第一篇:数学初二 几何定理总结(推荐)
几何公式和定理(初2)1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 直线外一点与直线上各点连接的所有线段中,垂线段最短平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理 三角形两边的和大于第三边 16 推论 三角形两边的差小于第三边 17 三角形内角和定理 三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS)有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理 等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形
第二篇:初中数学几何定理集锦
初中数学几何定理集锦
1。同角(或等角)的余角相等。
3。对顶角相等。
5。三角形的一个外角等于和它不相邻的两个内角之和。
6。在同一平面内垂直于同一条直线的两条直线是平行线。
7。同位角相等,两直线平行。
12。等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合。
16。直角三角形中,斜边上的中线等于斜边的一半。
19。在角平分线上的点到这个角的两边距离相等。及其逆定理。
21。夹在两条平行线间的平行线段相等。夹在两条平行线间的垂线段相等。
22。一组对边平行且相等、或两组对边分别相等、或对角线互相平分的四边形是平行四边形。
24。有三个角是直角的四边形、对角线相等的平行四边形是矩形。
25。菱形性质:四条边相等、对角线互相垂直,并且每一条对角线平分一组对角。
27。正方形的四个角都是直角,四条边相等。两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角。
34。在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一对相等,那么它们所对应的其余各对量都相等。
36。垂直于弦的直径平分这条弦,并且平分弦所对弧。平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。
43。直角三角形被斜边上的高线分成的两个直角三角形和原三角形相似。
46。相似三角形对应高线的比,对应中线的比和对应角平分线的比都等于相似比。相似三角形面积的比等于相似比的平方。
37.圆内接四边形的对角互补,并且任何一个外角等于它的内对角。
47。切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
48。切线的性质定理①经过圆心垂直于切线的直线必经过切点。②圆的切线垂直于经过切点的半径。③经过切点垂直于切线的直线必经过圆心。
49。切线长定理从圆外一点引圆的两条切线,它们的切线长相等。连结圆外一点和圆心的直线,平分从这点向圆所作的两条切线所夹的角。
50。弦切角定理弦切角的度数等于它所夹的弧的度数的一半。弦切角等于它所夹的弧所对的圆周角。
51。相交弦定理;切割线定理 ; 割线定理
第三篇:数学几何必会定理
1.勾股定理(毕达哥拉斯定理)2.射影定理(欧几里得定理)
在Rt△ABC中,∠ACB=90°,cd是斜边ab上的高,则有射影定理如下:①CD2=AD〃DB②BC2=BD〃BA③AC2=AD〃AB④AC〃BC=AB〃CD(等积式,可用面积来证明)3.三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4.四边形两边中心的连线和两条对角线中心的连线交于一点
5.间隔的连接六边形的边的中心所做出的两个三角形的重心是重合的(可忽略)6.三角形各边的垂直平分线交于一点 另:三角形五心
重心定义:三角形的三条中线交于一点,这点到顶点的距离是它到对边中点距离的2倍。该点叫做三角形的重心。
外心定义:三角形的三边的垂直平分线交于一点。该点叫做三角形的外心。垂心定义:三角形的三条高交于一点。该点叫做三角形的垂心。内心定义:三角形的三内角平分线交于一点。该点叫做三角形的内心。
旁心定义:三角形一内角平分线和另外两顶点处的外角平分线交于一点。该点叫做三角形的旁心。三角形有三个旁心。
三角形的外心,垂心,重心在同一条直线上。
三角形的重心
三角形的三条中线交于一点
三角形三条中线的交点叫做三角形的重心
定理:三角形重心与顶点的距离等于它与对边中点的距离的两倍
三角形的内心
和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外接三角形
三角形的三条内角平分线有一个且只有一个交点,这个交点到三角形三边的距离相等,就是三角形的内心 三角形有且只有一个内切圆 内切圆的半径公式:
s为三角形周长的一半
三角形的外心
经过三角形各顶点的圆叫做三角形的外接圆.外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形
三角形三边的垂直平分线有一个且只有一个交点,这个交点到三角形三个顶点的距离相等,就是三角形的外心 三角形有且只有一个外接圆
设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL
三角形的垂心
三角形的三条高线交于一点
三角形三条高线的交点叫做三角形的垂心
锐角三角形的垂心在三角形内;直角三角形的垂心在直角的顶点;钝角三角形的垂心在三角形外
三角形的旁心
与三角形的一边及其他两边的延长线都相切的圆叫做三角形的旁切圆,旁切圆的圆心叫做三角形的旁心
三角形的一条内角平分线与其他两个角的外角平分线交于一点,这个交点到三角形一边及其他两边延长线的距离相等,就是三角形的旁心 三角形有三个旁切圆,三个旁心
7.(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上
8.欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上
9.库立奇大上定理:(圆内接四边形的九点圆)圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。10.中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB^2+AC^2=2(AP^2+BP^2)
11.斯图尔特定理:P将三角形ABC的边BC分成m和n两段,则有n×AB2+m×AC2=BC×(AP2+mn)
12.波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD
13.阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 14.托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD
15.以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形 16.爱尔可斯定理
定理1:若△ABC和△DEF都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形
定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形 17.梅涅劳斯定理
设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有 BP/PC×CQ/QA×AR/RB=
1逆定理:(略)
应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线
应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线 18.塞瓦定理
设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BP/PC×CQ/QA×AR/RB=1
逆定理:(略)
应用定理1:三角形的三条中线交于一点
应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点 19.西摩松定理
从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线(这条直线叫西摩松线)逆定理:(略)20.史坦纳定理
设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC的点P的西摩松线通过线段PH的中心
应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上。这条直线被叫做点P关于△ABC的镜象线 21.波朗杰、腾下定理
