第一篇:高考物理弹簧模型总结
特级教师分析2013年高考物理必考题:含弹簧的物理模型
【命题规律】
高考中常出现的物理模型中,斜面问题、叠加体模型、含弹簧的连接体、传送带模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述.
有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型.
高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下:
三、含弹簧的物理模型 纵观历年的高考试题,和弹簧有关的物理试题占有相当大的比重.高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等,几乎贯穿了整个力学的知识体系.为了帮助同学们掌握这类试题的分析方法,现将有关弹簧问题分类进行剖析.
对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件.因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题老师的青睐.
“高考直通车”联合衡水毕业清华北大在校生将于2013年5月中旬推出的手写版高考复习笔记,希望对大家复习备考有所帮助。该笔记适合2014年、2015年、2016年高考生使用。凡2013年5月中旬之后购买的高
一、高二同学,每年指定日期可以免费更换一次最新一年的笔记。另外,所有笔记使用者将被加入2014年高考备考专用平台,每周定期提供最新资料和高考互动。笔记对外公开时间:5月20日
1.静力学中的弹簧问题
(1)胡克定律:F=kx,ΔF=k·Δx.
(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力.
●例4 如图9-12甲所示,两木块A、B的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,两弹簧分别连接A、B,整个系统处于平衡状态.现缓慢向上提木块A,直到下面的弹簧对地面的压力恰好为零,在此过程中A和B的重力势能共增加了()
【解析】取A、B以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面 的压力为零时,向上提A的力F恰好为:
F=(m1+m2)g
设这一过程中上面和下面的弹簧分别伸长x1、x2,如图9-12乙所示,由胡克定律得:
故A、B增加的重力势能共为:
.
[答案] D 【点评】①计算上面弹簧的伸长量时,较多同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx=ΔF/k进行计算更快捷方便.
②通过比较可知,重力势能的增加并不等于向上提的力所做的功
.
2.动力学中的弹簧问题
(1)瞬时加速度问题(与轻绳、轻杆不同):一端固定、另一端接有物体的弹簧,形变不会发生突变,弹力也不会发生突变.
(2)如图9-13所示,将A、B下压后撤去外力,弹簧在恢复原长时刻B与A开始分离.
图9-13 ●例5 一弹簧秤秤盘的质量m1=1.5 kg,盘内放一质量m2=10.5 kg的物体P,弹簧的质量不计,其劲度系数k=800 N/m,整个系统处于 静止状态,如图9-14 所示.
现给P施加一个竖直向上的力F,使P从静止开始向上做 匀加速直线运动,已知在最初0.2 s内F是变化的,在0.2 s后是恒定的,求F的最大值和最小值.(取g=10 m/s2)【解析】初始时刻弹簧的压缩量为: x0=((m1+m2)g/k=0.15 m 设秤盘上升高度x时P与秤盘分离,分离时刻有:
又由题意知,对于0~0.2 s时间内P的运动有: 1/2)at2=x
解得:x=0.12 m,a=6 m/s2
故在平衡位置处,拉力有最小值Fmin=(m1+m2)a=72 N 分离时刻拉力达到最大值Fmax=m2g+m2a=168 N. [答案] 72 N 168 N 【点评】对于本例所述的物理过程,要特别注意的是:分离时刻m1与m2之间的弹力恰好减为零,下一时刻弹簧的弹力与秤盘的重力使秤盘产生的加速度将小于a,故秤盘与重物分离.
3.与动量、能量相关的弹簧问题
与 动量、能量相关的弹簧问题在高考试题中出现频繁,而且常以计算题出现,在解析过程中以下两点结论的应用非常重要:
(1)弹簧压缩和伸长的形变相同时,弹簧的弹性势能相等;
(2)弹簧连接两个物体做变速运动时,弹簧处于原长时两物体的相对速度最大,弹簧的形变最大时两物体的速度相等.
●例6 如图9-15所示,用轻弹簧将质量均为m=1 kg的物块A和B连接起来,将它们固定在空中,弹簧处于原长状态,A距地面的高度h1=0.90 m.同时释放两物块,A与地面碰撞后速度立即变为零,由于B压缩弹簧后被反弹,使A刚好能离开地面(但不继续上升).若将B物块换为质量为2m的物块C(图中未画出),仍将它与A固定在空中且弹簧处于原长,从A距地面的高度为h2处同时释放,C压缩弹簧被反弹后,A也刚好能离开地面.已知弹簧的劲度系数k=100 N/m,求h2的大小.
【解析】设A物块落地时,B物块的速度为v1,则有:
设A刚好离地时,弹簧的形变量为x,对A物块有: mg=kx
从A落地后到A刚好离开地面的过程中,对于A、B及弹簧组成的系统机械能守恒,则有:
1/2·mv12=mgx+ΔEp
换成C后,设A落地时,C的速度为v2,则有: 1/2·2mv22=2mgh2
从A落地后到A刚好离开地面的过程中,A、C及弹簧组成的系统机械能守恒,则有:
联立解得:h2=0.5 m. [答案] 0.5 m 【点评】由于高中物理对弹性势能的表达式不作要求,所以在高考中几次考查弹簧问题时都要用到上述结论“①”.
●例7 用轻弹簧相连的质量均为2 kg的A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,弹簧处于原长,质量为4 kg的物块C静止在前方,如图9-16 甲所示.B与C碰撞后二者粘在一起运动,则在以后的运动中:
(1)当弹簧的弹性势能最大时,物体A的速度为多大?(2)弹簧弹性势能的最大值是多少?
(3)A的速度方向有可能向左吗?为什么?
【解析】(1)当A、B、C三者的速度相等(设为vA′)时弹簧的弹性势能最大,由于A、B、C三者组成的系统动量守恒,则有:
(mA+mB)v=(mA+mB+mC)vA′
解得:.
(2)B、C发生碰撞时,B、C组成的系统动量守恒,设碰后瞬间B、C两者的速度为v′,则有:
mBv=(mB+mC)v′
解得:v′=
A的速度为vA′时弹簧的弹性势能最大,设其值为Ep,根据能量守恒 定律得:
.
