数学问题,并利用多样化的画图策略解决问题的过程,发展几何直观。

2、在数图形的过程中,注重学生思维的生长,逐步形成有序思考的良好习惯,发展推理能力。

3、在发现规律的过程中,能够独立思考和自主探究,有条理地表达解决问题的过程和结果,增强学习的自信心,提高对数学问题探索的兴趣。教学重难点:找到数线段的方法,体会有序思考的必要性。教学准备:课件 教学过程:

一、唤醒旧知,激活储备

师:在三年级的时候我们学过服装的搭配,现在请大家告诉我,如果我用三角形和正方形搭房子,共有几种搭法?注意要有序搭配。生:6种。师:看来同学们已经掌握了搭配中的学问。其实在生活中还有很多类似于这样的搭配学问,今天就让我们一起来研究数图形的学问。(板书课题)

二、创设情境,探究新知(出示课件)

师:这是小鼹鼠的洞穴,洞口之间是相连的,小鼹鼠说,“我想从一个洞口进去,向前走,从另一个洞口出来,”(把四个洞口看成A、B、C、D四个点)(用激光笔举例子)说:如果从A进入有几种方法出来,那B呢?C呢? 如果每两个洞口相距5米,那5米走法有几种?10米呢?15米呢?20米呢? 生:回答走法 师:把AD看成一条线段,把B、C看成线段上的2个端点,就变成了“线段图”)师:现在我们借助线段图来数一数,它到底有几种走法?

自己独立画数,再组内交流一下

(生动手操作,教师巡视。)

师:谁来跟大家一起分享你的成果呢?(学生动手操作后,上台展示,(让学生到黑板上边画边说)讲清楚自己的方法,并写出算式。)

引导学生进行对比,学生说出自己的想法。师:(利用课件,帮助学生梳理一共有多少种方法,)看来大家已经掌握了正确数线段的方法,我们一起来回顾一下,第一种,按线段的长短;第二种,按出发点的位置。(课件展示)

也就是说我们在数图形时,一定要有顺序地去数,才不会数重复或者遗漏。

三、深入探究,发现规律 出示汽车站站牌。师:小鼹鼠其实真实的身份是一名公交车售票员,它负责的是从红薯站开往到土豆站单程的售票,从图中你知道哪些数学信息?(引导学生先理解题意。)生:单程需要准备多少种不同的车票?

师:现在由你们来画出示意图,帮小鼹鼠解决这道难题。但数图形时,一定要有顺序地去数

学生动手操作,记录在学习卡上,再上台进行展示,并说说自己是怎么数的。

师再播放课件,帮助学生直观理解。师:这时候,公交司机看到鼹鼠这么勤劳,就想让他再多负责一个站——南瓜站,那六个汽车站,又该需要多少种不同的车票呢? 学生动手操作,再上台展示。

师:很多同学很快就数出来,有15种不同的车票。这时好学的小鼹鼠又产生了新的疑问,如果有七个车站,单程又需要准备多少种不同车票呢?你可以画示意图,也可以用你自己观察到的方法列出算式。(学生思考)给出算式6+5+4+3+2+1=21 师:请你观察,你发现了什么规律,你能尝试用你发现的规律,说出八个车站需要几种车票吗?

(引导学生发现算式规律,尝试写出算式: 7+6+5+4+3+2+1=28)并让学生说一说算式的意思,即多增加的那个6和7表示什么意思? 师:观察刚才我们写的这些式子,你有什么发现呢? 学生说出自己的想法。

四、回顾反思,交流心得

师:通过今天这节课的学习,你得到了什么收获呢?