设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=360°的倍数
推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点
推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点
推论3:考查△ABC的外接圆上的一点P的关于△ABC的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点
推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点
关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上
关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点 22.卡诺定理
通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则D、E、F三点共线 23.奥倍尔定理
通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线
24.清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线
25.他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW与边BC、CA、AB或其延长线的交点分别为ED、E、F,则D、E、F三点共线。(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)
26.朗古来定理:在同一圆同上有A1B1C1D14点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上
27.从三角形各边的中点,向这条边所的顶点处的外接圆的切线引垂线,这些垂线交于该三角形的九点圆的圆心
28.一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点 29.康托尔定理
定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点
定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松的交点在同一直线上。这条直线叫做M、N两点关于四边形ABCD的康托尔线
定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点。这个点叫做M、N、L三点关于四边形ABCD的康托尔点
定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上。这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线
30.费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切
31.莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形 32.牛顿定理
定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线
定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线 33.笛沙格定理
定理1:平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线
定理2:相异平面上有两个三角形△ABC、△DEF,设它们的对应顶点(A和D、B和E、C和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线 34.布利安松定理:连结外切于圆的六边形ABCDEF相对的顶点A和D、B和E、C和F,则这三线共点 35.巴斯加定理:圆内接六边形ABCDEF相对的边AB和DE、BC和EF、CD和FA的(或延长线的)交点共线
36.蝴蝶定理:P是圆O的弦AB的中点,过P点引圆O的两弦CD、EF,连结DE交AB于M,连结CF交AB于N,则有MP=NP
37.帕普斯定理:设六边形ABCDEF的顶点交替分布在两条直线a和b上,那么它的三双对边所在直线的交点X、Y、Z在一直线上
38.高斯线定理:四边形ABCD中,直线AB与直线CD交于E,直线BC与直线AD交于F,M、N、Q分别为AC、BD、EF的中点,则有M、N、O共线 39.莫勒定理
三角形三个角的三等分线共有6条,每相邻的(不在同一个角的)两条三等分线的交点,是一个等边三角形的顶点
逆定理:在三角形ABC三边所在直线BC、CA、AB上各取一点D、E、F,若有(BD/DC)*(CE/EA)*(AF/FB)=1,则AD、BE、CE平行或共点
40.斯特瓦尔特定理:在三角形ABC中,若D是BC上一点,且BD=p,DC=q,AB=c,AC=b,则AD^2=[(b*b*p+c*c*q)/(p+q)]-pq
41.泰博定理:取平行四边形的边为正方形的边,作四个正方形(同时在平行四边形内或外皆可)。正方形的中心点所组成的四边形为正方形;取正方形的两条邻边为三角形的边,作两个等边三角形(同时在正方形内或外皆可)。这两个三角形不在正方形边上的顶点,和正方形四个顶点中唯一一个不是三角形顶点的顶点,组成一等边三角形;给定任意三角形ABC,BC上任意一点M,作两个圆形,均与AM、BC、外接圆相切,该两圆的圆心和三角形内接圆心共线
42.凡〃奥贝尔定理:给定一个四边形,在其边外侧构造一个正方形。将相对的正方形的中心连起,得出两条线段。线段的长度相等且垂直(凡〃奥贝尔定理适用于凹四边形)43.西姆松定理:从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上
第四篇:2021年初中数学几何定理总结
2021年初中数学几何定理总结
撰写人:___________
日
期:___________
2021年初中数学几何定理总结、过两点有且只有一条直线、两点之间线段最短
3、同角或等角的补角相等
4、同角或等角的余角相等
5、过一点有且只有一条直线和已知直线垂直
6、直线外一点与直线上各点连接的所有线段中,垂线段最短
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行
8、如果两条直线都和第三条直线平行,这两条直线也互相平行
9、同位角相等,两直线平行
0、内错角相等,两直线平行、同旁内角互补,两直线平行、两直线平行,同位角相等
3、两直线平行,内错角相等
4、两直线平行,同旁内角互补
5、定理三角形两边的和大于第三边
6、推论三角形两边的差小于第三边
7、三角形内角和定理三角形三个内角的和等于80°
8、推论直角三角形的两个锐角互余
9、推论三角形的一个外角等于和它不相邻的两个内角的和0、推论3三角形的一个外角大于任何一个和它不相邻的内角、全等三角形的对应边、对应角相等、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等
3、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等
4、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等
5、边边边公理(SSS)有三边对应相等的两个三角形全等
6、斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等
7、定理在角的平分线上的点到这个角的两边的距离相等
8、定理到一个角的两边的距离相同的点,在这个角的平分线上
9、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)
3、推论等腰三角形顶角的平分线平分底边并且垂直于底边
3、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3等边三角形的各角都相等,并且每一个角都等于60°
34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)
35、推论三个角都相等的三角形是等边三角形
36、推论有一个角等于60°的等腰三角形是等边三角形
37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半
38、直角三角形斜边上的中线等于斜边上的一半
39、定理线段垂直平分线上的点和这条线段两个端点的距离相等?
