对人工智能学习的感想

时间:2019-05-12 04:20:42下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《对人工智能学习的感想》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《对人工智能学习的感想》。

第一篇:对人工智能学习的感想

学校:苏州科技学院

学院:电子信息工程

班级:电科0812班 姓名:钟建峰

学号:0820108224

谈谈人工智能的学习感想

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

人工智能技术导论这门课的学习,让我知道了人工智能从诞生发展到今天经历了一条漫长的路,许多科研人员为此而不懈努力。人工智能的开始可以追溯到电子学出现以前。象布尔和其他一些哲学家和数学家 建立的理论原则后来成为人工智能逻辑学的基础。而人工智能真正引起 研究者的兴趣则是1943年计算机发明以后的事。技术的发展最终使得人们可以仿真 人类的智能行为,至少看起来不太遥远。接下来的四十年里,尽管碰到许多阻碍,人工智能仍然从最初只有十几个研究者成长到现在数以千计的工程师和专家在研究; 从一开始只有一些下棋的小程序到现在的用于疾病诊断的专家系统,人工智能的发展有目共睹。

人工智能经过几十年的发展,其应用在不少领域得到发展,在我们的日常生活和学习当中也有许多地方得到应用。我通过网络查找,知道了以下领域的人工智能的发展。1.机器翻译

机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。几十年来,国内外许多专家、学者为 机器翻译的研究付出了大量的心血和汗水。虽然至今还没有一个实用、全面、高质量的自动翻译系统出现,不过也取得了很大的进展,特别是作为人们的辅助翻译工 具,机器翻译已经得到大多数人的认可。目前,国内的机器翻译软件不下百种,根据这些软件的翻译特点,大致可以分为三大类:词典翻译类、汉化翻译类和专业翻 译类。词典类翻译软件代表是“金山词霸”了,堪称是多快好省的电子词典,它可以迅速查询英文单词或词组的词义,并提供单词的发音,为用户了解单词或词组含 义提供了极大的便利。汉化翻译软件的典型代表是“东方快车2000”,它首先提出了“智能汉化”的概念,使翻译软件的辅助翻译作用更加明显。以“译星”、“雅信译霸”为代表的专业翻译系统,是面对专业或行业用户的翻译软件,但其专业翻译的质量与人们的实用性还有不少差距,有人评价说“满篇英文难不住,满篇 中文看不懂”,该说法虽然比较极端,但机译译文的质量确实却一直是个老大难问题。这里,我们不妨对现有的机译和人译过程作一比较,从中可以看出一些原因。

机器翻译:

1.一句一句处理,上下文缺乏联系;

2.对源语言的分析只是求解句法关系,完全不是意义上的理解;

3.缺乏领域知识,从计算机到医学,从化工到法律都通用,就换专业词典;

4.译文转换是基于源语言的句法结构的,受源语言的句法结构的束缚;

5.翻译只是句法结构的和词汇的机械对应。

人工翻译:

1.一般会先通读全文,会前后照应;

2.对源语言是求得意义上的理解;

3.只有专业翻译人员,而没有万能翻译人员;

4.译文是基于他对源语言的理解,不受源语言的句法结构的束缚;

5.翻译是一个再创造的过程。

在目前的情况下,计算机辅助翻译应该是一个比较好的实际选择。事实上,在很多领域中,计算机辅助人类工作的方式已经得到了广泛的应用,例如CAD软 件。如果计算机辅助技术用于语言的翻译研究,应该同样可以起到很大的辅助作用,这就是所谓的“计算机辅助翻译”。它集机器记忆式翻译、语法分析式翻译和人 际交互式翻译为一体,把翻译过程中机械、重复、琐碎的工作交给计算机来完成。这样,翻译者只需将精力集中在创造性的思考上,有利于工作效率的提高。

机器翻译研究归根结底是一个知识处理问题,它涉及到有关语言内的知识、语言间的知识、以及语言外的世界知识,其中包括常识和相关领域的专门知识。随 着因特网的普及与发展,机器翻译的应用前景十分广阔。作为人类探索自己智能和操作知识的机制的窗口,机器翻译的研究与应用将更加诱人。国际上有关专家分析 认为机器翻译要想达到类似人工翻译一样的流畅程度,至少还要经历15年时间的持续研究,但在人类对语言研究还没有清楚“人脑是如何进行语言的模糊识别和判 断”的情况下,机器翻译要想达到100%的准确率是不可能的。

2.专家系统

专家系统是一种模拟人类专家解决领域问题的计算机程序系统。专家系统内部含有大量的某个领域的专家水平的知识与经验,能够运用人类专家的知识和解决 问题的方法进行推理和判断,模拟人类专家的决策过程,来解决该领域的复杂问题。专家系统是人工智能应用研究最活跃和最广泛的应用领域之一,涉及到社会各个 方面,各种专家系统已遍布各个专业领域,取得很大的成功。根据专家系统处理的问题的类型,把专家系统分为解释型、诊断型、调试型、维修型、教育型、预测 型、规划型、设计型和控制型等10种类型。具体应用就很多了,例如血液凝结疾病诊断系统、电话电缆维护专家系统、花布图案设计和花布印染专家系统等等。

