第一篇:22.1.3二次函数y=a(x-h)2+k的图像和性质教案
22.1.3二次函数函数y=a(x-h)2+k的图像和性质
一、教学内容
二次函数函数y=a(x-h)2+k的图像和性质
二、教材分析
二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式---定义域----图象----性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较系统的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。因此,本节课的内容十分重要。
三、学情分析
四、教学目标
1、知识与技能
使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系。
2、过程与方法
会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。
3、情感态度价值观
让学生经历函数y=a(x-h)2+k性质的探索过程,理解函数y=a(x-h)2+k的性质。
五、教学重难点
重点:理解函数y=a(x-h)2+k的性质以及图象与y=ax2的图象之间的关系
难点:正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质
六、教学方法和手段
讲授法、小组讨论法
七、学法指导
讲授指导
八、教学过程
一、提出问题导入新课
1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系?
(函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)2.函数y=2(x-1)2+1图象与函数y=2(x-1)2图象有什么关系?函数y=2(x-1)2+1有哪些性质?这就是本节要学习得内容。
二、学习新知
1、画图:在同一直角坐标系中画出函数y=2(x-1)2与y=2xy=2(x-1)2+1的图象,看看它们之间有何的关系? 在学生画函数图象时,教师巡视指导;
出示例3:你能发现函数y=2(x-1)2+1有哪些性质? 教师可组织学生分组讨论,互相交流,让各组代表发言,函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。
当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。
2:出示4(P10)
3、课堂练习:不画图像说说函数y=2(x-1)2-2与y=2(x-1)2的异同点
九、课堂小结
1.通过本节课的学习,你学到了哪些知识?还存在什么困惑? 2.谈谈你的学习体会。
十、作业布置
P33练习
十一、板书设计
22.1.3二次函数函数y=a(x-h)2+k的图像和性质
十二、教学反思
第二篇:22.1.4二次函数y=ax2+bx+c的图像和性质教案
22.1.4二次函数y=ax2+bx+c的图像和性质
一、教学内容
二次函数y=ax2+bx+c的图像和性质
二、教材分析
二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式---定义域----图象----性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较系统的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。因此,本节课的内容十分重要。
三、学情分析
四、教学目标
1.知识与技能
使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.过程与方法
使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.情感态度价值观
让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
五、教学重难点
重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方
确定抛物线的对称轴、顶点坐标。
难点:理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b/2a、(-b/2a,4ac-b2/4a)
六、教学方法和手段
讲授法、练习法
七、学法指导
讲授指导
八、教学过程
(一)提出问题导入新课
1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?具有哪些性质? 2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系? 3.不画出图象,你能直接说出函数y=-1/2x2-6x+21的图象的开口方向、对称轴和顶点坐标吗?通过今天的学习你就明白了
(二)学习新知
1、思考: 像函数 y=-4(x-2)2+1很容易说出图像的顶点坐标,函数y=-1/2x2-6x+21能画成y=a(x-h)2+k 这样的形式吗?
2、师生合作探索: y=-1/2x2-6x+21
变成y=a(x-h)2+k的过程
3、做一做
(1)通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少? 在学生做题时,教师巡视、指导; 让学生总结配方的方法;思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系? 以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?
教师组织学生分组讨论,各组选派代表发言,全班交流,汇报结果:
y=ax2+bx+c(配方变形的过程略)
当a>0时,开口向上,当a<0时,开口向下。
对称轴是x=-b/2a,顶点坐标是(-b/2a,4ac-b2/4a)(2)P12练习第1、2、3、4题
4、待定系数法求二次函数解析式(引导学生自学看书12页)
5、练一练
P13练习第1、2
九、课堂小结
通过本节课的学习,你学到了什么知识?有何体会?