(3)方法一 A不可能向左运动.
根据系统动量守恒有:(mA+mB)v=mAvA+(mB+mC)vB 设A向左,则vA<0,vB>4 m/s 则B、C发生碰撞后,A、B、C三者的动能之和为:
实际上系统的机械能为:
根据能量守恒定律可知,E′>E是不可能的,所以A不可能向左运动.
方法二 B、C碰撞后系统的运动可以看做整体向右匀速运动与A、B和C相对振动的合成(即相当于在匀速运动的车厢中两物块相对振动)由(1)知整体匀速运动的速度v0=vA′=3 m/s
取以v0=3 m/s匀速运动的物体为参考系,可知弹簧处于原长时,A、B和C相对振动的速率最大,分别为:
vAO=v-v0=3 m/s vBO=|v′-v0|=1 m/s 由此可画出A、B、C的速度随时间变化的图象如图9-16乙所示,故A不可能有向左运动的时刻.
[答案](1)3 m/s(2)12 J(3)不可能,理由略
【点评】①要清晰地想象、理解研究对象的运动过程:相当于在以3 m/s匀速行驶的车厢内,A、B和C做相对弹簧上某点的简谐振动,振动的最大速率分别为3 m/s、1 m/s.
②当弹簧由压缩恢复至原长时,A最有可能向左运动,但此时A的速度为零.
●例8 探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯和外壳质量分别为m和4m.笔的弹跳过程分为三个阶段:
①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(如图9-17甲所示);
②由静止释放,外壳竖直上升到下端距桌面高度为h1时,与静止的内芯碰撞(如图9-17乙所示);
③碰后,内芯与外壳以共同的速度一起上升到外壳下端距桌面最大高度为h2处(如图9-17丙所示).
设内芯与外壳的撞击力远大于笔所受重力,不计摩擦与空气阻力,重力加速度为g.求:(1)外壳与内芯碰撞 后瞬间的共同速度大小.(2)从外壳离开桌面到碰撞前瞬间,弹簧做的功.
(3)从外壳下端离开桌面到上升至h2处,笔损失的机械能.
【解析】设外壳上升到h1时速度的大小为v1,外壳与内芯碰撞后瞬间的共同速度大小为v2.
(1)对外壳和内芯,从撞后达到共同速度到上升至h2处,由动能定理得:
解得:.
(2)外壳与内芯在碰撞过程中动量守恒,即: 4mv1=(4m+m)v2
将v2代入得:
设弹簧做的功为W,对外壳应用动能定理有:
将v1代入得:.
(3)由于外壳和内芯达到共同速度后上升至高度h2的过程中机械能守恒,只有在外壳和内芯的碰撞中有能量损失,损失的能量将v1、v2代入得:E损=5/4mg(h2-h1).
[答案]
由以上例题可以看出,弹簧类试题的确是培养和训练学生的物理思维、反映和开发学生的学习潜能的优秀试题.弹簧与相连物体构成的系统所表现出来的运动状态的变化,为学生充分运用物理概念和规律(牛顿第二定律、动能定理、机械能守恒定律、动量定理、动量守恒定律)巧妙解决物理问题、施展自身才华提供了广阔空间,当然也是区分学生能力强弱、拉大差距、选拔人才的一种常规题型.因此,弹簧试题也就成为高考物理题中的一类重要的、6
独具特色的考题.
第二篇:2010年经典物理模型--弹簧类问题难点探究思考
高考资源网(ks5u.com)
您身边的高考专家
弹簧类问题难点探究思考
在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,这是一种常见的理想化物理模型 弹簧类问题多为综合性问题,涉及的知识面广,要求的能力较高,是高考的难点之一.●难点提出
1.(99年全国)如图2-1所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为
A.m1g
k1 B.m2g
k1 C.m1g
k2 D.m2g k
2图2—1
图2—2
2.如图2-2所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,劲度系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了______,物块1的重力势能增加了________.3.质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时弹簧的压缩量为x0,如图2-3所示.一物块从钢板正上方距离为3x0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量为m时,它们恰能回到O点.若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度.求物块向上运动到达的最高点与O点的距离.●案例探究
[例1]如图2-4,轻弹簧和一根细线共同拉住一质量为m的物体,平衡时细线水平,弹簧与竖直夹角为θ,若突然剪断细线,刚刚剪断细线
图2-3 欢迎广大教师踊跃来稿,稿酬丰厚。www.xiexiebang.com
图2-4 高考资源网(ks5u.com)
您身边的高考专家 的瞬间,物体的加速度多大? 命题意图:考查理解能力及推理判断能力.B级要求.错解分析:对弹簧模型与绳模型瞬态变化的特征不能加以区分,误认为“弹簧弹力在细线剪断的瞬间发生突变”从而导致错解.解题方法与技巧:
弹簧剪断前分析受力如图2-5,由几何关系可知: 弹簧的弹力T=mg/cosθ
细线的弹力T′=mgtanθ