五、延伸扩展,提高生长

师先介绍中国在世乒赛上所取得的成就,再提问学生:如果有24名运动员参加乒乓球比赛,每两人比赛一场,那需要进行多少场比赛呢? 让学生自行思考,再说出各自的想法。

师:其实在我们生活中还存在着很多数图形的学问,在今后的数学学习中,我们还会碰到类似于比赛场次的规律。希望同学们能善于发现生活中的数学问题,并勇于运用所学知识去解决它。教学反思:

学生在三年级已经学习过搭配中的学问,掌握了搭配的方法,并能结合具体情境进行初步的有序思考,这些知识储备和已有的生活经验,将成为本节课数学学习生长的“土壤”。而本节课的教学着力点在于提升学生的经验水平,通过具体情境的创设,利用画图策略来解决实际问题,培养学生有序思考的能力,发展推理能力。同时也为今后“图形中的规律”等类似的数学知识的学习生长“播下种子”。

1、本节课我先通过唤醒学生已学的搭配中的学问,让学生体验有序搭配才能做到不重不漏,为生长延伸至探究数图形的学问埋下伏笔。

2、教学中,让学生经历独立思考、动手操作、讨论交流的过程,使他们在交流中互相引导,探索出如何有序地数图形的方法。

3、注重对学生数学语言表达能力的培养,给予学生充分的时间上台展示,并说出自己的想法,使学生懂得表述有序数图形的方法,帮助学生主动构建知识。从本节课的教学情况来看,我还存在一些需要改进的地方:

1、课堂语言不够生动,对学生的回答未能及时给予评价,课堂评价语言较为单一,需要不断丰富,才能更好地激发学生学习的兴趣。

2、与学生的互动还需加强,课堂教学中教师应真正融入学生的思考与情感当中,才能使课堂更加生动活跃。

.探索规律提问:从表格中你们发现了什么?(1)基本线段=点数-1(2)第一个加数刚好比点数少1,然后每个加数少1,依次加下去,直到1为止。(点数-1)+„„+2+1(3)线段总条数就是1道基本线段所有自然数的和。3.试做

(1)线段上共有100个点,请问共有多少条线段?(指明学生板演)(2)师板书:

第一种做法:99+98+97+„„+2+1=4950(条)第二种做法:(99+1)×99÷2=4950(条)4.师问:我们用哪种方法计算比较简单?

(用第二种方法比较简单)

5.我们用“点数×基本线段数÷2”的方法更简便。

四、自主学习

1.试做求票价题(同桌一个人出题,另一个人解答)2.途中有几条线段,你怎么想出来的?

五、归纳小结 板书设计:

数图形的学问

化难为易 有序思考 发现规律

第三篇:小学四年级上册数学《数图形的学问》教案

教学目标:

1、结合问题情境,经历把生活中的现实问题抽象成数图形的数学问题,并利用多样化的画图策略解决问题的过程,发展几何直观。

2、在数图形的过程中,能够逐步形成有序思考的良好习惯,做到不重复,不遗漏,发展推理能力。

3、在发现规律的进程中,能够独立思考和自主探究,有条理地表达解决问题的过程和结果,增强学习的自信心,提高对数学问题探索的兴趣。

教学重点:

把生活中的现实问题抽象成数图形的数学问题,并能有规律地数,不重复不遗漏。

教学难点:

引导学生在按一定规律数的基础上发现数图形的规律。

教学过程:

一、创设情境,提出问题

1、鼹鼠钻洞

师:大家听说过鼹鼠吗?(课件出示鼹鼠图)。

它最擅长的是挖土、钻洞。看,它现在又想开始活动了,它可以怎么钻?

师:课件(任选一个洞口进入,向前走,再任选一个洞口钻出来,它可能会怎样钻呢?)生说,师指着图演示。

2、筛选提出问题:有多少条不同的路线?

二、自主探究、解决问题

1、想一想,你能用什么表示路线,用什么表示洞口,画出小鼹鼠的行走路线图呢?(课件)(同桌交流)

2、生独立画示意图(指名画在黑板上)

3、交流并优化出示意图

4、数线段

(1)要求:(课件)请用画一画,写一写,记录你数的过程。

(2)学生动手数,数完后同桌交流说说是怎么数。

(3)汇报交流

先指名学生上来说出数法,师逐步演示,再引导学生发现是按什么顺序数的,板书并写出算式。

5、小结:谁来说说怎样才能准确数出线段的条数?

(板书:有序 不重复 不遗漏)

6、揭题:《数图形的学问》(板书)

三、巩固练习,掌握知识

师:通过刚才的学习,你们会按一定的顺序来数线段吗?那我们一起来试试吧!你们去过城关吗?今天老师早上就是从城关出发,经过达埔、玉斗、坑口,来到了下洋。如果我们做公共汽车你是售票员,单程需要准备多少种不同的车票呢?