十、作业布置
P40练习
十一、板书设计
22.1.4二次函数y=ax2+bx+c的图像和性质
十二、教学反思
第三篇:22.1.4二次函数y=ax2+bx+c的图像和性质教案
22.1.4二次函数y=ax2+bx+c的性质
一、教学内容
二次函数y=ax2+bx+c的性质
二、教材分析
二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式---定义域----图象----性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较系统的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。因此,本节课的内容十分重要。
三、学情分析
四、教学目标
1.知识与技能
使学生掌握函数y=ax2+bx+c的性质。2.过程与方法
使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。
3.情感态度价值观
让学生经历探索二次函数y=ax2+bx+c的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。
五、教学重难点
重点:二次函数y=ax2+bx+c通过配方确定抛物线的对称轴、顶点坐标。
难点:理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-b/2a、(-b/2a,4ac-b2/4a)
六、教学方法和手段
讲授法、练习法
七、学法指导
讲授指导
八、教学过程
(一)提出问题导入新课
1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?
2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系? 3.你能直接说出函数y=-1/2x2-6x+21的图象的开口方向、对称轴和顶点坐标吗?通过今天的学习你就明白了
(二)学习新知
1、思考: 像函数 y=-4(x-2)2+1很容易说出图像的顶点坐标,函数y=-1/2x2-6x+21能画成y=a(x-h)2+k 这样的形式吗?
2、师生合作探索: y=-1/2x2-6x+21
变成y=a(x-h)2+k的过程
3、做一做
通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少? 以上讲的,都是给出一个具体的二次函数,来研究它的性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的开口方向、对称轴和顶点坐标?你能把结果写出来吗?
教师组织学生分组讨论,各组选派代表发言,全班交流,汇报结果:
y=ax2+bx+c(配方变形的过程略)
当a>0时,开口向上,当a<0时,开口向下。
对称轴是x=-b/2a,顶点坐标是(-b/2a,4ac-b2/4a)
4、师生归纳y=ax2+bx+c的性质
九、课堂小结
通过本节课的学习,你学到了什么知识?
十、作业布置
十一、板书设计
22.1.4二次函数y=ax2+bx+c的图像和性质
十二、教学反思
第四篇:6.2二次函数的图像和性质教案
课 题: §6.1二次函数 教学目标:
1.掌握二次函数ya(xm)2k与yax2、yax2k、ya(xm)2的图像的位置关系;
2、会用配方法确定二次函数yax2bxc图象的顶点坐标、对称轴和函数的最值,会用列表描点法画函数ya(xm)2k的图象.
教学重点:通过配方法画二次函数y=ax2+bx+c的图象、确定其开口方向、顶点坐标、对称轴以及函数的最值问题
教学难点:用配方法确定二次函数的顶点坐标和对称轴 教学程序设计:
一、情境创设
上节课,我们发现了 yax2与 yax2k,ya(xm)2的图象之间的关系,那么你认为形如ya(xm)2k的图象会是什么呢?形如 yax2bxc的图易用又是什么呢?它们有什么性质? 师生活动设计:
22师:展示同一坐标系中 yx2与y(x1)y(x1)2的图象,出示这个问题。生:思考并解决。生2:补充回答
设计意图:展示上节课的探究内容,让学生进入这个数学活动,意图是引领学生从点坐标的数量变化、图形的位置变化着手,用运动变化的观点来分析解决问题
二、探索活动
活动一:探索二次函数 ya(xm)2k的图象和性质。1. 在直角坐标系把yx2的图象沿X轴左向移动1个单位,再沿y轴向上移动2 个单位,画出这条新的抛物线。
2. 写出这条抛物线的解析式。3. 抛物线y(x1)22的性质。抛物线y(x1)22的性质
活动二:探索yax2bxc的图象及其性质。1.讨论yx22x3的图象及性质。
2.运用配方法,找一找yax2bxc的顶点坐标公式和对称轴。3.讨论yax2bxc的图象性质
师生活动设计:展示坐标系中的抛物线yx2 师:把它x轴向左平移1个单位,再沿y轴向上平移2个单位。请同学画出这两条抛物线。生1:板演。
师:说出这两条抛物线的解析式。生2:y(x1)y(x1)22
师:说说y(x1)22的图象是什么?有哪些性质? 生3:独立回答。生4:独立回答。
师:讨论y(x1)22 的图象。生5.独立回答。
请同学们独立思考形如ya(xm)2k的图象及其性质。
生9:回答开口方向、顶点坐标、对称轴、函数的最大(小)值。生10:补充或纠正回答
师:二次函数yx22x3的图象也是条抛物线吗? 生1:是的。
师:那它的顶点坐标和对称轴分别是什么? 生2:对称轴是直线x=-1,顶点是(-1,2)。师:你是怎么知道的?