为了实现专家系统,必须要存储有该专门领域中经过事先总结、分析并按某种模式表示的专家知识(组成知识库),以及拥有类似于领域专家解决实际问题的 推理机制(构成推理机)。系统能对输入信息进行处理,并运用知识进行推理,做出决策和判断,其解决问题的水平达到或接近专家的水平,因此能起到专家或专家 助手的作用。

开发专家系统的关键是表示和运用专家知识,即来自领域专家的己被证明对解决有关领域内的典型问题有用的事实和过程。目前,专家系统主要采用基于规则 的知识表示和推理技术。由于领域的知识更多是不精确或不确定的,因此,不确定的知识表示与知识推理是专家系统开发与研究的重要课题。此外,专家系统开发工 具的研制发展也很迅速,这对扩大专家系统的应用范围,加快专家系统的开发过程,将起到积极地促进作用。随着计算机科学技术整体水平的提高,分布式专家系 统、协同式专家系统等新一代专家系统的研究也发展很快。在新一代专家系统中,不但采用基于规则的推理方法,而且采用了诸如人工神经网络的方法与技术。

3.符号计算

计算机最主要的用途之一就是科学计算,科学计算可分为两类:一类是纯数值的计算,例如求函数的值,方程的数值解,比如天气预报、油藏模拟、航天等领 域。另一类是符号计算,又称代数运算,这是一种智能化的计算,处理的是符号。符号可以代表整数、有理数、实数和复数,也可以代表多项式,函数,集合 等。长期以来,人们一直盼望有一个可以进行符号计算的计算机软件系统。早在50年代末,人们就开始对此研究。进入80年代后,随着计算机的普及和人 工智能的发展,相继出现了多

种功能齐全的计算机代数系统软件,其中Mathematica和Maple是它们的代表,由于它们都是用C语言写成的,所以可 以在绝大多数计算机上使用。Mathematica是第一个将符号运算,数值计算和图形显示很好地结合在一起的数学软件,用户能够方便地用它进行多种形 式的数学处理。

计算机代数系统的优越性主要在于它能够进行大规模的代数运算。通常我们用笔和纸进行代数运算只能处理符号较少的算式,当算式的符号上升到百位数 后,手工计算就很困难了,这时用计算机代数系统进行运算就可以做到准确,快捷,有效。现在符号计算软件有一些共同的特点就是在可以进行符号运算、数值计算和图形显示等同时,还具有高效的可编程功能。在操作界面上一般都支持交互式处理,人们 通过键盘输入命令,计算机处理后即显示结果。并且人机界面友好,命令输入方便灵活,很容易寻求帮助。

尽管计算机代数系统在代替人繁琐的符号运算上有着无比的优越性,但是,计算机毕竟是机器,它只能执行人们给它的指令,有一定的局限性。首先,多数计 算机代数系统对计算机硬件有较高的要求,在进行符号运算时,通常需要很大的内存和较长的计算时间,而精确的代数运算以时间和空间为代价的。第二个问题是用 计算机代数系统进行数值计算,虽然计算精度可以到任意位,但由于计算机代数系统是用软件本身浮点运算代替硬件算术运算,所以在速度要比用Fortran语 言算同样的问题慢百倍甚至千倍。另外,虽然计算机代数系统包含大量的数学知识,但这仅仅是数学中的一小部分,目前仍有许多数学领域未能被计算机代数系统涉 及。计算机代数系统仍在不断地发展、完善之中。

如今,人工智能研究出现了新的高潮,这一方面是因为在人工智能理论方面有了新的进展,另一方面也是因为计算机硬件突飞猛进的发展。随着计算机速度的不断提高、存储容 量的不断扩大、价格的不断降低以及网络技术的不断发展,许多原来无法完成的工作现在已经能够实现。

人工智能的学习,让我明白了人工智能始终处于计算机发展的最前沿。高级计算机语言、计算机界面及文字处理器的存在或多或少都得归功于人工智能的研究。人工智能研究带来的理论和洞察力指引了计算技术发展的未来方向。现有的人工智能产品相对于即将到来的人工智能应用可以说微不足道,但是它们预示着人工智能的未来。将来我们会对人工智有能更高层次的需求,人工智能也会继续影响我们的工作、学习和生活,我们也要支持人工智能的发展!

第二篇:人工智能感想

爱与被爱

——人类的爱是否永恒

当造物主要求被造者付出无条件的爱时,造物主对被造者有什么样的责任?在影片开头的公司作品会议上一位女工程师所问的:“当我们的机器人的程序被设计为要爱人类,那么我们人类是否应该、或者有责任去以爱去回馈机器人呢?”当被赋予爱的机器人与我们人类之间的是否存在清晰的差距?又或者当人类向机器人索取永恒的时候,有没有想过:自己能不能做到“永恒”?机器人只能爱人而不能被爱,这作为一个人本身来说就是一个非常悲哀的事,而现实中谁能接受自己要付出自己的爱而永远得不到别人的爱。与我们如此相似的机器人,却跟我们有着截然不同的命运。

在影片中david的苦苦哀求着蓝仙女:“Please make me into a real life boy, please make me a real boy, please please please make me real.。”到今天我的脑海还深深的印记这那幅画面,在黑暗的海底,在废弃的迪斯尼乐园中,找到蓝仙女的塑像。David面对着永远微笑的蓝仙女祈祷哀求了两千年,这个愿望却是我们每个人所天生具备的,就是这个世界上独一无二的人。那刻,我多么希望这是一部魔幻剧,那时蓝仙女就会在david的祈祷下,张开她的翅膀,用仁爱的心为david实现愿望,可是没有始终没有,那个画面就这样定格在那里。

