第一篇:钢桁架桥梁设计总结讲解
钢桁架桥梁设计总结
区别于混凝土梁部一般设计流程,特编写钢桥设计流程,为初次设计钢梁提供一点参考与设计思路。
一.钢桥设计最终目的:
1.确定用最少的钢材但受力最优的杆件截面 2.确定传力简洁顺畅的连接方式
二.在确定钢桥方案后,一般钢桥包括的计算:
钢桥的设计是一个迭代循环的过程,但是截面的选取顺序还是以主桁优先。
1.主桁截面的粗选(初估联结系与桥面后)2.主桁截面的检算 3.联结系的检算 4.桥面的检算
5.主桁、联结系、桥面稳定后的主桁、联结系以及桥面的最终检算 6.连接计算(各部分杆件之间的连接方式以及节点板、拼接板、焊缝与螺栓计算)
7.预拱度计算及实现方式 8.伸缩缝的计算设计
三.主桁的粗选 3.1选取的原则:按照钢材的容许应力为屈服应力的1/1.7确定主桁需要的截面面积,从而粗选主桁截面。
以Q370为例:
对于拉杆:拉杆受强度、疲劳控制,应力为370/1.7=217.6Mpa,拉杆应力计算采用扣除螺栓消弱后的净面积,并考虑杆件由于刚接的次应力,所以拉杆杆件需要面积采用:杆件内力/150 对于压杆:压杆受强度、稳定控制,检算稳定时考虑容许应力折减,所以压杆一般由稳定控制。检算压杆,采用毛面积,粗选截面时压杆杆件需要面积采用:杆件内力/160。杆件越长截面越小,压杆容许应力折减越多,所以对于长细杆,可以采用压杆杆件需要面积:杆件内力/140。
粗选主桁后,控制大的指标,读取主桁的支反力、刚度条件是否符合规范。
3.2内力控制组合
主力:恒载+活载+支座沉降
3.3计算模型
平面一次成桥模型
建模方式:a、cad中导入主桁杆件
b、施加荷载,注意二恒的取值,平面一次成桥模型的二恒:(整体二恒+初估联结系+初估桥面)/主桁片数
3.4截面迭代
用编写好的excel读取midas模型中的主力最大最小轴力迭代截面,迭代次数一般大于3次。(参考286截面选取excel)
按照粗选后的截面,先总体分析主桁的整体受力特性,为下一步主桁截面检算及截面优化修改打下基础。
四.主桁截面的检算
进一步细化主桁截面:
1.综合考虑主力下主桁杆件的轴力、弯矩组合应力 2.压杆的整体稳定与局部稳定 3.拉压杆的疲劳
4.1内力控制组合
主力:恒载+活载+支座沉降,读取主力下最大最小内力时相应的其他内力,每个单元共6组内力值。
4.2平面一次成桥模型
4.3截面优化
分析杆件受力形式,对于检算没通过的杆件,分析没通过的原因,按照检算的结果对应修改优化截面。(参考286主桁截面检算excel)对于修改后的截面,自己整体分析截面是否与钢桥主桁内力相吻合。
五.联结系的检算
联结系包括纵横向联结系:平联与横联。作用:与主桁一起是桥跨形成稳定的空间结构,承受纵横向荷载,联结系受横向风力影响较大。
4.1平联
4.1.1内力控制组合
恒载+活载+风力(弯梁需要考虑摇摆力与离心力)
4.1.2计算模型
空间模型,空间模型二恒的加载不同于平面一次成桥,空间中的二恒是钢桥真正的二恒。
4.1.3平联检算
读取midas平联控制组合下的内力,用编写好的excel检算平联。(参考286联结系截面检算excel)
4.2横联
4.1.1内力控制组合 主力+温度+风力(弯梁需要考虑摇摆力与离心力)
4.1.2计算模型
空间模型
4.1.3横联检算
读取midas横联联控制组合下的内力,用编写好的excel检算横联。(参考286联结系截面检算excel)
检算前先了解联结系在恒载以及风力作用下的受力特性,为联结系截面的优化提供修改依据。
六.桥面的检算
对于桥面计算,不同的桥面有不同的计算方式,但是桥面计算的原理相当,应该从理解桥面计算的目的-----计算途径着手。
以286钢桁拱桥面计算为例阐述桥面计算的一般流程。
6.1桥面布置与杆件组成
桥面杆件组成:
1.纵向杆件:纵梁、u肋
2.横向杆件:横梁、横肋、横梁端头 3.斜向杆件:k撑 4.桥面板
与传统的桥面相比较,桥面板与主桁下弦不直接连接,桥面板焊接在两横向中心距为9m纵梁的上,一个节间长度11m范围内,在两道横梁支点上伸出4个横梁端头,将桥面与主桁相连接,每个横梁端头左右两边各设置一个斜撑,连接主桁节点与横肋与纵梁的交点。
6.2桥面分析思路
a.确定一组较优桥面组成杆件截面尺寸的依据: 1.连接方便
2.各桥面组成杆件受力均衡,传力清晰。b.桥面分析目的:
1.活载、二恒等竖向力均作用在桥面上,u肋、桥面板、纵梁、横肋、横梁、k撑、横联端头将竖向力传至主桁节点,再通过吊杆、腹杆传至拱肋。桥面分析明确竖向力在桥面上的传力途径,分析桥面各个杆件的受力特性,认识各个杆件的作用,并指导桥面截面尺寸调整。2.平面模型没有建立桥面,只能分析主桁受力,故桥面计算在空间模型中完成。
c.桥面分析途径
1.桥面计算内力控制组合:恒载+冲击系数X活载。
2.活载采用静活载模拟,首先按照受力特性,计算桥面各杆件的冲击系数。
3.明确桥面各杆件的控制单元,即明确桥面各杆件静活载加载的纵向位置,通过寻找各杆件在恒载下受力最大的单元完成。
4.明确各杆件受控制的活载类型,车道加载在空间模型的虚梁单元上,建立两种车辆,标载活载与特中活载,分别查看两种车辆荷载下桥面杆件控制单元的内力,明确控制的活载类型。