生3:通过配方,把yx22x3变形成y(x1)22。
师:那么对于一般式yax2bxc来说,能不能找到它的顶点坐标和对称轴呢? 生4:能,配方。
生5:板演配方过程。师:评析配方过程。师:顶点坐标是(4acb4a2b2a,b2a,)。对称轴是直线x=有了这个公式,以后我们代入计算就可以了,无须再写出配方的过程。再请同学们说说它还有哪些性质? 生6:(开口方向)
生7:(增减性方面)
设计意图:活动一中:学生已有左加右减上加下减的平移规律,知道平移前后仅仅是顶点和对称轴的位置变化,容易归纳出形如ya(xm)2k的图象性质。活动二中: 学生能直观看出yx2x32与
y(x1)22其实是同一个解析式,此时老师点评只要把一般式配方成顶点式,我们就能找到任何一条抛物线的解析式了。再抛砖引玉:如果对yax2bxc进行配方,能不能找到顶点坐标与系数abc的关系?正如一元二次方程的求根公式一样,以后我们就可以直接代入公式,不用再配方?以此激发出学生探索的乐趣和主动。
三、例题教学
例1:分别回答下列抛物线的开口方向,顶点坐标,对称轴,增减性,并说明x取何值时函数的最大(小)值是多少
(1)y2(x1)2(2)y3(x4)25(3)y(x5)27
(4)y4(x3)21 例2:填空:
(1)x24x______(x___)2
(2)x26x_____(x___)2(3)x25x_____(x___)2
(4)x23x______(x_____)2 例3:根据顶点坐标公式求出下列图象的顶点坐标、对称轴,函数的最值。① y=x-2x-3
②y=-2x-5x+7
③y=3x+2x④y=例4:画出y=12x222
252x23x
23x52的图象。
并说明X取何值时y有最小值,这个最小值是多少?
师生活动设计:师:画图象最关键的要有顶点坐标和对称轴这两要素,这样才能根据 对称性左右各取两点。本题如何求顶点坐标。
生1:配方。生2:代入坐标公式
生3:板演配方过程。
生4:板演坐标公式。师:根据对称性质,我们用5个点画图,顶点+对称轴左右各两个点。下面我们列表取X算y.生5:描点画出抛物线
设计意图:已知函数解析式能画出它的图象,训练这个基本技能,为以后的二次函数的综合题的解题能力的培养作好台阶
四、课堂小结
本节课学到了什么?
1.形如ya(xm)2k的图象及其性质 2.形如yax2bxc的图象及其性质
五、当堂反馈(见导学案当堂反馈)师生活动设计:独立思考并完成。
设计意图:通过当堂反馈,巩固和复习本节课的内容。
六、课后作业(见导学案课后作业)
设计意图:既照顾全体,又关注个别,真正体现全面关注所有学生的发展,并巩固学生所学习的知识.七、教学反思
第五篇:二次函数图像教案
二次函数的图像
略阳天津高级中学 杨 娜
课 型:新授课 课时安排: 1课时 教学目标:
1、理解二次函数中a,b,c,h,k对其图像的影响。
2、领会二次函数图像平移的研究方法,并能迁移到其他函数图像的研究,而提高识图和用图能力。
3、培养学生数形结合的思想意识。重点难点: 1.教学重点:二次函数图像平移变换规律及应用
2.教学难点:理解平移对解析式的影响及如何利用平移变换规律求解析式,并能把平移变换规律迁移到一般函数. 教学过程:
一、导入新课
在初中我们已经学过二次函数,知道其图像为抛物线,并了解其图像的开口方向,对称轴,顶点等特征,本节课将进一步研究一般的二次函数的性质。二、讲授新课
提出问题1 二次函数yax(a0)的图像与二次函数yx的图像之间有什么关系? 1.我们先画出yx 的图像,并在此基础上画出y2x的图像。
学生阅读课本41页并在练习本上作图(教师用几何画板演示)2.学生阅读课本41页,并动手实践。
3.概括:二次函数yax(a0)的图像可以由yx的图像个点的纵坐标变为原来的a倍得到。4.用几何画板演示a对开口大小得影响。5.抽象概括
二次函数y=ax2(a≠0)的图像可由的y=x2图像各点纵坐标 变为原来的a倍得到。
a决定了图像的开口方向:a>o开口向上,a<0开口向下
222222a决定了图像在同一直角坐标系中的开口大小:|a|越小图像开口就越大 6.练习列二次函数图像开口,按从小到大的顺序排列为_ 11(1)f(x)=x2;(2)f(x)=x242
问题
212(3)f(x)=-x;(4)f(x)=-3x23函数ya(xh)2k(a0)的图像与函数yax2(a0)的图像之间有什么关系呢?