细线剪断后由于弹簧的弹力及重力均不变,故物体的合力水平向右,与T′等大而反向,∑F=mgtanθ,故物体的加速度a=gtanθ,水平向右.[例2]A、B两木块叠放在竖直轻弹簧上,如图2-6所示,已知木块A、B质量分别为0.42 kg和0.40 kg,弹簧的劲度系数k=100 N/m,若在木块A上作用一个竖直向上的力F,使A由静止开始以0.5 m/s2的加速度竖直向上做匀加速运动(g=10 m/s2).(1)使木块A竖直做匀加速运动的过程中,力F的最大值;(2)若木块由静止开始做匀加速运动,直到A、B分离的过 程中,弹簧的弹性势能减少了0.248 J,求这一过程F对木块做的功.命题意图:考查对物理过程、状态的综合分析能力.B级要求.错解分析:此题难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力
N =0时 ,恰好分离.解题方法与技巧: 当F=0(即不加竖直向上F力时),设A、B叠放在弹簧上处于平衡时弹簧的压缩量为x,有
kx=(mA+mB)g x=(mA+mB)g/k ①
对A施加F力,分析A、B受力如图2-7 对A
F+N-mAg=mAa
② ③
图2-6 图2-5 对B
kx′-N-mBg=mBa′
可知,当N≠0时,AB有共同加速度a=a′,由②式知欲使A匀加速运动,随N减小F欢迎广大教师踊跃来稿,稿酬丰厚。www.xiexiebang.com 高考资源网(ks5u.com)
您身边的高考专家
增大.当N=0时,F取得了最大值Fm, 即Fm=mA(g+a)=4.41 N 又当N=0时,A、B开始分离,由③式知,此时,弹簧压缩量kx′=mB(a+g)x′=mB(a+g)/k
④ ⑤ AB共同速度 v2=2a(x-x′)
由题知,此过程弹性势能减少了WP=EP=0.248 J 设F力功WF,对这一过程应用动能定理或功能原理 WF+EP-(mA+mB)g(x-x′)=
1(mA+mB)v2 2⑥
联立①④⑤⑥,且注意到EP=0.248 J 可知,WF=9.64×10-2 J ●锦囊妙计
一、高考要求
轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.二、弹簧类命题突破要点
1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:Wk=-(12121kx2-kx1),弹力的功等于弹性势能增量的负值.弹性势能的公式Ep=kx2,高222考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.●歼灭难点
欢迎广大教师踊跃来稿,稿酬丰厚。www.xiexiebang.com 高考资源网(ks5u.com)
您身边的高考专家
1.如左图所示,小球在竖直力F作用下将竖直弹簧压缩,若将力F撤去,小球将向上弹起并离开弹簧,直到速度变为零为止,在小球上升的过程中
A.小球的动能先增大后减小 B.小球在离开弹簧时动能最大 C.小球的动能最大时弹性势能为零 D.小球的动能减为零时,重力势能最大 2.(00年春)一轻质弹簧,上端悬挂于天花板,下端系一质量为M的平板,处在平衡状态.一质量为
m的均匀环套在弹
簧外,与平板的距离为h,如图右所示.让环自由下落,撞击平板.已知碰后环与板以相同的速度向下运动,使弹簧伸长.A.若碰撞时间极短,则碰撞过程中环与板的总动量守恒 B.若碰撞时间极短,则碰撞过程中环与板的总机械能守恒 C.环撞击板后,板的新的平衡位置与h的大小无关 D.在碰后板和环一起下落的过程中,它们减少的动能等于克服弹簧力所做的功
3.如图2-10所示的装置中,木块B与水平桌面间的接触
图2-10 是光滑的,子弹A沿水平方向射入木块后留在木块内,将弹簧压缩到最短.现将子弹、木块和弹簧合在一起作为研究对象(系统),则此系统在从子弹开始射入木块到弹簧压缩至最短的整个过程中
A.动量守恒,机械能守恒 B.动量不守恒,机械能不守恒 C.动量守恒,机械能不守恒 D.动量不守恒,机械能守恒
4.如图2-11所示,轻质弹簧原长L,竖直固定在地面上,质量为m的小球从距地面H高处由静止开始下落,正好落在弹簧上,使弹簧的最大压缩量为x,在下落过程中,空气阻力恒为f,则弹簧在最短时具有的弹性势能为Ep=________.5.(01年上海)如图9-12(A)所示,一质量为m的物体系于长度分别为l1、l2的两根细线上,l1的一端悬挂在天花板上,与竖直方向夹角为θ,l2水平拉直,物体处于平衡状态.现将l2线剪断,求剪断瞬时物体的加速度.欢迎广大教师踊跃来稿,稿酬丰厚。www.xiexiebang.com
图2-11 高考资源网(ks5u.com)
您身边的高考专家
(1)下面是某同学对该题的一种解法:
解:设l1线上拉力为T1,l2线上拉力为T2,重力为mg,物体在三力作用下保持平衡: T1cosθ=mg,T1sinθ=T2,T2=mgtanθ
图.2—12 剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度因为mgtanθ=ma,所以 加速度a=gtanθ,方向在T2反方向.你认为这个结果正确吗?请对该解法作出评价并说明理由.(2)若将图A中的细线l1改为长度相同、质量不计的轻弹簧,如图2-12(B)所示,其他条件不变,求解的步骤与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.*6.如图2-13所示,A、B、C三物块质量均为m,置于光滑水平台面上.B、C间夹有原已完全压紧不能再压缩的弹簧,两物块用细绳相连,使弹簧不能伸展.物块A以初速度v0沿B、C连线方向向B运动,相碰后,A与B、C粘合在一起,然后连接B、C的细绳因受扰动而突然断开,弹簧伸展,从而使C与A、B分离,脱离弹簧后C的速度为v0.(1)求弹簧所释放的势能ΔE.(2)若更换B、C间的弹簧,当物块A以初速v向B运动,物块C在脱离弹簧后的速度为2v0,则弹簧所释放的势能ΔE′是多少?(3)若情况(2)中的弹簧与情况(1)中的弹簧相同,为使物块C在脱离弹簧后的速度仍为
2v0,A的初速度v应为多大?