5.静活载加载长度的确定:通过建立虚梁单元,车道加载在虚梁单元上,查看midas中影响线追踪器,确定桥面杆件控制单元的静活载加载长度。
6.3桥面各个组成部分的受力特性
由于桥面采用焊接与栓接形式,整体表现为纵横梁整体受力形式,空间分析中采用梁格模拟。
本桥采用全桥空间梁格模型进行计算,即通过有效顶板宽度的计算方法,将钢桥面系离散成横梁、横肋、纵梁、纵肋等几种梁单元,将离散后的钢桥面系带入全桥,参与全桥的整体计算,得出离散后的各自受力。该方法体现出了各位置主桁变形及支承刚度的影响,比较接近实际情况。6.3.1纵向杆件:纵梁、u肋的受力特性 纵梁、u肋通过桥面板、横梁、横肋、横梁端头、k撑与主桁节点相连,纵梁、u肋轴向表现为整体受拉压,即参与主桁下弦整体受力。
u肋整体表现为平面梁受力特性,纵梁由于k撑影响表现为空间梁受力特性。
轴力:纵梁与u肋参与主桁轴向受力,即第一体系内力,其轴力方向与主桁下弦杆基本一致,边上几个节间受压力,其余节间均受拉力,且越靠近跨中拉力越大,在跨中处横肋间纵梁轴力较横肋与横梁间纵梁轴力大。
面内弯矩:u肋体现为跨度为2.75m的连续梁弯矩特性,纵梁体现为跨度为11m的两端支点负弯矩跨中正弯矩的连续梁弯矩特性,最大正弯矩位于跨中附近,最大负弯矩位于中支点附近,面内弯矩即第二体系内力。
面外弯矩:u肋面内弯矩不大,可以忽略;纵梁由于受到k撑和横梁端头轴力作用,有一部分面外弯矩,应考虑。
6.3.2.斜向杆件:k撑受力特性
为减小横向杆件的横向变形,分担横联端头的竖向传力,设立斜向k撑。
K撑整体表现为空间梁受力特性,主要受力有轴力、面内弯矩与面外弯矩。
轴力:在跨中附近处,左右k撑均轴向受拉,大小相等;在中支点附近处,左k撑轴向受压,右k撑轴向受拉;
面内弯矩:与主桁相连的k撑端部负弯矩,与纵梁相连的受正弯矩;且在跨中附近,正弯矩出现最大值,在中支点附近,负弯矩出现最大值; 面外弯矩:在跨中附近,与主桁相连的k撑端部负弯矩,与纵梁相连的受正弯矩;而在中支点附近,左k撑所受面外弯矩较小,与主桁相连的k撑端部受面外正弯矩,与纵梁相连的受负弯矩。
6.3.3.横向杆件:横梁、横肋
横梁、横肋加大桥面的扭转刚度,加强桥面结构的恒载下横向联系,保证结构整体受力。
横梁与横肋整体表现为空间梁受力特性,主要受力有面内剪力、面外剪力、面内弯矩与面外弯矩。
轴力:横梁、横肋的轴力较小,可忽略不计;
面内剪力:横梁与横肋的面内剪力沿杆轴向呈斜直线,杆端剪力最大,杆中剪力几乎为0;在中支点附近杆端的剪力出现最大值;
面外剪力:横梁与横肋的面外剪力沿杆轴向呈斜直线,杆端剪力最大,杆中剪力几乎为0,在中支点附近杆端剪力出现最大值;
面内弯矩:横梁的面内弯矩由于横梁端头的固接作用产生的弯矩与横梁本身具有简支梁特性的弯矩叠加而成,杆端与杆中均为正弯矩,且杆中弯矩最大;与K撑相连的横肋面内弯矩与横梁的相似,未与K撑相连的横肋的面内弯矩呈抛物线型,杆端几乎为0,杆中为最大;
面外弯矩:横梁的面外弯矩基本呈杆端为负,中间为正的抛物线型,越靠近中支点其值越大,越靠近跨中值越小;中跨部分横肋面外弯矩较小,中支点处横肋面外弯矩最大。横梁及横肋的面外弯矩远小于面内弯矩。6.3.4横向杆件:横梁端头
横梁端头将桥面上大部分竖向荷载传递到主桁节点,横梁端头整体表现为空间梁受力特性,主要受力有面内剪力、面外剪力、面内弯矩与面外弯矩。
轴力:横梁端头的轴力较小,可忽略不计;
面内剪力:横梁端头的面内剪力呈直线型,整根杆件几乎相等; 面外剪力:横梁端头的面外剪力与面内剪力相似,且越靠近中支点剪力越大;
面内弯矩:横梁端头的面内弯矩呈斜直线,一端为正,一端为负,中间几乎为0;跨中附近正弯矩最大,中支点附近负弯矩最大;
面外弯矩:与面内弯矩相似,且中支点附近正弯矩与负弯矩均为最大,横梁端头的面外弯矩同样小于面内弯矩。
6.4桥面杆件检算
读取桥面杆件控制单元midas内力,用编写好的excel检算。(参考286桥面杆件检算excel)
七.主桁、联结系、桥面稳定后的主桁、联结系以及桥面的最终检算
桥面、联结系及主桁最终稳定后从新按照之前编写好的excel检算表格最终检算。
八.预拱度计算 提取平面一次成桥结果,计算理论预拱度,预拱度最终的实现方式与理论预拱度会有差额,预拱度的实现通过cad杆件的旋转及伸缩中模拟。伸缩与旋转的原则:保持桥面不变。
九.伸缩缝的计算
读取模型中的梁段纵向位移,设计伸缩缝。
十.连接计算
1.焊缝的计算 2.螺栓的计算 2.1主桁螺栓连接计算 2.2联结系螺栓连接计算 2.3桥面螺栓连接计算 3.节点板、拼接板的计算
十一.钢桥设计中的几个一致性
1.平面模型与空间模型的一致性,通过比较两个模型的恒载下的支反力。
2.用钢量计算的一致性,(空间模型中各个杆件重量的提取之和与平面模型中提取自重下支反力加上联结系与桥面用钢量之和一致)。
十二.钢桥设计中的平面、空间以及一次成桥与分施工阶段模型的关系 1.桥梁最终受力是与施工方式有关,最终受力状态应该以按施工状态模拟的模型为准,为此有必要分析一次成桥与分施工阶段模型的比较。包括支反力与主桁内力比较。
2.平面模型没有考虑联结系、桥面参与主桁的受力,有必要考察平面模型与空间模型支反力及内力的比较。