问题一:5个汽车站,单程需要准备多少种不同的车票呢?

1、获取信息,理解题目。

5个车站可用字母什么代表?单程是什么意思?

2、学生独立画出示意图,有顺序地数一数,想想你是按什么标准来数的。

3、汇报交流(课件展示数法)

(板书:5个站,车票总数为:4+3+2+1=10(种)

问题二:如果有6个汽车站,单程需要准备多少种不同的车票呢?7个呢?8个呢?

方法一:画6个点,重新数

方法二:直接在前面的基础上加上f点,即10+5=15(种)(课件在图下面展示需再加的5条)引导学生说出这个条数刚好与原来的点数相同。

4、让学生说说发现了什么?

5、知道了规律,让学生尝试写出10、100个车站需要多少种不同的车票?

四、回顾总结,梳理知识。

1、学生说说这节课的收获。

2、师:按一定的顺序数对于数线段来说很重要,其实它对于数角、三角形、长方形、正方形也同等重要,所以以后不管在数什么图形时都要按一定的顺序来数,才不会重复和遗漏,记住了吗?

板书设计:

数图形的学问

有序 不重不漏

点的位置: 3+2+1=6 线段的长短: 3+2+1=6

5个站,车票总数: 4+3+2+1=10

6个站,车票总数: 5+4+3+2+1=15

7个站,车票总数: 6+5+4+3+2+1=21

8个站,车票总数: 7+6+5+4+3+2+1=28

第四篇:数图形的学问教学设计

《数图形的学问》教学设计

新湖中心小学 刘香阳 〖教材分析〗

“数图形中的学问”是“数学好玩”综合实践活动的最后一节课。主要是让学生在直观形象的情境中,将生活中按顺序数的问题抽象转化成数图形的问题,在数图形的过程中体会有规律地数,培养学生认真观察图形的特征,有序思考等良好习惯,引导学生在按一定规律数的基础上发现数图形的规律。教材设计的是“鼹鼠钻洞”和“菜地旅行”两个故事情境,引导学生将故事问题转化成数学问题,按一定规律数图形,不重复,不遗漏,得到数图形的一般规律,发展学生良好的数学思维品质。

〖学情分析〗

四年级学生已经学习了平面图形,线段、角、三角形、长方形,并且在以前教学中也进行过数数的拓展,而且在三年级学过《搭配中的学问》《比赛场次》接触过有序思考,积累了初步的有序的活动经验,能够数出简单的图形的个数,但是不一定做到按着一定的顺序来数。只有极少数学生知道数图形的规律并用算式来计数,绝大多数同学并没有发现数图形的规律,更不会用算式来计数。更谈不上离开图形,上升到数学计算来解决生活中的类似问题。基于以上情况,我在设计中注意兼顾各层面学生的不同需求,做到有层次、有梯度,促使学生积极地、富有个性的学习。

〖设计理念〗

在明确本课重点是利用数学图形来描述和分析问题,发展几何直观,把生活问题转化为数图形的数学问题,而不仅仅是怎么样数线段。学生会数线并不意味着会从生活情景中抽象出数学问题,如果换成其他情境学生能用画线段图的策略来描述和分析吗?所以本课的生长点就是让学生利用数图形描述和分析问题,体会线段图与情景图之间的关系,发展几何直观能力。在教学时,让学生在直观形象的情境中,将生活中按顺序数的问题抽象转化成数图形的问题,在数图形的过程中体会有规律地数,培养学生认真观察图形的特征,有序思考等良好习惯,引导学生在按一定规律数的基础上发现数图形的规律。

〖教学设计特色说明〗

从情境中,把生活中的现实问题抽象成数图形的数学问题,并利用多样化的画图策略解决问题的过程,采用数形结合的数学思想。再按照一定的标准,进行有序的思考,做到不重复,不遗漏,养成良好的思考习惯。又紧密联系生活,对于动车票实际问题,要具体问题具体分析,而不是机械化的套路解题。同时也培养了学生的审题习惯的养成,对于有0的时候,要考虑它的特殊性。