欢迎广大教师踊跃来稿,稿酬丰厚。www.xiexiebang.com 高考资源网(ks5u.com)
您身边的高考专家
参考答案: [难点提出] 1.C
2.1112m(m+m)g;()m1(m1+m2)g
22122kk2k23.1x0 2[歼灭难点] 1.AD 2.AC 3.B 4.分析从小球下落到压缩最短全过程 由动能定理:(mg-f)(H-L+x)-W弹性=0 W弹性=Ep=(mg-f)(H-L+x)
5.(1)结果不正确.因为l2被剪断的瞬间,l1上张力的大小发生了突变,此瞬间 T2=mg cosθ,a=g sinθ
(2)结果正确,因为l2被剪断的瞬间、弹簧l1的长度不能发生突变、T1的大小和方向都不变.6.(1)1mv02 3(2)
1m(v-6v0)2
12(3)4v0
欢迎广大教师踊跃来稿,稿酬丰厚。www.xiexiebang.com
第三篇:弹簧振子模型教案
课题名称:新课程环境下高中物理“情、景、型”教学模式的建构
——“弹簧振子”模型教案
授课教师:课题组成员 教学目标:
1.熟悉弹簧振子的基本知识
2.指导学生会根据物理“情、景”建构弹簧振子模型 3.会根据已建模型解决类弹簧振子模型问题 4.培养学生自主学习和建模能力 5.培养学生创新意识和交流合作学习能力 重难点分析:
1.根据物理“情、景”建构弹簧振子模型 2.根据已建模型解决类弹簧振子模型问题 建模思路:
问题——建模指导——形成模型——利用模型解决问题 计划课时:2课时 建模过程
复习弹簧振子的特点:如图1 1.弹簧振子的回复力满足F=-kx,所以做简谐运动时,“回复力”为振子运动方向上的合力。
2.简谐运动具有对称性,即以平衡位置为参考点,平衡位置两侧对称的点回复力、加速度、位移都是对称的。问题:
1.把一个小球挂在一个竖直的弹簧上,如图2,当它平衡后再用力向下拉伸一小段距离后轻轻放手,使小球上下振动。试证明小球的振动是简谐振动。
证明过程:假设在振动过程中的某一瞬间,小球在平衡位置上方,离开平衡位置O的距离为x,取向下的方向为正方向 设弹簧劲度系数为k,不受拉力时的长度为l0,即弹簧下端处在A位置。当挂上质量为m的小球平衡时,弹簧的伸长量为x0x,平衡位置在C处。由题意得
mgk(x0x)容易判断,由重力和弹力的合力作为振动的回复力,则回复力Fmgkx0kx,由于位移x与恢复力F方向相反,所以有Fkx。
建模指导:
从该例题中显示小球是作简谐运动。由弹簧的弹力和重力两者的合力提供回复力。虽然弹簧的弹力大小关于平衡位置不对称,但是回复力、加速度、速度、位移、大小关于平衡位置是对称的。
2.质量为m的物块放在弹簧上,弹簧在竖直方向上做简谐运动,当振幅为A时,物体对弹簧的最大压力是物重的1.8倍,则物体对弹簧的最小压力是物重的多少倍?欲使物体在弹簧振动中不离开弹簧,其振幅最大为多少?
形成弹簧振子模型解决问题:
选物体为研究对象,画出其振动过程的几个特殊点,如图3所示,O为平衡位置,P为最高点,Q为最低点,A为原长位置。经判断,可知物体对弹簧的最大压力在Q处,Fmax1.8mgaQ(Fmaxmg)/m0.8g,物体对弹簧的最小压力时,在P处,根据对称性知aPaQ,aQ(mgFmin)/m,Fmin0.2mg,Fmin/mg0.2。欲使物体在振动过程不离开弹簧,物体的最高点应在A处,其距离O点的距离即为最大振幅,设振幅最大值为A′,am=g,劲度系数为k,得A′=1.25A。
利用弹簧振子模型解决实际问题:
3.如图4一升降机在箱底装有若干个弹簧,设在某次事故中,升降机吊索在空中断裂,忽略摩擦力,则升降机在下端接触地后直到最低点的一段运动过程()
A.升降机的速度不断减小 B.升降机的加速度不断变大
C.先是弹力做的负功小于重力做的正功,然后是弹力做的负功大于重力做的正功 D.到最低点时,升降机加速度的值一定大于重力加速度的值
利用模型解析:弹簧刚触地时升降机位置在A处,A为弹簧原长位置,升降机向下运动到最低点位置为B处,速度最大位置为O处(即简谐运动的平衡位置),则B为位移等于振幅位置。由振子的对称关系,由于从物体在A点时速度不为零,不难判断点A并非位移等于 2
振幅位置,与A点关于O点对称的点应在B点上方。在A点a=g方向向下,所以在B处a一定大于g,方向向上,从A点到O点过程是回到平衡位置过程速度增大,从O点到B点是远离平衡位置,速度在减小,A错,远离平衡位置恢复力增大,加速度增大,加速度增大,靠近平衡位置恢复力减小,加速度减小,B错,A到O过程速度增大,O到B过程速度减小,C对,由于OA小于OB,所以B点的加速度大于A点的加速度。
4.如图5所示,两木块质量分别为m﹑M,用劲度系数为k的轻弹簧连在一起,放在水平地面上,将木块m压下一段距离后释放,它就上下作简谐运动。在运动过程中木块M刚好始终不离开地面(即它对地面最小压力为零)。
(1)则木块m的最大加速度大小是多少?(2)木块M对地面最大压力是多少?