3.综合考虑风力或者制动力时,容许应力有所提高,但是有必要检算空间模型中受风力及制动力影响较大的杆件。
第二篇:钢桁架吊装方案(单吊)
南京高等职业技术学校
四期体育馆屋面工程钢桁架吊装方案
一、结构吊装工程质量保证体系 1.1、土建施工负责:
建筑物及塔架结构混凝土的强度应符合设计标准;轴线偏差、柱顶标高、外形尺寸不得超差;预埋件位臵、平整度应符合设计要求。1.2、钢结构施工负责:
1.2.1、根据土建提供的现场实测位臵尺寸,对施工现场与钢桁架吊装有关的构件进行分中、弹线、抄平,清理予埋件上的杂物,并将钢桁架吊装所使用的各种工机具事先准备齐全。
1.2.2、保证钢桁架结构的几何尺寸,对钢桁架及零部件的型号尺寸进行复核。保证钢桁架安装的垂直度,位移;桁架安装时焊接及紧固的质量。
1.2.3、钢桁架吊装前,质检人员应对钢桁架构件进行检查,复核,检查合格后及时通知监理检查,经监理检查合格后方可进行吊装。
二、钢桁架施工区域布臵图及吊车行走路线:(详见后附图)
组装完毕,即可进行吊装。整体桁架吊装可按3~8轴吊装钢桁架。
三、吊装前的准备工作
3.1、吊装前的最后检查:索具、工具是否齐全,符合安全要求。所有桁架编号,控制线是否齐全。安全设施是否齐备,道路是否平整,并有工序交接资料;
3.6.6、认真检查组装好的桁架构件是否放平、垫实,防止变形扭曲; 3.6.7、起重工应认真检查好吊具,如钢丝绳,卡环,倒链等各种吊具;
3.6.8、吊装工作必须有专业人员指挥吊装。
四、桁架的吊装 4.1、桁架吊装要求
4.2、根据结构物特点及施工现场实际情况,将钢桁架上下弦水平支撑、竖向支撑等拼装成整体,一次进行吊装,有利于保证其吊装稳定性。由于桁架的跨度、重量和安装高度不同,钢桁架可用汽车吊进行吊装。吊装时桁架上应绑扎圆木杉杆或木方,作为临时加固措施,绑扎时垫上破布,防止损伤桁架表面漆膜。为使桁架吊起后不发生大的摇摆,起吊前应在桁架两端绑扎溜绳或稳绳,随吊随放松,以保持其正确位臵。
4.3吊升、对位与临时固定
4.3.1、在桁架吊装就位前,必须将门架上安装部位的预埋件处清理干净。再次测量各塔架、结构的标高、轴线,当门架、结构支座标高或水平度不符合要求时,可采用垫铁或刨削预埋件支座底面的方法来调节。
4.3.2、桁架在起吊前应进行试吊。即将桁架平行起吊到距地面200~300mm 高度,检查各钢丝绳受力是否均匀,持续5min 后,再看有无下沉现象,如情况良好,可正式起吊。
5.1、单机吊装: 5.1.1、桁架吊装
⑴、由于场地限制以上钢桁架只能采用单机吊装。选第4轴上一榀桁架进行吊装计算。桁架自重9.5吨+索具重量1 T(查表)=10.5吨。⑵、起升高度:
在塔架上安装高度为:吊装低端14米、高端为16米。钢桁架吊装的起升高度:
h1= 16m——(吊升的高端高度)
h2= 0.3~0.5 m——(安装时,桁架支座到塔架安装位臵标高的调整距离)
h3= 1.3m——(桁架腿高)h4= 6.0m——(索具高度)
总高H= h1 +h2 +h3 +h4=16m+ 0.5m+1.3m+6.0m=23.8m。屋架梁吊装绳的长度根据吊点位臵,吊装角度计算绳长为16m,吊装中保持角度55~60°。
⑶、起重机械选用:
桁架吊重11吨,吊升高度23.8m。选用QY200汽车起重机,当吊臂36.9米,工作幅度20米,吊起高度为30时的起重量为13.5T。故13.5T>10.5T,可满足吊装要求。也可满足其它长度20米以内钢桁架的吊装要求。特点:机械稳定性好,操作变幅平稳。⑷、吊装钢丝绳选择: 受力分析:
经计算钢桁架分成三段,两头11.5米,中间10米的部位,刚好是钢桁架支撑点。(见图)六 场地要求
6.1.要求把进场道路两边的水泥砖清理、场地平整;
6.2要求把钢筋棚拆除及堆放钢筋的场地清理出来,场地平整; 6.3要求把靠球场的围墙拆除约10米左右,吊车之腿必需在球场上。腿下垫20厚钢板,具体拆除位臵我公司将划线; 6.4要求把靠球场围墙的钢管脚手架拆至圈梁以下。
第三篇:桥梁设计技术总结
公路大中桥梁设计技术总结
前 言:由于大中桥梁在高等级公路,特别是山区高等级公路整个工程造价中占用资金的比例相当大,且施工周期长,施工工艺要求较高,因此,大中桥梁往往成为公路工程控制工期和造价的关键工程。好的桥梁设计不仅可心节省工程投资,而且可以成为整个公路工程的一道道亮丽风景。为此,大和推广新技术、新材料、新工艺是桥梁工程师永远的主题。
笔者从事大中桥梁设计已十二年有余,有幸新历了石太一级公路、京深高速公路、乌鲁木齐市河滩路、运三高速公路、新原高速公路、府占一级公路、杭昱高速公路等多条高等维公路的初测初步设计、定测施工图设计,感悟颇深,对高等级公路大中桥梁设计有了一点浅显的认识,愿与同行们商榷。
关键词:桥梁;设计;技术;总结在中桥梁总体设计原则
(1)大中桥梁位均应符合路线总体走向,路桥综合考虑。
(2)桥们尽量选择在河段顺直、河道较窄的位置,以减短桥梁的长度。
(3)桥孔布设除满足设计流量,水位要求外,一般要不压缩河订,对有防洪、抢险和通行要求的河堤,要留有人、车通道。对于游荡性的河首,桥孔布设留有余地,并结合河道情况设置必要的导游工程,以保证桥梁的安全和洪水安全渲泄。大中桥梁设置原则