〖教学目标〗

1、结合问题情境,经历把生活中的现实问题抽象成数图形的数学问题,并利用多样化的画图策略解决问题的过程,发展几何直观。

2、在数图形的过程中,逐步形成有序思考的良好习惯,发展推理能力。

3、在发现规律的进程中,能够独立思考和自主探究,有条理地表达解决问题的过程和结果,增强学习的自信心。

4、学会和同学交流自己的收获,倾听别人的想法,并学会进行评价。〖教学重点〗把生活中的现实问题抽象成数图形的数学问题,并能有规律地数,不重复不遗漏。

〖教学难点〗在按一定规律数的基础上发现数图形的规律。〖教学准备〗PPT课件,学习卡 〖教学过程〗

一、课前游戏

游戏规则:老师先说一组有序的数字,学生复述,0123456789,你能把它说出来吗?再说出另一组数字,如2709473685,你还能复述出来吗?为什么第一组数你们能这么快说出来,第二组数字却有困难了呢?

归纳:因为第一组数字我是按从小到大的规律有序说出的,所以你们能不遗漏地复述出来,但是第二组我没有按明显的规律说出来,你们复述的时候就有困难了,看来,有序的说一句话,做一件事是多么的重要。(板书:有序)等 一下你们思考、回答老师的问题时,也要做到有序,能做到吗?

〖设计意图〗通过游戏活动,既活跃了课堂气氛,调动了学生的兴趣,激发学习的积极性,又能体现有序的重要性。

二、体验有序

(一)情景导入

今天,谢老师给大家带来了一只可爱的小动物――――鼹鼠,我们一起来看,(出示幻灯片)

鼹鼠钻洞:任选一个洞口进入,向前走,再任选一个洞口钻出来。师:读一读这句话,(1)这里有几个洞口?(4个)(2)什么是任选一个洞口进入,向前走?如果小鼹鼠从A 洞口进去,可以从哪个洞口出来?

(3)如果你是这只可爱的小鼹鼠,你会怎么走?(让学生在体验中感悟)(4)你们走了这么多条路线,老師也想走走,大家看,我从D 洞口进去,可以吗?为什么?

(5)引出问题:有多少条不同的路线?

〖设计意图〗故事导入,理解情景图的意思,一步一步引出本节课要研究的问题。

(二)动手操作 师:洞口数起来比较麻烦,你们能用自己喜欢的更简单的方式把它表达出来吗?

(1)学生先独立思考完成,教师巡视指导并留意完成情况,征集学生的方法,再进行比较,哪一种表示方法比较简便?

(2)预想:学生可能会根据三年级学过搭配中学问的画线方法,若找不出线段图,可直接引入。淘气是这样子做的,(3)这条线段表示什么?(表示通道)上面的字母或图形表示什么?(各个洞口)

〖设计意图〗运用图形来描述和分析,能把复杂的数学问题变得简明、形象,有助于探索解决问题的思路。

(三)解决问题

根据线段图,小鼹鼠有几种走法,你有什么办法数数出来吗?请你在练习单上画一画,数一数,并记下来,做到不重复,不遗漏。做完后,同桌间相互交流一下自已的想法。

(1)学生汇报第一种方法。你数出了几条线段?说说你是怎么数的?你先数什么?(线段AB、线段AC、线段AD、有几条?)再数什么?(线段BC、线段BD 有几条?)然后呢?(线段CD)板书3、2、1

师:他说得好吗?好在哪里?让学生点评(突出有序)

(2)教师归纳:在这里,我们是按出发点的不同,先数出从A点出发的AB、AC、AD 三条线段,再数从B 点出发的BC、BD 两条线段,最后数从C 点出发的线段CD 线段,从而求出一共有6条线段,写算式。

(3)教师归纳:这里,我们按端点的顺序来分,有序的数出了线段的条数

师:谁还有不同的方法数出线段的?