1.我们先一起回顾y2x2与y=2(x+1)²+3图像的关系。(教师用几何画板演示)
在初中我们已经知道,只要把y2x2的图像向左平移1个单位长度,再向上平移3个单位长度,就可以得到y=2(x+1)²+3的图像。它们形状相同,位置不同(如图2-22)。2.学生动手实践想想并回答课本上的问题2。3.概括:二次函数y=a(x+h)2+k(a0), ①a决定了二次函数图像的开口大小及方向;
而且“a正开口向上,a负开口向下”;|a|越大开口越小; ②h决定了二次函数图像的左右平移,而且“h正左移,h负右移”; ③k决定了二次函数图像的上下平移,而且“k正上移,k负下移”。
问题3 yax(a0)和yaxbxc(a0)的图像之间有什么关系? 1.我们先来回顾y2x与y2x4x1的图像关系(教师在黑板演示,可以转化为顶点式)
至此我们知道把y2x的图像向左平移1个单位长度,再向下平移3个单位长度,就可以得到y2x4x1的图像(如图2-23)。
2.动画演示yaxbxc(a0)中a,b,c对图像的影响。3.概括:
⑴一般地,二次函数y=ax2+bx+c(a≠0),通过配方可以得到它的恒等形式y=a(x+h)2 +k,从而知道可以由y=ax2 的图像
通过平移得到y=ax2+bx+c(a≠0)的图像.⑵a决定了二次函数图像的开口大小及方向;
而且“a正开口向上,a负开口向下”;|a|越大开口越小;b影响了图像的位置不仅2222222上下平移而且左右平移;c决定了图像与坐标轴y轴的交点位置,c>0 交点在y轴上半轴,c<0交点在y轴下半轴。
三、巩固练习
1.完成课后练习题1,2,3 2.把下列二次函数一般式化为顶点式:
① yx28x9 ② y2x212x16 ③yax2bxc(a0)3.把yx2的图像经过怎样平移可得到yx28x9的图像?
4.将二次函数y=3x2的图像平行移动,顶点移到(-3,2),则它的解式为?
5..二次函数y=f(x)与y=g(x)的图像开口大小相同,开口方向也相同,已知函数g(x)=x2+1,f(x)图像的顶点为(3,2),则f(x)的表达式为什么? 四.小结
1.回顾二次函数ya(xh)2k(a0)中,h,k对函数图像有何影响?
二次函数yaxbxc(a0)中,确定函数开口大小及方向的参数是什么?确定函数位置的参数是什么?
2.我们经历了yx到yax2(a0),yax2(a0)到ya(xh)2k(a0),通过这个过程,我们就能体会yax2(a0)到yax2bxc(a0)的图像变化过程,到研究一般函数的拓展过程。五.作业
完成课后习题1.2题。六.板书设计
二次函数再研究
问题1 演算过程 练习题 问题2 结论 问题3 附加题:
将二次函数y2x的图像平移顶点移到下列各点,写出对应的函数解析式。⑴(4,0);⑵(0,-2);⑶(-3,2)⑷(3,-1)222