(1)在跨越深沟时,根据沟底纵坡,填土高度及工程地质等因素进行分析,填土高速大于25cm时,考虑采用桥梁跨越。
(2)为避免水毁桥梁,桥孔布设原则上不压缩河槽。对于山前扩散及变迁笴段,桥梁长度应考虑河槽摆动的因素,为确保水流及漂浮物顺利通过桥孔,大桥跨径不宜小于20cm。
(3)在地形复杂,山坡陡峻处的山谷桥梁,布孔时应根据桥址纵、横断面布设。为避免锥坡落空或墩台基础悬空,桥台高度不宜过高。
(4)平原区桥梁孔径布设以水文计算成果为依据,并结合河道的地形、地貌及桥下被交路等情况予以确定。
(5)当桥当有高路堤,占有农田较多,且需大量借方或远运填料时,可适当处长桥孔,并采用建筑高度较低的结构类型。大中桥梁结构类型的选择
3.1 桥梁选型原则
桥梁结构型式的选择应遵循“安全、适用、经济、美观”的原则,结合桥位处的地形、地质、施工条件等因素,以技术先进、节约投资、施工方便可行、方案合理、行车舒适为原则,具体如下:
(1)为保证桥面平整,行车舒适,上部结构宜采用连续结构或桥面连续结构。
(2)受填土高度控制时,为降低路基填土高度,上部结构宜采用建筑高度较小的结构类型。
(3)为缩短工期、降低造价、便于技术质量管理,一般大、中桥尽量采用统一的结构型式。山区桥梁主要采用中等跨径的T型桥梁,平微区推荐采用连续箱梁。
(4)当跨越深谷,墩高大于20m时,上部结构宜采用较大跨径的连续梁和连续则构桥梁型式,以降低工程造价。
(5)山岭重丘区的桥梁,由于地面坡度较大,为减少基础工程量,避免深挖基坑带来的地质病害,基础型式宣采用桩基础。
(6)桥梁基础型式根据地质情况及地面坡度的不同,分另采用桩基础和扩大基础,墩身型式根据墩高的不同,分别采用柱式墩和薄壁空心墩。
(7)中桥上部结构型式一般采用跨径20cm或跨径16cm的预应力混凝土空心板反跨径10cm、13cm的钢筋混凝土空心板,上部结构采用桥面连续。
3.2 桥梁结构选型
(1)上部结构类型及跨径选择
为方便施工、保证施工质量、缩短施工周期,确保工程安全,对于桥梁结构型式全线进行了统筹考虑,尽量采用便于机械化、工厂化、标准化生产的中等跨径预制安装构件。
位于山区的桥梁,当桥墩较高时,因下部结构造价占全桥总造价的比重增大,选用较大跨径较为合理。一般地,对山区特大、大型桥梁,上部结构根据墩身高度宜采用25m~40 m装配式预应力混凝土连续箱梁,25m~50 m装配式预应力混凝土连续T梁,16m~20 m的先张法预应力混凝土空心析等桥型方案。对桥墩较低的桥梁,方案设计时亦可考虑预应力混凝土T型梁方案,但T梁方案存在以下缺点:
①建筑高度大,在要求桥下净高相同的情况下,桥头路基土高度基本上由桥梁高度控制,采用T梁势必增大路堤填土高度。
②工程造价稍高,经造价分析,在24.5 m宽的路段,50 mT梁、40 mT梁、30 mT梁、30 m箱梁、25 mT梁、25 m箱梁、20 m空心板、16m空心板上部构造平均每延米建安费依次为40797元、36488元、32360元、29412元、30487元、27715元、27713元、26266元。
根据近几年国内特别是江苏、广东、山西等地的使用经验,矮箱梁比T梁施工工期短,后期养护量小,外形美观,造价便宜(便宜约10%)等特点,因此,大中桥梁上部结构一般采用预应力混凝土连续箱梁。
(2)基础类型选择
山区大中桥梁基础型式的选择,若仅从承载力角度出发,可采用扩大基础,山区地面坡度较大,采用扩大基础不仅开挖基坑工程量大,对环境破坏严重,而且开后环形较高的临空面难以防护,可能造成山体失稳或其它病害。与桩基础相比,扩大基础不仅工程造价上没有优势,而且存在工程病害等难以处理的不利因素。故山区大中桥基础宜采用桩基础。大中桥梁设计方法
4.1 桥型方案设计方法
(1)跨越冲沟、峽谷时桥梁长度在布孔时宜适当加长,桥台深入挖方段不少于3m,迎水面采用30m厚
7.5号浆砌片石铺砌至沟底,横桥向每侧铺砌15m。
(2)当地质条件好,沟形狭窄,平曲线半径R≥1800m,且弓玄差在20cm以下者,桥型方案首选缆索吊装箱形钢筋混凝土拱,平曲线由拱上建筑形成,桥台采用石砌重力式桥台或框架式组合桥台。
(3)当桥梁位于较小平曲线半径时,桥型方案确定应考虑以下因素:
①平曲线半径R≤500m时,上部结构宜采用预应力混凝土空心板或部分预应力混凝土组合箱梁或钢筋混凝土现浇连续箱梁。
②当单孔跨径拱弦差小于15cm,梁端张口小于50cm时,且
A 墩高H<15m时,距径选用16~25m,上部结构宜采用预应力混凝土空心板或部分预应力混凝土组合箱梁。
B 墩高15m<H≤25m时,跨径选用25~30m,上部结构宜采用部分预应力混凝土组合箱梁或预应力混凝土连续T梁。
C 墩高25m<H≤40m时,跨径选用30~40m,上部结构宜采用部分预应力混凝土组合箱梁或预应力混凝土连续T梁。
D 墩高H>40m时,跨径选用40~50m,上部结构宜采用预应力混凝土连续T梁。
E 墩高H>15m时,上部结构可以考虑预应和混凝土连续或预应力混凝土连续刚构。
4.2 桥梁上部结构布设方法
4.2.1 现浇箱梁的布设方法
(1)钢筋混凝土现浇连续箱梁,孔径组合一般采用(16+n×20+16)m,桥墩采用独柱或双柱式墩,桩基础。