作为机器人的创造者,人类并不愿意对这些电子产品付出真爱,在人们眼里他们仅仅是玩偶,侍女,奶妈,仆人,性工具……。无论那时候的机器人被制作的如何逼真,人类都无法将他们当作整个社会的一分子。当人们需要他们的时候他们就是我们的朋友,不需要他们的时候便可以被遗弃被破坏。在影片里有一个地方称为机器屠宰场,人们要将这些机器人处决,但处决的过程既残忍而又像是马戏表演。因为,人们要买票进场,而且观看屠杀的还有很多孩子。这让我联想到古罗马的斗兽场,血腥,残酷,而人们却把这种当成娱乐,多么扭

曲的心理,在科技文明如此高速发展的社会却在做着野蛮无知社会的愚蠢举动,这无疑是文明的倒退。

本部影片一直贯穿的就是david寻找蓝仙女,要变成真正的人类的线索,而david所探索的是人的本质是什么,与机器人的区别在何处,是人有着人生观,爱和有着被爱的权力吗? 而作为影片的女主角莫妮卡来说,这个角色是个矛盾体,她即代表人类母性光辉的形象,又在很多地方表现出人类的丑恶的一面,嫉妒,猜忌,还有自私。首先莫妮卡作为母亲的身份,她是以一种利用和寄托的心理接受了david,而且在莫妮卡的儿子马丁还未回家时,就对david表现出一种猜忌和害怕,既害怕却又要去碰触,其实在她心理是清楚的知道自己可以最david欲与欲求,这是否符合一个母亲的行为。对David的爱本身就是有保留的,当面临选择的时候,母亲义无返顾地,不加分析地,“正确”地站到儿子的一边。她的理由很简单: 首先,那是她的亲生儿子;再者,David不是真正的人。不是独一无二的,可以再次被创造。这是很现实的一个人类形象。

影片最后是2000年后,人类灭亡,外星人来到地球,虽然无法将一个机器人变为一个真正的人,却可以帮助大卫克隆出了“莫尼卡”,只是被克隆的人只能活一天,大卫终于又和“莫尼卡”在一起了……这是否算是比较好的结局。我在想这个莫妮卡只是david心理面的莫妮卡,假如是真的莫妮卡为何不闻不问david的一切,好像一切都在满足david,这是在david眼里一个只属于他的妈妈,而他是否也开始倾注对莫妮卡的爱在这个“莫妮卡”身上,在一种意义上david 已由机器异化成了人。他执着地追求着爱,人类的爱。这样的结局又给人一种思考的位置:此时的大卫正像以前的莫尼卡,而眼前这个克隆人更如同以前的大卫只是一个替代品而已,这是不是同时意味着又一个悲剧的开始呢?

爱与被爱,我们的选择是什么?

第三篇:人工智能学习

人工智能学习-知识要点总结 [Nirvana 发表于 2005-1-2 13:32:24]

人工智能是在计算机科学、控制论、信息论、神经心理学、哲学、语言学等多种学科研究的基础上发展起来的,是一门综合性边缘学科,延伸人脑的功能,实现了脑力劳动的自动化。

1、认知科学认为智能的核心是思维,知识阙值理论认为智能行为取决于知识的数量及其一般化程度,智能就是在巨大搜索空间中迅速找到一个满意解的能力;进化理论的核心是用控制取代表示,取消概念、模型及显示表示知识,否定抽象对于智能及智能模拟的必要性,强调分结构对于智能进化的可能性与必要性。综合上述观点,认为智能是知识与智力的总和,具有如下特征:

(1)记忆与思维能力,(2)学习能力及自适应能力,(3)行为能力。

人工智能是人造智能,是一门研究如何构造智能机器(智能计算机)或智能系统,使它能模拟、延伸、扩展人类智能的学科。通过图灵测试可以判断一个系统是否具有智能和智能的水平。

人工智能研究内容:

(1)机器感知(2)机器思维(3)机器学习(4)机器行为(5)智能系统构造技术

人工智能研究途径:

(1)符号处理(2)网络连接机制(3)系统集成2、知识是智能的基础,对人工智能的研究必须以知识为中心来进行,由于对知识的表示、利用、获取等的研究取得较大进展,特别是不确定性知识表示与推理取得的突破,建立了主观Bayes理论、确定性理论、证据理论、可能性理论,对人工智能其他领域(如模式识别,自然语言理解等)的发展提供了支持。数据是信息的载体和表示,信息是数据在特定场合的具体含义,信息是数据的语义;把有关信息关联在一起所形成的信息结构叫知识。具有:相对正确性,不确定性,可表示性,可利用性等特征;按作用范围分为常识性知识,领域性知识;按作用及表示分为事实性知识,过程性知识,控制性知识。按确定性分为确定性知识,不确定性知识;按结构及表现形式分为逻辑性知识,形象性知识;从抽象的,整体的观点来划分可分为零级知识,一级知识,二级知识。知识表示方法总体上分为符号表示法,连接机制表示法;目前用得较多的知识表示方法主要有:一阶谓词逻辑表示,产生式,框架,语义网络,脚本,过程,Petrio网,面向对象表示法。选择知识表示法时,要注意以下几个方面:

(1)充分表示领域知识(2)有利于对知识的利用(3)便于对知识的组织、维护与管理(4)便于理解和实现

3、产生式系统构成:规则库,控制系统,综合数据库。综合数据库中已知事实表示:(特性 对象 值可信度因子)控制系统的求解过程是一个不断地从规则库中选取可用规则与综合数据库中已知事实进行匹配的过程。产生式系统分类:按推理方向分为前向、后向和双向产生式系统;按表示知识的确定性可分为确定性及不确定性产生式系统;按数据库性质及结构特征进行分类为可交换的产生式系统,可分解的产生式系统,可恢复的产生式系统。框架是一种描述所论对象属性的数据结构,由槽结构组成,槽分为若干侧面。问题求解主要通过匹配和填槽实现的;产生式表示法主要用于描述事物间的因果关系,框架表示法主要用于描述事物内部结构及事物间的类属关系。语义网络是通过概念及其语义关系来表达知识的一种网络图。一个过程规则包括激发条件,演绎操作,状态转换及返回四个部分。

4、推理就是按某种策略由已知判断推出另一判断的思维过程。按从新判断推出的途径来划分,推理可分为演绎推理、归纳推理和默认推理;按所用知识确定性分为确定性推理,不确定性推理;按推出的结论是否单调地增加来划分为单调推理,非单调推理;按是否运用与问题有关的启发性知识分为启发式推理,非启发式推理;按基于方法的分为基于知识的推理,统计推理,直觉推理。推理的控制策略:推理方向,搜索策略,冲突消解策略,求解策略和限制策略。推理方向可确定推理的驱动方式:正向推理,逆向推理,混合推理及双向推理。

从一组已知为真的事实出发,直接运用经典逻辑的推理规则推出结论的过程称为自然演绎推理,基本推理规则是P规则,T规则,假言推理,拒绝式推理等:

P规则:任何步骤可引入前提A

T规则:前面步骤有一个或多个公式永真蕴涵公式S,可引入S

假言推理:P,P—>Q=> Q

拒绝式推理:P—>Q, 非Q=>非P

归结演绎推理中,空字句是不满足的,因此归结的目标是通过归结使字句集中包含空字句,从而证明原命题的不可满足性。归结式是亲本字句的逻辑结论。

不确定性推理是从不确定性的初始证据出发,通过运用不确定性的知识,最终推出具有一定程度的不确定性但却是合理或者近乎合理的理论的思维过程。

不确定推理的基本问题:推理方向,推理方法,控制策略,不确定性的表示和度量,不确定性匹配,不确定性传递算法,不确定性的合成。

知识的不确定性称为知识的静态强度;证据的不确定性称为动态强度

5、组合证据的不确定性算法:

最大最小方法

概率方法

有界方法

不确定性传递算法:

结论不确定性的合成:

6、主观Bayes方法:

(1)知识不确定性表示(产生式规则):

(2)证据不确定性表示:

(3)组合证据不确定性的算法:

(4)不确定性传递算法:

(5)结论不确定性的合成算法:

7、可信度方法:(C-F模型是基于可信度表示的不确定性推理的基本方法)

在可信度推理方法中的C-F模型里,可信度CF(H,E)的含义是:CF(H,E)>0表示E的出现增加了H的可信度;CF(H,E)=0表示E的出现与H可信度无关;CF(H,E)<0表示E的出现降低了H的可信度。

(1)知识不确定性表示:

(2)证据不确定性表示:

(3)组合证据不确定性算法:

(4)不确定性传递算法:

(5)结论不确定性合成算法(推理网络):

8、证据理论是用集合表示命题的,D是变量x所有可能取值的集合,且D中的元素是互斥的,在任一时刻x都取且只能取D中某一元素为值,则称D为x的样本空间。

信任函数与似然函数的关系:Pl(A)>=Bel(A), Bel(A)表示对A为真的信任程度,Pl(A)表示对A为非假的信任程度。Pl(A)-Bel(A)表示对A不知道的程度,即既非对A信任又不信任的那部分。

知识的不确定表示:IF E THEN H={h1,h2,…,hn} CF={c1,c2,…,cn}CF是可信度因子

含有模糊概念、模糊数据或带有确信程度的语句称为模糊命题。一般表示形式为:

x is A(CF)x是论域上的变量,A是模糊数,CF是该模糊命题的确信程度或

相应事件发生的可能性程度。

10、人工智能解决的问题:结构不良,非结构化;盲目搜索按预定的控制策略进行搜索,在搜索过程中获得的中间信息不用来改进控制策略;启发式搜索加入了与问题有关的启发性信息,用以指导搜索朝着最有希望的方向前进,加速问题的求解过程并找到最优解。

状态空间表示法:(S,F,G)

11、专家系统就是一种在相关领域中具有专家水平解题能力的智能程序系统,它能运用领域专家多年积累的经验与专门知识,模拟人类专家的思维过程,求解需要专家才能解决的困难问题。

特征:专家知识,有效推理,获取知识能力,灵活性,透明性,交互性,复杂性

专家系统与常规计算机程序比较:*

(1)常规程序=数据结构+算法,专家系统=知识+推理

(2)常规程序分为数据级+程序级,专家系统数据级+知识库级+控制级

(3)常规程序面向数值计算和数据处理,专家系统本质上是面向符号处理的(4)常规程序处理的数据多是精确的,专家系统处理不精确,模糊知识

(5)解释功能

(6)都是程序系统

12、机器学习是要使计算机能模拟人的学习行为,自动地通过学习获取知识和技能,不断改善性能,实现自我完善:

三个方面的研究内容:(1)学习机理研究(2)学习方法研究(3)面向任务研究

学习系统是指能够在一定程度上实现机器学习的系统,能够从某个过程或环境的未知特征中学到有关信息,并且能把学到的信息用于未来的估计、分类、决策或控制,以便改进系统的性能。在结构上主要包括:学习环境,学习机构,执行与评估机构和知识库四个部分;各种符号学习方法中推理能力最强的学习方法是机械式学习,推理能力最弱的方法是观察和发现,神经网络学习获得的知识被存储在神经元之间的连接中。

学习系统具有的条件能力:

(1)具有适当的学习环境

(2)具有一定学习能力

(3)能应用学到的知识求解问题

(4)能提高系统的性能

第四篇:人工智能与专家系统感想

姓名:万伟

学号:1120100924

人工智能与专家系统感想

人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。

人工智能技术导论这门课的学习,让我知道了人工智能从诞生发展到今天经历了一条漫长的路,许多科研人员为此而不懈努力。人工智能的开始可以追溯到电子学出现以前。象布尔和其他一些哲学家和数学家 建立的理论原则后来成为人工智能逻辑学的基础。而人工智能真正引起 研究者的兴趣则是1943年计算机发明以后的事。技术的发展最终使得人们可以仿真 人类的智能行为,至少看起来不太遥远。接下来的四十年里,尽管碰到许多阻碍,人工智能仍然从最初只有十几个研究者成长到现在数以千计的工程师和专家在研究; 从一开始只有一些下棋的小程序到现在的用于疾病诊断的专家系统,人工智能的发展有目共睹。

人工智能经过几十年的发展,其应用在不少领域得到发展,在我们的日常生活和学习当中也有许多地方得到应用。我通过网络查找,知道了以下领域的人工智能的发展。

专家系统是一种模拟人类专家解决领域问题的计算机程序系统。专家系统内部含有大量的某个领域的专家水平的知识与经验,能够运用人类专家的知识和解决 问题的方法进行推理和判断,模拟人类专家的决策过程,来解决该领域的复杂问题。专家系统是人工智能应用研究最活跃和最广泛的应用领域之一,涉及到社会各个 方面,各种专家系统已遍布各个专业领域,取得很大的成功。根据专家系统处理的问题的类型,把专家系统分为解释型、诊断型、调试型、维修型、教育型、预测 型、规划型、设计型和控制型等10种类型。具体应用就很多了,例如血液凝结疾病诊断系统、电话电缆维护专家系统、花布图案设计和花布印染专家系统等等。为了实现专家系统,必须要存储有该专门领域中经过事先总结、分析并按某种模式表示的专家知识(组成知识库),以及拥有类似于领域专家解决实际问题的 推理机制(构成推理机)。系统能对输入信息进行处理,并运用知识进行推理,做出决策和判断,其解决问题的水平达到或接近专家的水平,因此能起到专家或专家 助手的作用。

开发专家系统的关键是表示和运用专家知识,即来自领域专家的己被证明对解决有关领域内的典型问题有用的事实和过程。目前,专家系统主要采用基于规则 的知识表示和推理技术。由于领域的知识更多是不精确或不确定的,因此,不确定的知识表示与知识推理是专家系统开发与研究的重要课题。此外,专家系统开发工 具的研制发展也很迅速,这对扩大专家系统的应用范围,加快专家系统的开发过程,将起到积极地促进作用。随着计算机科学技术整体水平的提高,分布式专家系 统、协同式专家系统等新一代专家系统的研究也发展很快。在新一代专家系统中,不但采用基于规则的推理方法,而且采用了诸如人工神经网络的方法与技术。

一、人工智能与专家系统应用领域 1在管理系统中的应用

人工智能应用于企业管理的意义主要不在于提高效率,而是用计算机实现人们非常需要做,但工业工程信息技术是靠人工却做不了或是很难做到的事情。智能教学系统(ITS)是人工智能与教育结合的主要形式,也是今后教学系统的发展方向。信息技术的飞速发展以及新的教学系统开发模式的提出和不断完善,推动人们综合运用超媒体技术、网络基础和人工智能技术区开发新的教学系统,计算机智能教学系统就是其中的典型代表。它包含学生模块、教师模块,体现了教学系统开发的全部内容,拥有着不可比拟的优势和极大的吸引力。2在工程领域的应用

医学专家系统是人工智能和专家系统理论和技术在医学领域的重要应用,具有极大的科研和应用价值,它可以帮助医生解决复杂的医学问题,作为医生诊断、治疗的辅助工具。目前,医学智能系统已通过其在医学影像方面的重要作用,从而应用于内科、骨科等多个医学领域中,并在不断发展完善中。

3在技术研究中的应用 人工智能在电子技术领域的应用可谓由来已久。随着网络的迅速发展,网络技术的安全是我们关心的重点,因此我们必须在传统技术的基础上进行网络安全技术的改进和变更,大力发展数据挖掘技术、人工免疫技术等高效的AI技术,开发更高级AI通用和专用语言,和应用环境以及开发专用机器,而与人工智能技术则为我们提供了可能性。4人工智能在现实中的应用。