(4)方法二:你数出了几条线段?你又是怎么数的?你先数什么?(线段AB、线段BC、线段CD 有几条?再数什么?(线段AC、线段BD,有几条?)最后数什么?(线段AD)所以全起来也有6条线段。并写出算式。

板书:4个洞口时:3+2+1=6(3)教师归纳:这里,我们按线段的长短来分,有序的数出了线段的条数。

〖设计意图〗按照不同的标准,把稍微复杂的问题分成简单的几类,把每类中可能出现的情况一一列举,不重复、不遗漏地数出线段的数量,这样的数学活动有利于培养学生有序思考的良好思维品质。画图的方法也有利于发展学生解决问题的策略和几何直观能力。

(四)比较两种数法的异同。

1、师:大家来看这两种数法,你认为它们有什么不同点和相同点?同桌可以讨论一下。

2、学生汇报。不同点:标准不同:第一种方法是按出发点的不同来数的的。第二种是从根据线段的长短不同来来数的。相同点:算式是一样的,所以数出的线段都是6条。

师:还有呢?学生可能说不出,可引导:在刚才数线段之前,老师一直强调,数的时候要注意什么?指“有序”一词,对,不管是哪一种方法,我们在数图形的时候根据不同的标准做到有序,知道先数什么,再数什么,最后数什么。只有这样数才会数得不重复,也不遗漏,这是数图形的基本方法,这也是我们这节课学习的内容。(板书课题:数图形的学问)

〖设计意图〗将解决问题的方法进行总结,突出有序,才能做到不重复,不遗漏,得到数图形的基本方法,引出课题。

(五)如果有5个洞口呢,小鼹鼠又有几种行走路线呢? 5个洞口,说这里有5个点了。这次比一比,谁最快?

1、学生独立完成。让学生来说一说,数一数,记一记。(像老师一样)

板书:5个洞口时:4 +3 +2+ 1=10

2、教师归纳:5个洞口,分成四段,线段数就是从4开始,倒数,一直数到1。

3、预设:刚才是4个点,有6条线段,现在增加一个点,增加了4条线段,把这4条线段在图上表示出来。

〖设计意图〗在解决问题中,让学生分析算式和线段图的关系。学生也可利用多样化的方法来解决,通过对比,在原有图形的基础上增加线段,得到一种更为简便地方法,为后面增加点数解决问题,发现规律做了铺垫。但无论哪一种方法都关注了有序思考。

(六)如果有6个洞口呢,小鼹鼠又有几种行走路线呢? 也就是这条线段上有几个点了?(6个)

1、比一比,谁最快知道答案?说说你是怎样找到答案的?

2、学生汇报反馈。

板书:6个洞口时:5+ 4 +3 +2+ 1=15

3、如果有7个洞口呢,小鼹鼠又有几种行走路线呢? 板书:7个洞口时:6+5+ 4 +3 +2+ 1=21

你还能往下说吗?8个洞口呢?10 个呢?15个呢 ? 你们这么快就说出来了,发现了什么规律了吗?

〖设计意图〗启发学生在观察算式的基础上,从计算的角度引导学生发现规律,提高解决问题的能力。

(七)发现规律

现在请同学们观察学习单上的图和算式,你有什么发现?

1、独立思考

2、汇报

3、总结:(1)线段数比点数少1,规律为线段数开始,一直倒数,直到1,线段总数为这些数的和。(2)每增加一个点,线段增加地条数与原来地点数相同。

〖设计意图〗鼓励学生讲出自己发现的结论,并注意帮助学生归纳和概括,感受规律。学生发现的规律只要合理就行,重在发现规律的过程和清楚表达。

三、练习

握手是一种人际关系里最常见的一种礼节性的习惯,现在有5个同学,每两个人握手一次,一共要握多少次?

根据题意,画出线段图,每一个端点代表一个同学 一共要握手4 +3+ 2 +1=10(次)

〖设计意图〗对于本次所学的知识点一个简单的运用,让学生能过自己解决问题。

四、运用有序

(一)菜地旅行

1、解读图中的信息。(1)小鼹鼠菜地旅行的出发点在哪个站? 目的地在哪个站? 从出发点到目的地一共有几个站? 单程需要准备多少种不同的车票?(2)这里的单程是什么意思?