(2)当平曲线半径较小,拱弦向距离大于15cm时,须考虑桥墩向外侧移。
4.2.2 预制空心板梁的布设方法
(1)当内外侧梁长之差小于等于标准跨径的2%时,桥梁布设以路线中心线为准,按标准跨径设置,优先考虑等角度布设。
(2)当内外侧梁长之差大于标准跨径的2%时,桥梁布设以左右半幅桥梁中心线为准,按标准跨径设置,考虑采用平行布设。
4.2.3 预制组合箱梁或T梁的布设方法
(1)桥墩尽量按等角度布设。
(2)墩顶横梁内侧尺寸不应小于通用图尺寸,外侧尺寸 不应大于内侧尺寸的两倍。
(3)对于等长预制梁,当满足不了第2条时,左右半幅桥应错墩布置。当错墩布置仍满足不了要求时,预制梁采用不同的长度。
4.3 桥梁下部结构布设方法
4.3.1 桥墩设计方法
(1)墩高H>30m时,宜采用薄壁空心墩,截面纵向尺寸为(跨径/20+0.5)m
(2)墩高H≤30m时,宜采用单排桩柱式墩,具体尺寸见表2-1。
表2-1 单排桩柱式墩尺寸表
跨径(m)桩柱径(cm)H≤5 5<H≤10 10<H≤15 15<H≤20 20<H≤25 25<H≤30柱径(cm)110 120 130 150 160 180
桩径(cm)120 140 150 170 180 200柱径(cm)120 130 140 160 170 200
桩径(cm)140 150 160 180 200 220柱径(cm)130 140 150 170 180 210
桩径(cm)150 160 180 200 220 230
柱径(cm)140 150 160 180 190 220
桩径(cm)160 170 190 210 230 250
柱径(cm)150 160 170 190 200 230
桩径(cm)170 190 210 230 250 260
柱径(cm)160 170 180 200 210 240
桩径(cm)190 200 220 240 260 280
柱径(cm)170 180 190 210 220 250
桩径(cm)200 220 240 260 280 300
(3)当基础覆盖层厚度于5米时,基础采用桩基础;否则,采用扩大基础。
(4)一座桥梁桥墩尽量采用一种形式,墩柱断面以最大墩高之截面为准。
(5)跨径20米预应力混凝土空心板与跨径25米部分预应力混凝土组合箱梁可采用同一标准下部尺寸。
(6)板梁式桥单排桩双桩双桩式墩立柱之间距L可用下式估算:
L=K.B/cosΦ
B-桥宽(m), Φ-斜度(度)
K-立柱间距系数,板桥K=0.55~0.65;T型或I型梁桥K=0.53~0.57;箱型梁桥长K=0.50~0.55;桥墩立柱间距、采用方案及适用条件详见表2-2。
表2-2桥墩立柱间距、采用方案及适用条件
立柱间距L(m)适用条件 采用方案
基础型式 墩高(m)盖梁 柱数
L≤8 桩基础、扩大基础 不限 钢筋混凝土 2
L8 扩大基础 ≤10 钢筋混凝土 2
8L≤10 桩基础 不限 钢筋混凝土 2
L10 桩基础 10 钢筋混凝土 2
10L ≤15 桩基础 不限 预应力混凝土 2
L15 桩基础 不限 预应力混凝土
2(7)桥墩承台系梁设计方法如下:
① 可能受船舶、大冰圬等墥击的桥墩,若无其它防撞设施,桩顶应设承台。
② 地震基本烈度≥8度的地区,墩高大于7m时,桩顶应设系梁。
③ 墩高超过20m时,桩顶应设系梁。
4.3.2 桥台设计方法
(1)台高H<5m且侧向及台前可设锥坡时,宜选用柱式桥台;台高H≥5m且侧向及台前可设锥坡时,宜选用肋式桥台;台高H≥5m且侧向可设锥坡时,宜选用“U”型桥台。一般地,台高H控制在8m以内最为经济。
(2)式桥台承台不宜埋置太深,其底面以埋入地下1m为宜,以改善桩基受力,降低工程造价。
(3)为降低工程造价,肋式桥台肋数不宜多于桥墩柱数,桥台承台上不宜设置挡墙。
4.3.3 其它
(1)伸缩缝估算方法:D=(Δt×L×10-5×103+20)mm;D-伸缩量(mm);
Δt-极端最高气温与极端低气温的差值(度);L-联变形长度(m)。
(2)预制梁长的预留值不应作为伸缩缝预留宽度的一部分。
(3)山岭重丘区高等级公路构造物(大中小桥、涵洞、通道等)的设置就少于2.5个/km。
(4)墩、台盖梁计算未考虑墩、台身和盖梁的固结作用。对于双柱墩、台近似简化为简支结构计算,对于三柱数、台近似简化按连接结构计算。
(5)基桩按弹性磨擦桩或嵌岩进行计算时,有效桩长不得小于5d(d为桩径),有效桩长自最低冲刷线或桩侧土厚度不小于2.5d处起算。
(6)桥面横坡以墩、台身高度的变化予以调整,支座垫石厚度为定值。
(7)为了在桥台耳墙内护栏受撞后不致影响耳墙安全,耳墙相外移了25cm或30cm,为此,桥头路基两侧均应加宽50cm或60cm,从锥坡顶点起10m过渡到正常宽度。
结束语 一般地讲,平原区、城镇人口密集区、旅游专线、立交区的桥梁在选型时应注重其经济性、美观性和安全性;山岭重丘区的桥梁在选型时应注重其经济性、施工难易程度和安全性。但是,随着新材料、新工艺、新技术的不断涌现,人们对桥梁结构的认识不断提高。因此,对结构工程师而言,追求合理、美观、经济、安全的桥型方案是永无止境的.