AI系统是设计出的一种计算机程序,这种程序具有某些像人和动物智能一样的功能。在过去的30多年中,已经建立了一些具有一定“智能”的AI系统,例如下棋程序、定理证明系统、集成电路设计与分析系统、自然语言翻译系统、智能信息检索系统、疾病诊断系统等 在一年一度AT&T实验室举行的机器人足球赛中,每支球队的“球员”都装备上了AI软件和许多感应器,它们都很清楚自己该踢什么位置,同时也明白有些情况下不能死守岗位。尽管现在的AI技术只能使它们大部分时间处于个人盘带的状态,但它们传接配合的能力正在以很快的速度改进。5.机器翻译

机器翻译是利用计算机把一种自然语言转变成另一种自然语言的过程,用以完成这一过程的软件系统叫做机器翻译系统。几十年来,国内外许多专家、学者为 机器翻译的研究付出了大量的心血和汗水。虽然至今还没有一个实用、全面、高质量的自动翻译系统出现,不过也取得了很大的进展,特别是作为人们的辅助翻译工 具,机器翻译已经得到大多数人的认可。目前,国内的机器翻译软件不下百种,根据这些软件的翻译特点,大致可以分为三大类:词典翻译类、汉化翻译类和专业翻 译类。词典类翻译软件代表是“金山词霸”了,堪称是多快好省的电子词典,它可以迅速查询英文单词或词组的词义,并提供单词的发音,为用户了解单词或词组含 义提供了极大的便利。汉化翻译软件的典型代表是“东方快车2000”,它首先提出了“智能汉化”的概念,使翻译软件的辅助翻译作用更加明显。以“译星”、“雅信译霸”为代表的专业翻译系统,是面对专业或行业用户的翻译软件,但其专业翻译的质量与人们的实用性还有不少差距,有人评价说“满篇英文难不住,满篇 中文看不懂”,该说法虽然比较极端,但机译译文的质量确实却一直是个老大难问题。这里,我们不妨对现有的机译和人译过程作一比较,从中可以看出一些原因。

机器翻译:

1.一句一句处理,上下文缺乏联系;

2.对源语言的分析只是求解句法关系,完全不是意义上的理解;

3.缺乏领域知识,从计算机到医学,从化工到法律都通用,就换专业词典;

4.译文转换是基于源语言的句法结构的,受源语言的句法结构的束缚;

5.翻译只是句法结构的和词汇的机械对应。

人工翻译:

1.一般会先通读全文,会前后照应;

2.对源语言是求得意义上的理解;

3.只有专业翻译人员,而没有万能翻译人员;

4.译文是基于他对源语言的理解,不受源语言的句法结构的束缚;

5.翻译是一个再创造的过程。

在目前的情况下,计算机辅助翻译应该是一个比较好的实际选择。事实上,在很多领域中,计算机辅助人类工作的方式已经得到了广泛的应用,例如CAD软 件。如果计算机辅助技术用于语言的翻译研究,应该同样可以起到很大的辅助作用,这就是所谓的“计算机辅助翻译”。它集机器记忆式翻译、语法分析式翻译和人 际交互式翻译为一体,把翻译过程中机械、重复、琐碎的工作交给计算机来完成。这样,翻译者只需将精力集中在创造性的思考上,有利于工作效率的提高。

机器翻译研究归根结底是一个知识处理问题,它涉及到有关语言内的知识、语言间的知识、以及语言外的世界知识,其中包括常识和相关领域的专门知识。随 着因特网的普及与发展,机器翻译的应用前景十分广阔。作为人类探索自己智能和操作知识的机制的窗口,机器翻译的研究与应用将更加诱人。国际上有关专家分析 认为机器翻译要想达到类似人工翻译一样的流畅程度,至少还要经历15年时间的持续研究,但在人类对语言研究还没有清楚“人脑是如何进行语言的模糊识别和判 断”的情况下,机器翻译要想达到100%的准确率是不可能的。

二、人工智能与专家系统的发展前景 1 人工智能的研究新课题

人工智能的长远目标是要理解人类智能的机器,用机器模拟人类的智能。这是一个十分漫长的过程,人工智能研究者奖通过多种途径、从不同的研究课题入手进行探索。

在近期,有几方面的研究课题可供选择:更完善更新的人工智能理论框架;自动或半自动的知识获取工具;能实现海量高速存储并具有学习功能的联想知识库;新型推理机制和推理机;分布式人工智能与协同式专家系统;智能控制与智能管理;智能机器人;人工智能机;新一代的脑模型。

2人机融合

人机融合是一个相当长的发展过程,它将伴随技术进步,逐级逐步地向前发展。首先实现的是低级和局部的融合,近几年人工智能科授的进步不断证实了这种趋势。如最近美国科学家就明确宣布,他们研制的“神经芯片”首先就是用于改善人的中枢神经功能,“使截瘫患者丢掉手杖”。随着人机融合的升级,最终将在地球上产生一种人机高度融合、高智慧、能自行繁殖(复制)的“新智体”(或曰“新人类”)。因此,文明人类的演化由于技术的影响将经历自然进化——人工促进人智能的进化——人机融合体(新智体)的自行进化的辩证发展过程。在人机融合时代,出于物理目标的不同,将存在多种多样、多层次的智能机(体),但具有怨茁级智能的应是人机融合体。当今人工智能科技和其他高科技的种种发展动向表明,在人类进入“信息社会”之后,将有一场规模巨大的“智能革命”,智能革命的环境是人工智能对人、对社会的广泛而深入的影响,就像今天的微电子技术对信息革命的影响一样。人工智能科技将渗透到社会各个领域,人类将对人工智能科技进行大规模的研究、开发和应用。