利用模型解析:m做简谐振动,平衡位置为O,弹簧原长位置为A,假设木块在C位置时弹簧的弹力等于M的重力,此时M受到的地面支持力为零,Mgmg,这个加速度为最大值。当m运动到最低点B时,M对地mMgmg的压力最大,由对称得,此时m的加速度也为a方向向上,由牛顿第二定律得
m此时m的加速度为a弹簧的弹力为Mg2mg,弹簧对M的压力也为Mg2mg,以M为对象,结合牛顿第三定律得M对地的压力最大为2(Mgmg)
解决此类问题时:应该先建立弹簧振子的模型,然后根据弹簧振子的模型特点求解具体问题。
第四篇:2011届高考物理第一轮经典模型检测试题12水平方向上的碰撞&弹簧模型
水平方向上的碰撞&弹簧模型
[模型概述]在应用动量守恒、机械能守恒、功能关系和能量转化等规律考查学生的综合应用能力时,常有一类模型,就是有弹簧参与,因弹力做功的过程中弹力是个变力,并与动量、能量联系,所以分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。[模型讲解]
一、光滑水平面上的碰撞问题 例1.在光滑水平地面上有两个相同的弹性小球A、B,质量都为m,现B球静止,A球向B球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为EP,则碰前A球的速度等于()
A.B.C.D.解析:设碰前A球的速度为v0,两球压缩最紧时的速度为v,根据动量守恒定律得出
,联立解得,所以正,由能量守恒定律得确选项为C。
二、光滑水平面上有阻挡板参与的碰撞问题
例2.在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这类反应的前半部分过程和下述力学模型类似,两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P,右边有一小球C沿轨道以速度v0射向B球,如图1所示,C与B发生碰撞并立即结成一个整体D,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。
图1(1)求弹簧长度刚被锁定后A球的速度。
(2)求在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能。解析:(1)设C球与B球粘结成D时,D的速度为v1,由动量守恒得
当,由以
弹簧压至最短时,D与A的速度相等,设此速度为v2,由动量守恒得上两式求得A的速度。
(2)设弹簧长度被锁定后,贮存在弹簧中的势能为EP,由能量守恒,有 撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到
自然长度时,势能全部转弯成D的动能,设D的速度为v3,则有
以后弹簧伸长,A球离开挡板P,并获得速度,当A、D的速度相等时,弹簧伸至最长,设 此时的速度为v4,由动量守恒得
当弹簧伸到最长时,其势能最大,设此势能为EP”,由能量守恒,有 解以上各式得。
说明:对弹簧模型来说“系统具有共同速度之时,恰为系统弹性势能最多”。
三、粗糙水平面上有阻挡板参与的碰撞问题
例3.图2中,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平直导轨上,弹簧处在原长状态。另一质量与B相同滑块A,从导轨上的P点以某一初速度向B滑行,当A滑过距离l1时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连。已知最后A恰好返回出发点P并停止,滑块A和B与导轨的滑动摩擦因数都为弹簧最大形变量为l2,重力加速度为g,求A从P出发时的初速度v0。,运动过程中
图2 解析:令A、B质量皆为m,A刚接触B时速度为v1(碰前)
由功能关系,有
A、B碰撞过程中动量守恒,令碰后A、B共同运动的速度为v2 有
碰后A、B先一起向左运动,接着A、B一起被弹回,在弹簧恢复到原长时,设A、B的共同速度为v3,在这一过程中,弹簧势能始末状态都为零,利用功能关系,有
此后A、B开始分离,A单独向右滑到P点停下,由功能关系有
由以上各式,解得
四、结论开放性问题
例4.用轻弹簧相连的质量均为2kg的A、B两物块都以 的速度在光滑的水平地面上运动,弹簧处于原长,质量为4kg的物体C静止在前方,如图3所示,B与C碰撞后二者粘在一起运动。求:在以后的运动中,图3(1)当弹簧的弹性势能最大时物体A的速度多大?(2)弹性势能的最大值是多大?(3)A的速度有可能向左吗?为什么?
解析:(1)当A、B、C三者的速度相等时弹簧的弹性势能最大,由于A、B、C三者组成的系统动量守恒,有
解得:(2)B、C碰撞时B、C组成的系统动量守恒,设碰后瞬间B、C两者速度为,则
设物块A速度为vA时弹簧的弹性势能最大为EP,根据能量守恒
(3)由系统动量守恒得,则 设A的速度方向向左,则作用后A、B、C动能之和
实际上系统的机械能
根据能量守恒定律,是不可能的。故A不可能向左运动。
[模型要点]
系统动量守恒,如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做,动能与势能相互转化。
不做功都不影响系统的机械能。能量守恒弹簧两端均有物体:弹簧伸长到最长或压缩到最短时,相关联物体的速度一定相等,弹簧具有最大的弹性势能。
当弹簧恢复原长时,相互关联物体的速度相差最大,弹簧对关联物体的作用力为零。若物体再受阻力时,弹力与阻力相等时,物体速度最大。[模型演练]
(2006年江苏省前黄高级中学检测题)如图4所示,在光滑水平长直轨道上,A、B两小球之间有一处于原长的轻质弹簧,弹簧右端与B球连接,左端与A球接触但不粘连,已知,开始时A、B均静止。在A球的左边有一质量为的小球C以初 速度向右运动,与A球碰撞后粘连在一起,成为一个复合球D,碰撞时间极短,接着逐渐压缩弹簧并使B球运动,经过一段时间后,D球与弹簧分离(弹簧始终处于弹性限度内)。
图4(1)上述过程中,弹簧的最大弹性势能是多少?(2)当弹簧恢复原长时B球速度是多大?