第四篇:大中桥梁设计技术总结
大中桥梁总体设计原则
(1)大中桥梁位均应符合路线总体走向,路桥综合考虑。
(2)桥们尽量选择在河段顺直、河道较窄的位置,以减短桥梁的长度。
(3)桥孔布设除满足设计流量,水位要求外,一般要不压缩河订,对有防洪、抢险和通行要求的河堤,要留有人、车通道。对于游荡性的河首,桥孔布设留有余地,并结合河道情况设置必要的导游工程,以保证桥梁的安全和洪水安全渲泄。大中桥梁设置原则
(1)在跨越深沟时,根据沟底纵坡,填土高度及工程地质等因素进行分析,填土高速大于25cm时,考虑采用桥梁跨越。
(2)为避免水毁桥梁,桥孔布设原则上不压缩河槽。对于山前扩散及变迁笴段,桥梁长度应考虑河槽摆动的因素,为确保水流及漂浮物顺利通过桥孔,大桥跨径不宜小于20cm。(3)在地形复杂,山坡陡峻处的山谷桥梁,布孔时应根据桥址纵、横断面布设。为避免锥坡落空或墩台基础悬空,桥台高度不宜过高。
(4)平原区桥梁孔径布设以水文计算成果为依据,并结合河道的地形、地貌及桥下被交路等情况予以确定。
(5)当桥当有高路堤,占有农田较多,且需大量借方或远运填料时,可适当处长桥孔,并采用建筑高度较低的结构类型。大中桥梁结构类型的选择 3.1 桥梁选型原则
桥梁结构型式的选择应遵循“安全、适用、经济、美观”的原则,结合桥位处的地形、地质、施工条件等因素,以技术先进、节约投资、施工方便可行、方案合理、行车舒适为原则,具体如下:
(1)为保证桥面平整,行车舒适,上部结构宜采用连续结构或桥面连续结构。
(2)受填土高度控制时,为降低路基填土高度,上部结构宜采用建筑高度较小的结构类型。(3)为缩短工期、降低造价、便于技术质量管理,一般大、中桥尽量采用统一的结构型式。山区桥梁主要采用中等跨径的T型桥梁,平微区推荐采用连续箱梁。
(4)当跨越深谷,墩高大于20m时,上部结构宜采用较大跨径的连续梁和连续则构桥梁型式,以降低工程造价。
(5)山岭重丘区的桥梁,由于地面坡度较大,为减少基础工程量,避免深挖基坑带来的地质病害,基础型式宣采用桩基础。
(6)桥梁基础型式根据地质情况及地面坡度的不同,分另采用桩基础和扩大基础,墩身型式根据墩高的不同,分别采用柱式墩和薄壁空心墩。
(7)中桥上部结构型式一般采用跨径20cm或跨径16cm的预应力混凝土空心板反跨径10cm、13cm的钢筋混凝土空心板,上部结构采用桥面连续。3.2 桥梁结构选型
(1)上部结构类型及跨径选择
为方便施工、保证施工质量、缩短施工周期,确保工程安全,对于桥梁结构型式全线进行了统筹考虑,尽量采用便于机械化、工厂化、标准化生产的中等跨径预制安装构件。位于山区的桥梁,当桥墩较高时,因下部结构造价占全桥总造价的比重增大,选用较大跨径较为合理。一般地,对山区特大、大型桥梁,上部结构根据墩身高度宜采用25m~40 m装配式预应力混凝土连续箱梁,25m~50 m装配式预应力混凝土连续T梁,16m~20 m的先张法预应力混凝土空心析等桥型方案。
对桥墩较低的桥梁,方案设计时亦可考虑预应力混凝土T型梁方案,但T梁方案存在以下缺点:
①建筑高度大,在要求桥下净高相同的情况下,桥头路基土高度基本上由桥梁高度控制,采用T梁势必增大路堤填土高度。
②工程造价稍高,经造价分析,在24.5 m宽的路段,50 mT梁、40 mT梁、30 mT梁、30 m箱梁、25 mT梁、25 m箱梁、20 m空心板、16m空心板上部构造平均每延米建安费依次为40797元、36488元、32360元、29412元、30487元、27715元、27713元、26266元。根据近几年国内特别是江苏、广东、山西等地的使用经验,矮箱梁比T梁施工工期短,后期养护量小,外形美观,造价便宜(便宜约10%)等特点,因此,大中桥梁上部结构一般采用预应力混凝土连续箱梁。(2)基础类型选择
山区大中桥梁基础型式的选择,若仅从承载力角度出发,可采用扩大基础,山区地面坡度较大,采用扩大基础不仅开挖基坑工程量大,对环境破坏严重,而且开后环形较高的临空面难以防护,可能造成山体失稳或其它病害。与桩基础相比,扩大基础不仅工程造价上没有优势,而且存在工程病害等难以处理的不利因素。故山区大中桥基础宜采用桩基础。大中桥梁设计方法 4.1 桥型方案设计方法
(1)跨越冲沟、峽谷时桥梁长度在布孔时宜适当加长,桥台深入挖方段不少于3m,迎水面采用30m厚7.5号浆砌片石铺砌至沟底,横桥向每侧铺砌15m。
(2)当地质条件好,沟形狭窄,平曲线半径R≥1800m,且弓玄差在20cm以下者,桥型方案首选缆索吊装箱形钢筋混凝土拱,平曲线由拱上建筑形成,桥台采用石砌重力式桥台或框架式组合桥台。
(3)当桥梁位于较小平曲线半径时,桥型方案确定应考虑以下因素:
①平曲线半径R≤500m时,上部结构宜采用预应力混凝土空心板或部分预应力混凝土组合箱梁或钢筋混凝土现浇连续箱梁。
②当单孔跨径拱弦差小于15cm,梁端张口小于50cm时,且
A 墩高H<15m时,距径选用16~25m,上部结构宜采用预应力混凝土空心板或部分预应力混凝土组合箱梁。
B 墩高15m<H≤25m时,跨径选用25~30m,上部结构宜采用部分预应力混凝土组合箱梁或预应力混凝土连续T梁。
C 墩高25m<H≤40m时,跨径选用30~40m,上部结构宜采用部分预应力混凝土组合箱梁或预应力混凝土连续T梁。
D 墩高H>40m时,跨径选用40~50m,上部结构宜采用预应力混凝土连续T梁。E 墩高H>15m时,上部结构可以考虑预应和混凝土连续或预应力混凝土连续刚构。4.2 桥梁上部结构布设方法 4.2.1 现浇箱梁的布设方法
(1)钢筋混凝土现浇连续箱梁,孔径组合一般采用(16+n×20+16)m,桥墩采用独柱或双柱式墩,桩基础。
(2)当平曲线半径较小,拱弦向距离大于15cm时,须考虑桥墩向外侧移。4.2.2 预制空心板梁的布设方法
(1)当内外侧梁长之差小于等于标准跨径的2%时,桥梁布设以路线中心线为准,按标准跨径设置,优先考虑等角度布设。(2)当内外侧梁长之差大于标准跨径的2%时,桥梁布设以左右半幅桥梁中心线为准,按标准跨径设置,考虑采用平行布设。4.2.3 预制组合箱梁或T梁的布设方法(1)桥墩尽量按等角度布设。