当今人工智能科技和其他高科技的种种发展动向表明,在人类进入“信息社会”之后,将有一场规模巨大的“智能革命”,智能革命的环境是人工智能对人、对社会的广泛而深入的影响,就像今天的微电子技术对信息革命的影响一样。人工智能科技将渗透到社会各个领域,人类将对人工智能科技进行大规模的研究、开发和应用。

总之,人工智能的应用前景一片的好,当然,挑战也很多,只有科学不断发展突破进步,我们才能真正的享受智能化带给我们的乐趣„

第五篇:《人工智能》学习报告

深圳大学硕士研究生课程作业—人工智能

《人工智能》学习报告

深圳大学机电与控制工程学院彭建柳

学号:0943010210

1.引言

人工智能(Artificial Intelligence,AI),曾经有一部电影,著名导演斯蒂文•斯皮尔伯格的科幻片《人工智能》(A.I.)对许多人的头脑又一次产生了震动,引起了一些人士了解并探索人工智能领域的兴趣。人工智能对于普通人来说是那样的可望而不可及,然而它却吸引了无数研究人员为之奉献才智,从美国的麻省理工学院(MIT)、卡内基-梅隆大学(CMU)到IBM公司,再到日本的本田公司、SONY公司以及国内的清华大学、中科院等科研院所,全世界的实验室都在进行着AI技术的实验。

一直以来,关于人工智能的理论,我一直认为是科学的前沿,理解起来较为飘渺。但是,从本学期《人工智能》课程的学习中,本人较系统的接触到了关于人工智能的理论,从有限的课程中,通过老师的详细介绍和查阅人工智能方面的书籍,学习了关于人工智能几个主要方面的知识,如模糊控制、专家系统、神经网络等。下面是本人关于人工智能理论的一些基本认识。

2.人工智能的形成与发展

说到人工智能,首先先认识下自动控制理论,自动控制理论从形成到发展至今,已经经历了六十多年的历程,其主要分为三个阶段:

务和现实模型的描述、符号和环境的识别以及知识库和推理机的开发上,即智能控制的关键问题不是设计常规控制器,而是研制智能机器的模型。此外,智能控制的核心在高层控制,即组织控制。高层控制是对实际环境或过程进行组织、决策和规划,以实现问题求解。为了完成这些任务,需要采用符号信息处理、启发式程序设计、知识表示、自动推理和决策等有关技术。这些问题求解过程与人脑的思维过程有一定的相似性,即具有一定程度的“智能”。

随着人工智能和计算机技术的发展,已经有可能把自动控制和人工智能以及系统科学中一些有关学科分支(如系统工程、系统学、运筹学、信息论)结合起来,建立一种适用于复杂系统的控制理论和技术。智能控制正是在这种条件下产生的。它是自动控制技术的最新发展阶段,也是用计算机模拟人类智能进行控制的研究领域。1965年,傅京孙首先提出把人工智能的启发式推理规则用于学习控制系统。1985年,在美国首次召开了智能控制学术讨论会。1987年又在美国召开了智能控制的首届国际学术会议,标志着智能控制作为一个新的学科分支得到承认。智能控制具有交叉学科和定量与定性相结合的分析方法和特点。

3.模糊控制

在传统的控制领域里,控制系统动态模式的精确与否是影响控制优劣的最主要关键,系统动态的信息越详细,则越能达到精确控制的目的。然而,对于复杂的系统,由于变量太多,往往难以正确的描述系统的动态,于是工程师便利用各种方法来简化系统动态,以达成控制的目的,但却不尽理想。换言之,传统的控制理论对于明确系统有强而有力的控制能力,但对于过于复杂或难以精确描述的系统,则显得无能为力了。因此便尝试着以模糊数学来处理这些控制问题。通过课堂中,导师生动的讲解,以及引用到生活当中鲜活的例子,如冰箱温度的模糊控制,智能汽车的行驶路线控制等等,充分的认识到,模糊控制在当今社会的应用已经很广泛,只是理论知识的缺乏而感觉不到它们的存在。

一般控制架构包括:定义变量、模糊化、知识库、逻辑判断及反模糊化,详细如下:

(1)定义变量:也就是决定程序被观察的状况及考虑控制的动作,例如在一般控制问题上,输入变量有输出误差E与输出误差之变化率CE,而控制变量

则为下一个状态之输入U。其中E、CE、U统称为模糊变量。

(2)模糊化(fuzzify):将输入值以适当的比例转换到论域的数值,利用口语化变量来描述测量物理量的过程,依适合的语言值(linguisitc value)求该值相对之隶属度,此口语化变量我们称之为模糊子集合(fuzzy subsets)。

(3)知识库:包括数据库(data base)与规则库(rule base)两部分,其中数据库是提供处理模糊数据之相关定义;而规则库则藉由一群语言控制规则描述控制目标和策略。