(3)若开始时在B球右侧某位置固定一块挡板(图中未画出),在D球与弹簧分离前使B球与挡板发生碰撞,并在碰后立即将挡板撤走,设B球与挡板碰撞时间极短,碰后B球速度大小不变,但方向相反,试求出此后弹簧的弹性势能最大值的范围。
答案:(1)设C与A相碰后速度为v1,三个球共同速度为v2时,弹簧的弹性势能最大,由动量守恒,能量守恒有:
(2)设弹簧恢复原长时,D球速度为,B球速度为
则有
(3)设B球与挡板相碰前瞬间D、B两球速度
与挡板碰后弹性势能最大,D、B两球速度相等,设为
当 时,最大
时,最小,所以
第五篇:高考动量解题模型总结
模型组合讲解——子弹打木块模型 [模型概述]
子弹打木块模型:包括一物块在木板上滑动等。FNs相Ek系统Q,Q为摩擦在系统中产生的热量;小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动;一静一动的同种电荷追碰运动等。[模型讲解]
例.如图1所示,一个长为L、质量为M的长方形木块,静止在光滑水平面上,一个质量为m的物块(可视为质点),以水平初速度v0从木块的左端滑向右端,设物块与木块间的动摩擦因数为,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q。
图1 解析:可先根据动量守恒定律求出m和M的共同速度,再根据动能定理或能量守恒求出转化为内能的量Q。
对物块,滑动摩擦力Ff做负功,由动能定理得:
Ff(ds)1212mvtmv0 22即Ff对物块做负功,使物块动能减少。
对木块,滑动摩擦力Ff对木块做正功,由动能定理得Ffs增加,系统减少的机械能为:
1Mv2,即Ff对木块做正功,使木块动能212121mv0mvtMv2Ff(ds)FfsFfd2221
本题中Ffmg,物块与木块相对静止时,vtv,则上式可简化为:
mgd121mv0(mM)vt2222
又以物块、木块为系统,系统在水平方向不受外力,动量守恒,则:
mv0(mM)vt联立式<2>、<3>得:
2Mv0 d2g(Mm)3
故系统机械能转化为内能的量为:
22Mv0Mmv0 QFfdmg2g(Mm)2(Mm)点评:系统内一对滑动摩擦力做功之和(净功)为负值,在数值上等于滑动摩擦力与相对位移的乘积,其绝对值等于系统机械能的减少量,即FfsE。
从牛顿运动定律和运动学公式出发,也可以得出同样的结论。由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:
s2d(v0v)/2v0v s2v/2v所以dv0Mmm,s2d s2vmMm一般情况下Mm,所以s2d,这说明,在子弹射入木块过程中,木块的位移很小,可以忽略不计。这就为分阶段处理问题提供了依据。象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:
EkMm2v0
2(Mm)[模型要点]
子弹打木块的两种常见类型:
①木块放在光滑的水平面上,子弹以初速度v0射击木块。
运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块在滑动摩擦力作用下做匀加速运动。图象描述:从子弹击中木块时刻开始,在同一个v—t坐标中,两者的速度图线如下图中甲(子弹穿出木块)或乙(子弹停留在木块中)
图2 图中,图线的纵坐标给出各时刻两者的速度,图线的斜率反映了两者的加速度。两图线间阴影部分面积则对应了两者间的相对位移。
方法:把子弹和木块看成一个系统,利用A:系统水平方向动量守恒;B:系统的能量守恒(机械能不守恒);C:对木块和子弹分别利用动能定理。推论:系统损失的机械能等于阻力乘以相对位移,即ΔE=Ffd ②物块固定在水平面,子弹以初速度v0射击木块,对子弹利用动能定理,可得:
Ffd1212mvtmv0 22两种类型的共同点:
A、系统内相互作用的两物体间的一对摩擦力做功的总和恒为负值。(因为有一部分机械能转化为内能)。B、摩擦生热的条件:必须存在滑动摩擦力和相对滑行的路程。大小为Q=Ff·s,其中Ff是滑动摩擦力的大小,s是两个物体的相对位移(在一段时间内“子弹”射入“木块”的深度,就是这段时间内两者相对位移的大小,所以说是一个相对运动问题)。C、静摩擦力可对物体做功,但不能产生内能(因为两物体的相对位移为零)。[误区点拨]
静摩擦力即使对物体做功,由于相对位移为零而没有内能产生,系统内相互作用的两物体间的一对静摩擦力做功的总和恒等于零。
不明确动量守恒的条件性与阶段性,如图3所示,不明确动量守恒的瞬间性如速度问题。
图3 [模型演练]
如图4所示,电容器固定在一个绝缘座上,绝缘座放在光滑水平面上,平行板电容器板间的距离为d,右极板上有一小孔,通过孔有一左端固定在电容器左极板上的水平绝缘光滑细杆,电容器极板以及底座、绝缘杆总质量为M,给电容器充电后,有一质量为m的带正电小环恰套在杆上以某一初速度v0对准小孔向左运动,并从小孔进入电容器,设带电环不影响电容器板间电场分布。带电环进入电容器后距左板的最小距离为0.5d,试求:
图4(1)带电环与左极板相距最近时的速度v;(2)此过程中电容器移动的距离s。(3)此过程中能量如何变化?
答案:(1)带电环进入电容器后在电场力的作用下做初速度为v0的匀减速直线运动,而电容器则在电场力的作用下做匀加速直线运动,当它们的速度相等时,带电环与电容器的左极板相距最近,由系统动量守恒定律可得: 动量观点:
mv0(Mm)v,v力与运动观点: 设电场力为F mv0
Mmv0mv0FFttv,v mMMm(2)能量观点(在第(1)问基础上): 对m:Eq(s对M:Eqsd112)mv2mv0 2221Mv20 2Eqd112(mM)v2mv0 222所以smd
Mm2运动学观点: 对M:vv0vts,对m:ts' 22dmd,解得:s 22(Mm)s's带电环与电容器的速度图像如图5所示。由三角形面积可得:
图5 d11v0t0,svt0 222解得:smd
2(Mm)(3)在此过程,系统中,带电小环动能减少,电势能增加,同时电容器等的动能增加,系统中减少的动能全部转化为电势能。
模型组合讲解——人船模型 [模型概述]
“人船”模型极其应用如一人(物)在船(木板)上,或两人(物)在船(木板)上等,在近几年的高考中极为常见,分值高,区分度大,如果我们在解题中按照模型观点处理,以每题分布给分的情况来看还是可以得到相当的分数。[模型讲解]
例.如图1所示,长为L、质量为M的小船停在静水中,质量为m的人从静止开始从船头走到船尾,不计水的阻力,求船和人对地面的位移各为多少?