(2)墩顶横梁内侧尺寸不应小于通用图尺寸,外侧尺寸 不应大于内侧尺寸的两倍。(3)对于等长预制梁,当满足不了第2条时,左右半幅桥应错墩布置。当错墩布置仍满足不了要求时,预制梁采用不同的长度。4.3 桥梁下部结构布设方法 4.3.1 桥墩设计方法
(1)墩高H>30m时,宜采用薄壁空心墩,截面纵向尺寸为(跨径/20+0.5)m(2)墩高H≤30m时,宜采用单排桩柱式墩,具体尺寸见表2-1。
表2-1 单排桩柱式墩尺寸表
跨径(m)桩柱径(cm)H≤5 5<H≤10 10<H≤15 15<H≤20 20<H≤25 25<H≤30 20 柱径(cm)110 120 130 150 160 180 桩径(cm)120 140 150 170 180 200 25 柱径(cm)120 130 140 160 170 200 桩径(cm)140 150 160 180 200 220 30 柱径(cm)130 140 150 170 180 210 桩径(cm)150 160 180 200 220 230 35 柱径(cm)140 150 160 180 190 220 桩径(cm)160 170 190 210 230 250 40 柱径(cm)150 160 170 190 200 230 桩径(cm)170 190 210 230 250 260 45 柱径(cm)160 170 180 200 210 240 桩径(cm)190 200 220 240 260 280 50 柱径(cm)170 180 190 210 220 250 桩径(cm)200 220 240 260 280 300(3)当基础覆盖层厚度于5米时,基础采用桩基础;否则,采用扩大基础。(4)一座桥梁桥墩尽量采用一种形式,墩柱断面以最大墩高之截面为准。
(5)跨径20米预应力混凝土空心板与跨径25米部分预应力混凝土组合箱梁可采用同一标准下部尺寸。
(6)板梁式桥单排桩双桩双桩式墩立柱之间距L可用下式估算: L=K.B/cosΦ
B-桥宽(m), Φ-斜度(度)
K-立柱间距系数,板桥K=0.55~0.65;T型或I型梁桥K=0.53~0.57;箱型梁桥长K=0.50~0.55;桥墩立柱间距、采用方案及适用条件详见表2-2。
表2-
2桥墩立柱间距、采用方案及适用条件
立柱间距L(m)适用条件 采用方案 基础型式 墩高(m)盖梁 柱数
L≤8 桩基础、扩大基础 不限 钢筋混凝土 2 L8 扩大基础 ≤10 钢筋混凝土 2 8L≤10 桩基础 不限 钢筋混凝土 2 L10 桩基础 10 钢筋混凝土 2
10L ≤15 桩基础 不限 预应力混凝土 2 L15 桩基础 不限 预应力混凝土 2
(7)桥墩承台系梁设计方法如下:
① 可能受船舶、大冰圬等墥击的桥墩,若无其它防撞设施,桩顶应设承台。② 地震基本烈度≥8度的地区,墩高大于7m时,桩顶应设系梁。③ 墩高超过20m时,桩顶应设系梁。4.3.2 桥台设计方法
(1)台高H<5m且侧向及台前可设锥坡时,宜选用柱式桥台;台高H≥5m且侧向及台前可设锥坡时,宜选用肋式桥台;台高H≥5m且侧向可设锥坡时,宜选用“U”型桥台。一般地,台高H控制在8m以内最为经济。(2)式桥台承台不宜埋置太深,其底面以埋入地下1m为宜,以改善桩基受力,降低工程造价。
(3)为降低工程造价,肋式桥台肋数不宜多于桥墩柱数,桥台承台上不宜设置挡墙。4.3.3 其它
(1)伸缩缝估算方法:D=(Δt×L×10-5×103+20)mm;D-伸缩量(mm);Δt-极端最高气温与极端低气温的差值(度);L-联变形长度(m)。(2)预制梁长的预留值不应作为伸缩缝预留宽度的一部分。
(3)山岭重丘区高等级公路构造物(大中小桥、涵洞、通道等)的设置就少于2.5个/km。(4)墩、台盖梁计算未考虑墩、台身和盖梁的固结作用。对于双柱墩、台近似简化为简支结构计算,对于三柱数、台近似简化按连接结构计算。
(5)基桩按弹性磨擦桩或嵌岩进行计算时,有效桩长不得小于5d(d为桩径),有效桩长自最低冲刷线或桩侧土厚度不小于2.5d处起算。
(6)桥面横坡以墩、台身高度的变化予以调整,支座垫石厚度为定值。
(7)为了在桥台耳墙内护栏受撞后不致影响耳墙安全,耳墙相外移了25cm或30cm,为此,桥头路基两侧均应加宽50cm或60cm,从锥坡顶点起10m过渡到正常宽度。
结束语 一般地讲,平原区、城镇人口密集区、旅游专线、立交区的桥梁在选型时应注重其经济性、美观性和安全性;山岭重丘区的桥梁在选型时应注重其经济性、施工难易程度和安全性。但是,随着新材料、新工艺、新技术的不断涌现,人们对桥梁结构的认识不断提高。因此,对结构工程师而言,追求合理、美观、经济、安全的桥型方案是永无止境的.另附一点经验值给大家,请参考: 高速公路桥梁上部构造造价
经造价分析,在24.5 m宽的路段,50 mT梁、40 mT梁、30 mT梁、30 m箱梁、25 mT梁、25 m箱梁、20 m空心板、16m空心板上部构造平均每延米建安费依次为40797元、36488元、32360元、29412元、30487元、27715元、27713元、26266元.根据近几年国内特别是江苏、广东、山西等地的使用经验,矮箱梁比T梁施工工期短,后期养护量小,外形美观,造价便宜(便宜约10%)等特点,因此,大中桥梁上部结构一般采用预应力混凝土连续箱梁 高速公路隧道造价
造价:普通分离式隧道:小净距隧道:连拱隧道=100:130:170 普通分离隧道大概:单洞2.8-3万元每米 连拱隧道大概:单洞4.8-5.5万每米 高速公路建设拉动经济发展的基本数据
高速公路每亿元投入,可创造直接就业岗位1800个,间接就业岗位2100个。
高速公路每公里建设需钢材500至1500吨(平均1000吨),水泥4000至12000吨(平均9000吨),沥青平均1900吨
第五篇:桥梁路灯设计总结
关于桥梁路灯设计方案
该帖被浏览了555次 | 回复了7次
手头正有个关于立交桥的路灯设计项目,一直也没做过,这两天查了下资料,发
现几种形式:
1.路灯基础有的做在人行道侧,这个和一般道路有些类似。
2.路灯基础在护栏的中间做,把护栏断开。
3.路灯基础做在护栏外侧浇灌。
问题如下:
1.不知道上面哪种形式较好,一般是根据什么来选择的?