(4)逻辑判断:模仿人类下判断时的模糊概念,运用模糊逻辑和模糊推论法进行推论,而得到模糊控制讯号。此部分是模糊控制器的精髓所在。

(5)解模糊化(defuzzify):将推论所得到的模糊值转换为明确的控制讯号,做为系统的输入值。

模糊控制很重要的一点就是模糊规则的制定,其规则制定的来源主要由专家的经验和知识、操作员的操作模式、自学习提供。模糊规则的形式则分为状态评估和目标评估两种。但都是以模糊控制为基础,达到自动控制的目的。

4.专家系统

专家系统(expert system)是人工智能应用研究最活跃和最广泛的课题之

一。运用特定领域的专门知识,通过推理来模拟通常由人类专家才能解决的各种复杂的、具体的问题,达到与专家具有同等解决问题能力的计算机智能程序系统。它能对决策的过程作出解释,并有学习功能,即能自动增长解决问题所需的知识。

专家系统的发展已经历了3个阶段,正向第四代过渡和发展。第一代专家系统(dendral、macsyma等)以高度专业化、求解专门问题的能力强为特点。但在体系结构的完整性、可移植性等方面存在缺陷,求解问题的能力弱。第二代专家系统(mycin、casnet、prospector、hearsay等)属单学科专业型、应用型系统,其体系结构较完整,移植性方面也有所改善,而且在系统的人机接口、解释机制、知识获取技术、不确定推理技术、增强专家系统的知识表示和推理方法的启发性、通用性等方面都有所改进。第三代专家系统属多学科综合型系统,采用多种人工智能语言,综合采用各种知识表示方法和多种推理机制及控制策略,并开始运用各种知识工程语言、骨架系统及专家系统开发工具和

环境来研制大型综合专家系统。在总结前三代专家系统的设计方法和实现技术的基础上,已开始采用大型多专家协作系统、多种知识表示、综合知识库、自组织解题机制、多学科协同解题与并行推理、专家系统工具与环境、人工神经网络知识获取及学习机制等最新人工智能技术来实现具有多知识库、多主体的第四代专家系统。

对专家系统可以按不同的方法分类。通常,可以按应用领域、知识表示方法、控制策略、任务类型等分类。如按任务类型来划分,常见的有解释型、预测型、诊断型、调试型、维护型、规划型、设计型、监督型、控制型、教育型等。

简而言之,专家系统是一种模拟人类专家解决领域问题的计算机程序系统。

5.神经网络

由于神经网络是多学科交叉的产物,各个相关的学科领域对神经网络都有各自的看法,因此,关于神经网络的定义,在科学界存在许多不同的见解。目前使用得最广泛的是T.Koholen的定义,即“神经网络是由具有适应性的简单单元组成的广泛并行互连的网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。”

人工神经网络是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

6.小结

关于人工智能的学习,我现在所学习到的仅仅是皮毛。但对于一个刚刚接触人工智能学习的学生,了解如模糊控制、专家系统、神经网络等人工智能的知识入门尤为重要,为将来进一步学习人工智能的理论打下基础,并将理论应用于生活和工作当中,这才是学习的最终目的。

参考文献:

《人工智能控制》作者:蔡自兴,出 版 社:化学工业出版社,2005-7-1

下载对人工智能学习的感想word格式文档
下载对人工智能学习的感想.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    人工智能学习论文

    20107932唐雪琴 人工智能研究最新进展综述一、 研究领域 在大多数数学科中存在着几个不同的研究领域,每个领域都有着特有的感兴趣的研究课题、研究技术和术语。在人工智能中,......

    对人工智能的认识

    人工智能摘 要:人工智能(Artificial Intelligence)是用人工的方法和技术模仿、延伸和扩展人的智能,实现某些“机器思维”,本文在阐述人工智能定义的基础上,具体介绍人工智能的应用......

    对学习的一点感想!

    对学习的一点感想!首先,我们要把学习的目的搞清楚,才能更好的学习。 据我分析,北京现在的奥数学习的目的都很单纯:为了小升初。 那么,从这个目的出发,得出的学习过程就是:为了考试而......

    《人工智能导论》学习心得体会

    《人工智能导论》学习心得大学第一次接触《人工智能导论》这门课,通过老师的讲解,我对人工智能有了一些简单的感性认识,我觉得人工智能是一门具有挑战性的科学,想要学好这门课......

    人工智能相关材料

    应用: 个人助理(智能手机上的语音助理、语音输入、家庭管家和陪护机器人) 产品举例:微软小冰、百度度秘、科大讯飞等、Amazon Echo、Google Home等 安防(智能监控、安保机器人)......

    对标学习的感想

    关于对标学习的体会和感想在集团公司和总承包公司的领导下,我们于2011年8月5日在长风山水苑项目进行了观摩学习。长风山水苑项目是老大哥十三分公司的一个项目,无论现场管理还......

    对标学习的感想

    关于对标学习的体会和感想 在集团公司和总承包公司的领导下,我们于2011年8月5日在长风山水苑项目进行了观摩学习。长风山水苑项目是老大哥十三分公司的一个项目,无论现场管理......

    《对人工智能的思考》教学设计

    课题对人工智能的思考建议课时1课时课型新知学习课(√)原理探究课()综合应用课()其它()教学背景分析人工智能技术的发展给我们的日常生活提供了许多便利,也为人类的进步创造了条件,同......