师:单程指的是从出发点到目的地的车票.不包括返回时的车票。

2、用我们刚才学的的方法,数一数5个车站要几种单程票? 然后同桌交流一个你的想法.3、学生汇报。这里要我们求有几种车票,也就是求这里有几条线段。(1)你是怎样数的?(先说出图中线段和点所表示的意思,边说边画出数的过程)

板书:5个站时:4 +3+ 2 +1=10 学生评价:你觉得他说得怎么样?好在哪?(突出“有序”)

4、谁还有不同的方法?请你上来数一数。〖设计意图〗帮助学生进一步熟悉画图策略并体会画图方法的多样性,发展有序地思考、主动发现规律解决现实问题地能力。

(二)联系生活

在我们生活中,我们也有旅行,现在旅行多数坐动车。如果泉州到深圳北这条高铁线上,有9个动车站,那么航运公司要为这段高铁线准备多少钟不同的火车票?

1、运用所学的的方法,数一数9个车站要几种票? 然后同桌交流一个你的想法.2、这里需要注意的是,在生活中,如果我们从泉州去深圳,那还要不要从深圳回来呢?这里就需要考虑来回,即双程车票。

9个车站:8+7+6++5+4+3+2+1=36(种)

36×2=72(种)

〖设计意图〗学以致用,生活中处处有数学。本题没有说明是单程还是双程,联系生活,蕴含的数学信息让学生自己发掘,对于实际问题,具体问题具体分析,不是一般化的套路。

四、拓展练习

1、数字1、2、3、4、5、6能组成多少个不同的两位数?(学生可以按照今天所学的知识来解决,可以画线段图,也可以把数直接写出来,但要注意有序)

5+4 +3+ 2 +1=15(个)

但是,数字的顺序不同,得到的是不同的两位数 15×2=30(个)

〖设计意图〗在数学问题中,能够按照有序思考,做到不重复,不遗漏,而且要考虑数字的顺序,顺序不同,组成不同的数。

2、如果是数字0、1、2、3、4、5呢?又能组多少个不同的两位数?(让四人为一小组交流讨论)

根据题意,因为0不能在最高位,所以要在原来30个不同的两位数减去5种情况。

30-5=25(个)

〖设计意图〗在第2题的基础上稍作改变,培养学生认真审题的习惯。

五、总结全课,回归课题:数图形的学问

本节课利用线段图来分析题意,并按照一定的标准(第一种方法是按出发点的不同来数的的。第二种是从根据线段的长短不同来来数的)有序的,不重复,也不遗漏数,这也是数图形的基本方法。

六、板书设计:

数图形的学问

4个洞口时:3+2+1=6 标准:端点、长短 5个洞口时:4 +3 +2+ 1=10 有序、不重复、不遗漏 6个洞口时:5+ 4 +3 +2+ 1=15 7个洞口时:6+5+ 4 +3 +2+ 1=21

〖教学反思〗

这节课围绕课标中要求的发展学生的几何直观、模型思想、推理能力、应用意识四个方面来开展教学。我在设计中主要关注的重点是通过画线段图来发展几何直观,通过算式归纳发展推理能力,通过规律地数发展有序意识。在教学中我充分发挥教师的点拔作用,调动学生的能动性,引导学生通过自主学习、实践探究、合作交流等方式展开学习。组织学生在操作、观察、猜想、推理的过程中主动建构知识,并促进其数学思维品质的提升。

这节课我不仅关注学生数图形时是否做到了有序,还注重指导学生用语言有条理地去表达,从而升华到生活中也应该做到讲规则、守秩序,并在课堂中随时提醒学生学会观察,学会倾听,学会合作。

今天展示的探究发现法,我主要关注的是,如何把探究的过程走稳走实,让学生不仅仅只着眼于列出算式,数出结果,更重要的是亲历从情境到数型这一探究过程,让孩子们知其然,更知其所以然,让浮于表面的探究真正的沉淀下来。

第五篇:《数图形的学问》教学设计

北师大版四年级数学上册 数学好玩

《数图形的学问》

教学内容:北师大版四年级数学上册第93页-94页。教材分析:

本节教学内容安排了”鼹鼠钻洞”与“菜地旅行”两个教学情境;在教学过程中,通过学生自己动手画一画与数一数等教学活动,逐步、有序地帮助学生在解决问题的过程中发现并总结数图形的规律。