2.桥梁路灯一般要预埋,需要预埋什么,有固定铁板,电缆管,还有什么呢?
3.路灯的基础尺寸是根据什么来定的,是否有标准可依呢?
不错,楼主通过自己细心观察,了解桥上路灯基础的常见位置。至于哪种形式好,那要看桥上人行道的宽度以及桥板上桥梁专业是否允许做路灯基础。桥梁上人行道宽度有2米及以上的,路灯一般都做在人行道内。这种规范上都没有,而是看自己的工作总结或是业主的喜好程度。
桥上的路灯基础套不了普通路段的路灯基础,所以还是找结构专业做的好,不过论坛里前任版主也发了张桥上路灯基础的CAD图,你可以在论坛中搜索下。
预埋管有电缆保护套管镀锌钢管,如果从桥外沿支架过,当然还要固定支架。
回复 2# 的帖子
谢谢2楼回复,我现在遇到的是个通高铁的立交桥。
1.我发现现在有的高架上面把预埋的保护管放在护栏中一起浇灌,这样的话就可
以用尼龙管吗?
2.如果把基础放置在护栏中,那么10米高的路灯,预埋的钢筋长1080mm,底板
用400x400mm的可以吗?
1、过桥,不管预埋在护栏内还是梁板内,保护套管均采用镀锌钢管。
2、在护栏内设计路灯基础,其混凝土与钢筋等级都要比普通路段高一个等级吧。钢筋埋设深度达不到普通路段的深度的吧。
桥梁照明设计的三大常见误区
类别:灯光与照明
评论(0)浏览(15)2011-6-27 [原创]
标签: 照明设计 任见
桥梁照明设计是近年迅猛发展的热点。随着中国城市化进程和基础建设的深入,桥梁已经从简单的人行天桥、立交桥发展为更复杂的跨河乃至跨海大桥,其形式和功能日趋多样化。桥梁不仅是交通枢纽,更象征着城市发展的经济地位和技术水平,往往成为地标性景观。因此,桥梁夜景照明也成为城市夜景照明的重要景观之一。在长期进行桥梁照明设计工作中,智美照明设计师们发现了一些常见的误区,影响了桥梁照明效果。
误区之一,车行道路灯过多,影响整体照明效果。
城市中大多桥梁兼具机动车道、非机动车道、行人通道甚至铁路通道的功能。这类桥梁的照明设计通常延续道路照明设计规范,把路灯从街道延伸至桥体,并贯穿整个桥体。这种 做法固然满足了功能照明的要求,但同样也给桥梁的整体照明效果造成了巨大影响。
原因一方面在于地标性桥梁本身的照明已属充分,桥体的结构元素乃至细部构造都已被 照亮,桥体的装饰性照明也为路面也提供了间接照明;另一方面,机动车本身也都具有自己 的照明系统,对于车行道上行驶的机动车而言,其实不存在照度不足的情况。
那么,桥梁路灯设计如何才能既保证行车的安全,又减少对桥梁夜景景观的影响呢? 首先,减少路灯数量,降低密度。对于一些必须存在的路灯照明,可以适当拉大路灯的安装间距,以减少路灯总数量和安装密度。引桥部分则逐渐拉大安装间距,形成街道路灯 到桥体路灯的过渡。
其次,降低灯具安装的高度。过高的路灯耗能更多,照明效率更低,而且其带来的眩 光会破坏整体的照明效果。在白天,过高的路灯灯杆也会影响了桥体景观效果。
通过采用踢脚灯、地埋 LED 等方式,将灯光直接投射到路面上,不仅可以提高照明效率,还可避免对驾驶员视线的影响。适量采用点状地埋 LED,划清路面分界线,不仅可以对驾驶 员形成了警示作用,提高了安全性,而且灯光的阵列感增添了路面景观效果。
上述手段不仅减少了路灯对景观的影响,还保证了行车安全,降低了安装难度和维护难 度,减少灯具和采用低功率灯具还能够降低用电量,使运营成本更低。
误区之二,动态照明效果的滥用,引发光污染。
随着 LED 照明的迅猛发展,我们已进入了动态照明时代。在桥梁照明中,也使用了大量 动态照明,使具桥梁照明更加富有动感和科技感。
但我们不应忽略的是:相对于桥下的河流、桥上的车流、人流,桥梁本身是一个绝对静 态的景观。桥下的水面波光粼粼,倒影荡漾,桥面上的车辆、行人川流不息,其视点本身就 是一个运动体,而在这种基础上,如果再为桥梁照明赋予频繁变化的动态效果,可能会让桥 梁的整体照明效果显得眼花缭乱,严重的甚至产生光污染。
所以,对桥梁照明要慎用动态照明效果,即时使用也要尽可能选用变化周期长、变化过 程缓慢的效果,让近临者感到舒适,让远观者更感期待。
误区之三,色彩过多,引发视疲劳。
LED 照明让灯光颜色有了更多选择,让照明形式更加多样化。桥梁照明也如同商业建筑 照明一样,逐渐采用这一新技术。
但桥梁不是商业空间,通常桥梁以简洁、明快、宏伟为主要风格,给这样的结构主体强 加上花花绿绿的商业氛围,多少有些不合。
更毋庸忽视的是,桥梁所处于的大环境中,常常是河流、河堤或山川,其大环境的背景 亮度通常较低,因此桥梁照明很容易就脱颖而出,如果照明亮度和色彩过甚,则极容易形成 过于强烈的对比。
桥梁照明设计应被当作艺术品对待,缤纷多彩固然绚烂,简约大气更加美观。多彩的照 明固然能给人一种内容感、新鲜感,但是也更容易引发视觉疲劳,随着时间的推移,逐渐转 变为审美疲劳,从而跌入低俗怪圈。
总而言之,桥梁照明是城市夜景的重要元素,也是重要的城市公共空间,以创造艺术品 的态度,打造舒适、美观、合理的桥梁照明设计方案,是我们照明设计师的共同目标。