图1 解析:以人和船组成的系统为研究对象,在人由船头走到船尾的过程中,系统在水平方向不受外力作用,所以整个系统在水平方向动量守恒。当人起步加速前进时,船同时向后做加速运动;人匀速运动,则船匀速运动;当人停下来时,船也停下来。设某时刻人对地的速度为v,船对地的速度为v',取人行进的方向为正方向,根据动量守恒定律有:mvMv'0,即
v'm vM因为人由船头走到船尾的过程中,每一时刻都满足动量守恒定律,所以每一时刻人的速度与船的速度之比,都与它们的质量之比成反比。因此人由船头走到船尾的过程中,人的平均速度v与船的平均速度v也与它们vm,而人的位移s人vt,船的位移s船vt,所以船的位移与人的位移也与它们的Mvs船m质量成反比,即1
s人M的质量成反比,即<1>式是“人船模型”的位移与质量的关系,此式的适用条件:原来处于静止状态的系统,在系统发生相对运动的过程中,某一个方向的动量守恒。由图1可以看出:s船s人L2 由<1><2>两式解得s人[模型要点]
动力学规律:由于组成系统的两物体受到大小相同、方向相反的一对力,故两物体速度大小与质量成反比,方向相反。这类问题的特点:两物体同时运动,同时停止。
动量与能量规律:由于系统不受外力作用,故而遵从动量守恒定律,又由于相互作用力做功,故系统或每个物体动能均发生变化:力对“人”做的功量度“人”动能的变化;力对“船”做的功量度“船”动能的变化。
两个推论:①当系统的动量守恒时,任意一段时间内的平均动量也守恒; ②当系统的动量守恒时,系统的质心保持原来的静止或匀速直线运动状态不变。
适用范围:动量守恒定律虽然是由牛顿第二定律推导得到的,但它的适用范围比牛顿第二定律更广泛,它既适用于宏观也适用于微观,既适用于低速也适用于高速。[误区点拨]
动量守恒的研究对象是一个系统,对一个物体就不能谈动量守恒问题。动量守恒定律是一个矢量表达式;动量守恒定律是一个状态量表达式,它只与系统的初末状态有关;动量守恒定律具有相对性,表达式中的速度应是对应同一参照系的速度;动量守恒定律具有同时性,表达式中的初状态的动量应该是指同一时刻的各个物体动量的矢量和,末状态也是如此。[模型演练]
如图2所示,质量为M的小车,上面站着一个质量为m的人,车以v0的速度在光滑的水平地面上前进,现在人用相对于小车为u的速度水平向后跳出后,车速增加Δv,则计算Δv的式子正确的是:()MmL,s船L
MmMm
图2 A.(Mm)v0M(v0v)mu B.(Mm)v0M(v0v)m(uv0)C.(Mm)v0M(v0v)m[u(v0v)] D.0Mvm(uv)答案:CD
模型组合讲解——爆炸反冲模型 [模型概述]
“爆炸反冲”模型是动量守恒的典型应用,其变迁形式也多种多样,如炮发炮弹中的化学能转化为机械能;弹簧两端将物块弹射将弹性势能转化为机械能;核衰变时将核能转化为动能等。[模型讲解]
例.如图所示海岸炮将炮弹水平射出,炮身质量(不含炮弹)为M,每颗炮弹质量为m,当炮身固定时,炮弹水平射程为s,那么当炮身不固定时,发射同样的炮弹,水平射程将是多少?
解析:两次发射转化为动能的化学能E是相同的。第一次化学能全部转化为炮弹的动能;第二次化学能
p2转化为炮弹和炮身的动能,而炮弹和炮身水平动量守恒,由动能和动量的关系式Ek知,在动量大小相
2m1212ME,由于平抛同的情况下,物体的动能和质量成反比,炮弹的动能E1mv1E,E2mv222MmsvMM的射高相等,两次射程的比等于抛出时初速度之比,即:22,所以s2s。
Mmsv1Mm思考:有一辆炮车总质量为M,静止在水平光滑地面上,当把质量为m的炮弹沿着与水平面成θ角发射出去,炮弹对地速度为v0,求炮车后退的速度。
提示:系统在水平面上不受外力,故水平方向动量守恒,炮弹对地的水平速度大小为v0cos,设炮车后退方向为正方向,则(Mm)vmv0cos0,vmv0cos
Mm评点:有时应用整体动量守恒,有时只应用某部分物体动量守恒,有时分过程多次应用动量守恒,有时抓住初、末状态动量即可,要善于选择系统,善于选择过程来研究。[模型要点]
内力远大于外力,故系统动量守恒p1p2,有其他形式的能单向转化为动能。所以“爆炸”时,机械能增加,增加的机械能由化学能(其他形式的能)转化而来。[误区点拨]
忽视动量守恒定律的系统性、忽视动量守恒定律的相对性、同时性。[模型演练](2005年物理高考科研测试)在光滑地面上,有一辆装有平射炮的炮车,平射炮固定在炮车上,已知炮车及炮身的质量为M,炮弹的质量为m;发射炮弹时,炸药提供给炮身和炮弹的总机械能E0是不变的。若要使刚发射后炮弹的动能等于E0,即炸药提供的能量全部变为炮弹的动能,则在发射前炮车应怎样运动? 答案:若在发射前给炮车一适当的初速度v0,就可实现题述的要求。
在这种情况下,用v表示发射后炮弹的速度,V表示发射后炮车的速度,由动量守恒可知:
(mM)v0mvMV由能量关系可知:
1
1112(mM)v0E0mv2MV22 222按题述的要求应有由以上各式得: 12mvE023
v02mE0(mM)M(mM)2mE0(MmM(Mm))m(Mm)4
模型组合讲解——追碰模型
[模型概述]
追碰是物理上一个重要模型,它涉及到动量定理、动量守恒定律、能量守恒等诸多知识点。从物理方法的角度看。处理碰撞问题,通常使用整体法(系统)、能量方法,守恒方法及矢量运算。“追碰”模型所设计的内容在每年的高考中可以以选择、计算题形式出现,所以该类试题综合性强,区分度大,分值权重高,因该部分内容恰是自然界最普遍的两个规律的联手演绎,是中学阶段最重要的主干知识之一,因此相关内容就成为每年高考测试的热点内容。
[模型讲解]
一、理解动量守恒定律的矢量性
例1.如图1所示,光滑水平面上有大小相同的A、B两球在同一直线上运动,两球质量关系为mB2mA,规定向右为正方向,A、B两球的动量均为6kg·m/s,运动中两球发生碰撞,碰撞后A球的动量增量为4kgm/s,则:()
图1 A.左方是A球,碰撞后A、B两球速度大小之比为2:5 B.左方是A球,碰撞后A、B两球速度大小之比为1:10 C.右方是A球,碰撞后A、B两球速度大小之比为2:5 D.右方是A球,碰撞后A、B两球速度大小之比为1:10 解析:题中规定向右为正方向,而AB球的动量均为正,所以AB都向右运动,又mB2mA,所以vA2vB,可以判断A球在左方,CD错;碰撞后A的动量变化pA4kgm/s,根据动量守恒可知,B球的动量变化pB4kgm/s,所以碰后AB球的动量分别为
pA'(64)kgm/s2kgm/s,pB'(64)kgm/s10kgm/s解得vA':vB'2:5,所以A正确。评点:动量守恒定律的矢量性即是重点又是难点,解题时要遵循以下原则:先确定正方向,与正方向相同的矢量取正号,与正方向相反的矢量取负号,未知矢量当作正号代入式中,求出的结果若大于零,则与正方向相同,若小于零则与正方向相反,同时也要善于利用动量与动能的关系,但要注意它们的区别。
二、利用动量守恒定律处理微观粒子的追碰
例2.在核反应堆里,用石墨作减速剂,使铀核裂变所产生的快中子通过与碳核不断的碰撞而被减速。假设中子与碳核发生的是弹性正碰,且碰撞前碳核是静止的。已知碳核的质量近似为中子质量的12倍,中子原来的动能为E0,试求:
(1)经过一次碰撞后中子的能量变为多少?