学情分析:

四年级学生对线段图有了一定的了解,但很多学生不知道数线段图也存在一定的规律。对于数图形的个数,很多学生还是比较喜欢用数的方法来计算。因此在教学中制作课件,让学生充分体现数的过程以及方法,自主参与找规律的过程,最终达到能列式并计算出图形的个数。

教学目标:

1、利用生活中的情境发现数学问题,并引导探究,培养学生对数学学习的兴趣。

2、让学生体会有序的去数,可以做到不重复不遗漏,发展学生的有序思维。

3、在活动中培养学生自主探究数学问题的能力与习惯。

教学重难点:

重点:在数图形的活动中,发现一定的规律并培养学生的有序思维。

难点:在数图形过程中做到不重复不遗漏。

教学准备:多媒体课件 教学过程:

一、课前游戏:利用教师与学生握手游戏引出有序的思想。

二、新授新知:

(一)、同学们,我们通过刚才的握手的游戏知道平时的生活中就存在一些数学知识,那么你们想研究一下《数图形的学问》吗?(想)

1、(出示课题)森林里有一只小鼹鼠遇到一些数学问题,不会解决,想请你

们帮助它,你们愿意吗?

(出示主题图)同学们,请仔细观察,你能从图中提出哪些数学问题?(一共多少条不同的路线?)那么小朋友们,你能用自己的方法画出洞口吗?请同学们拿出作业纸1,自己画一画。

2、展示学生画的图,画圆圈是不是很麻烦,能不能用更好的方法来表示洞口呢?(用点)点与点之间该怎么办呢?(连接起来)。

同学们,你发现没有这些点都是一样的,用什么区分呢?(给这些点标上正在做字母)小朋友,你们真棒!不知不觉中你们自己画出了线段图。

3、那好吧!你们拿出作业纸2,画一画,数一数,一共有多少条不同的路线?

(小组内可以合作完成)(反馈学生完成情况)谁能说一说自己是怎么数的?

(引出两种数法:一是按起点的不同;二是按线段的长短)

4、孩子们,该怎么数不会数乱呢?(按照顺序的数)

那么有序的数有什么好处呢?(不重复、不遗漏)回答的真好!

你能用一个算式表示出来吗?(3+2+1=6)

(二)、同学们,我们已经帮助小鼹鼠解决了问题,它想带我们到它的菜地去旅行,你们想去吗?(出示第二个主题图)

1、仔细观察,有几个站台?你能数出单程需要多少种不同的车票吗?该怎么数呢?

请拿出作业纸3,画一画线段图,有序的数一数。(反馈学生数的情况)谁能说一说是怎么数的吗?

2、如果有6个站台呢?你会画吗?单程会有多少种不同的车票呢?(反馈)

3、如果有7个站台,你能算出单程会有多少种不同的车票?8个站台呢?仔细观察,你有什么发现?小组内交流一下。

4、小结:票数=(站台数-1)+(站数-2)+……+1

三、巩固新知:

1、试一试自己的本领。(学生试着解决)

2、闯关练习。第一关:数角。(学生独立完成)

第二关:数长方形。

第三关:数有几个平行四边形。(让学生试着用算式计算出来)

3、拓展与延伸。

同学们,我们是一个相亲相爱的班级,加上数学老师一共有31位成员,如果每2人握一次手,请同学们算一算一共要握多少次?

四、总结:

同学们,你在这节课学习中有什么收获?你们谁还有什么疑惑吗?

教学反思:

本节课利用与同学握手的形势,给学生渗透“有序、不重复”的思想;然后通过多媒体的演示与学生的动手操作等活动展开教学。学生感受到数图形中也存在着规律,学生能够利用所学到的规律解决生活中遇到的类似问题。

运用信息技术的设想:

1、利用多媒体,能够把教学情景直观的展示给学生;激发学生的学习兴趣。

2、利用多媒体对线段图的演示很动态也很直观,有利于学生的理解和思考。

下载新北师大版四年级上册数学《数图形的学问》教学设计[五篇材料]word格式文档
下载新北师大版四年级上册数学《数图形的学问》教学设计[五篇材料].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