(2)若E0=1.76MeV,则经过多少次碰撞后,中子的能量才可减少到0.025eV。
解析:按弹性正碰的规律可求出每次碰撞后中子的速度变为多少,对应的动能也就可以求解;在根据每次碰撞前后的动能之比与需要减少到0.025eV与原动能E0的比值关系,取对数求出碰撞次数(必须进位取整)。
(1)弹性正碰遵循动量守恒和能量守恒两个规律。设中子的质量为m,碳核的质量为M,有:
mv0mv1Mv2 121212mv0mv1Mv2222由上述两式整理得:
v1mMm12m11v0v0v0
mMm12m13则经过一次碰撞后中子的动能:
E11111121mv12m(v0)2E0 22***2E1()E0 169169(2)同理可得E2……
121nEn()E0
169设经过n次碰撞,中子的动能才会减少至0.025eV,即En0.025eV,E01.76MeV,解上式得n54。
评点:广义上的碰撞,相互作用力可以是弹力、分子力、电磁力、核力等,因此,碰撞可以是宏观物体间的碰撞,也可以是微观粒子间的碰撞。
说明:《考试大纲》强调“应用数学处理物理问题的能力”,我们在计算中常遇到的是以下一些数学问题: ①等差数列、等比数列,这两类问题的处理方法是先用数学归纳法找出规律,再求解; ②对yasinbcos,当arctana,ymaxa2b2 bA。2③对yAsincos的形式(即yKsin2),则在45时,y有极值④对yKab的形式,其中均为a、b变量,但ab恒量(a0、b0),则可根据不等式性质ab(ab)2/2求极值等。
[模型要点]
在近年高考中,考查的碰撞皆为正碰问题。碰撞是中学物理教学的重点、是历年高考命题的热点,同时它一直是学生学习和高考的难点。碰撞在《考试说明》中作II级要求掌握。
1.碰撞的特点:(1)作用时间极短,内力远大于外力,总动量总是守恒的;(2)碰撞过程中,总动能不增。因为没有其他形式的能量转化为动能;(3)碰撞过程中,当两物体碰后速度相等时,即发生完全非弹性碰撞时,系统动能损失最大;(4)碰撞过程中,两物体产生的位移可忽略。
2.碰撞的分类:按能量变化情况可分为弹性碰撞和非弹性碰撞(包括完全非弹性碰撞)。
3.能量方面:弹性碰撞动能守恒;非弹性碰撞动能不守恒;完全非弹性碰撞能量损失(不能完全恢复原形)最大。
注意:动量守恒定律的验证、分析推理、应用等实验中,不论在平面还是斜面或用其他方式进行,我们都要注意守恒的条件性。
解题原则:(1)碰撞过程中动量守恒原则;(2)碰撞后系统动能不增原则;(3)碰撞后运动状态的合理性原则。
碰撞过程的发生应遵循客观实际。如甲物追乙物并发生碰撞,碰前甲的速度必须大于乙的速度,碰后甲的速度必须小于、等于乙的速度或甲反向运动。
解决“追碰”问题大致分两类运动,即数学法(如函数极值法、图象法)和物理方法(参照物变换法、守恒法等)。
[模型演练]
如图2所示,一水平放置的圆环形刚性槽固定在桌面上,槽内嵌放着三个大小相同的刚性小球,它们的质量分别为m1、m2、m3、m2=m3=2m1,小球与槽的两壁刚好接触,而且它们之间的摩擦可以忽略不计。开始时,三球处于槽中I、II、III的位置,彼此间距离相等,m2和m3静止,m1以速度v0R2沿槽运动,R为圆环的内半径和小球半径之和,各球之间的碰撞皆为弹性碰撞,求此系统的运动周期T。
图2 答案:先考虑m1与m2的碰撞,令v1、v2分别为它们的碰后速度,由弹性正碰可得:
v1v2m1m21v0v0m1m232m12v0v0m1m23
当m2与m3相碰后,交换速度,m2停在III处,m3以
2v0的速率运动。因为三段圆弧相等,当m3运动3到位置I时,m1恰好返回。它们在I处的碰撞,m3停在I处,m1又以v0的速度顺时针运动。当m1再运动到
2R18s,m2由位置II时,共经历了一个周期的,则:m1两次由位置I运动到II处的时间为:t1233v032RII运动到III处的时间为:t232s,m3由位置III运动到I的时间为:t3t22s。
2v03所以系统的周期为:T3(t1t2t3)20s