40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上
4、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合4、定理关于某条直线对称的两个图形是全等形
43、定理如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线
44、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上
45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称
46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^+b^=c^
47、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^+b^=c^,那么这个三角形是直角三角形
48、定理四边形的内角和等于360°
49、四边形的外角和等于360°
50、多边形内角和定理n边形的内角的和等于(n-)_80°
5、推论任意多边的外角和等于360°
5、平行四边形性质定理平行四边形的对角相等
53、平行四边形性质定理平行四边形的对边相等
54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理___平行四边形的对角线互相平分
56、平行四边形判定定理两组对角分别相等的四边形是平行四边形
57、平行四边形判定定理两组对边分别相等的四边形是平行四边形
58、平行四边形判定定理___对角线互相平分的四边形是平行四边形
59、平行四边形判定定理4一组对边平行相等的四边形是平行四边形
60、矩形性质定理矩形的四个角都是直角
6、矩形性质定理矩形的对角线相等
6、矩形判定定理有三个角是直角的四边形是矩形
63、矩形判定定理对角线相等的平行四边形是矩形
64、菱形性质定理菱形的四条边都相等
65、菱形性质定理菱形的对角线互相垂直,并且每一条对角线平分一组对角
66、菱形面积=对角线乘积的一半,即S=(a_b)÷
67、菱形判定定理四边都相等的四边形是菱形
68、菱形判定定理对角线互相垂直的平行四边形是菱形
69、正方形性质定理正方形的四个角都是直角,四条边都相等
70、正方形性质定理正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角
7、定理关于中心对称的两个图形是全等的7、定理关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分
73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称
74、等腰梯形性质定理等腰梯形在同一底上的两个角相等
75、等腰梯形的两条对角线相等
76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形
77、对角线相等的梯形是等腰梯形
78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
79、推论经过梯形一腰的中点与底平行的直线,必平分另一腰
80、推论经过三角形一边的中点与另一边平行的直线,必平分第三边
8、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半
8、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷S=L_h83、()比例的基本性质如果a:b=c:d,那么ad=bc
如果ad=bc,那么a:b=c:d84、()合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85、等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例
87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例
88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边
89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例
90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
9、相似三角形判定定理两角对应相等,两三角形相似(ASA)
9、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似
93、判定定理两边对应成比例且夹角相等,两三角形相似(SAS)
94、判定定理3三边对应成比例,两三角形相似(SSS)
95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
96、性质定理相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比
97、性质定理相似三角形周长的比等于相似比
98、性质定理3相似三角形面积的比等于相似比的平方
99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值00、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值
0、圆是定点的距离等于定长的点的集合0、圆的内部可以看作是圆心的距离小于半径的点的集合03、圆的外部可以看作是圆心的距离大于半径的点的集合04、同圆或等圆的半径相等
05、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆
06、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线
07、到已知角的两边距离相等的点的轨迹,是这个角的平分线
08、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线
09、定理不在同一直线上的三点确定一个圆。
0、垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧
①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧
②弦的垂直平分线经过圆心,并且平分弦所对的两条弧
③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧、推论圆的两条平行弦所夹的弧相等
3、圆是以圆心为对称中心的中心对称图形
4、定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等
5、推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等
6、定理一条弧所对的圆周角等于它所对的圆心角的一半
7、推论同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等
8、推论半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径
9、推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形
0、定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角
①直线L和⊙O相交d<r
②直线L和⊙O相切d=r
③直线L和⊙O相离d>r
范文仅供参考
感谢浏览
第五篇:2021年初中数学几何证明定理总结
2021年初中数学几何证明定理总结
撰写人:___________
日
期:___________
2021年初中数学几何证明定理总结
几何证明题的思路
很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。
对于证明题,有三种思考方式:
()正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。
()逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显。
同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。
例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。
(3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认真的分析。
初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。
证明题要用到哪些原理?
要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。
一、证明两线段相等
.两全等三角形中对应边相等。
.同一三角形中等角对等边。
3.等腰三角形顶角的平分线或底边的高平分底边。
___平行四边形的对边或对角线被交点分成的两段相等。
5.直角三角形斜边的中点到三顶点距离相等。
___线段垂直平分线上任意一点到线段两段距离相等。
7.角平分线上任一点到角的两边距离相等。
8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。
9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。
0.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。
.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。
.两圆的内(外)公切线的长相等。
3.等于同一线段的两条线段相等。
二、证明两个角相等
.两全等三角形的对应角相等。
.同一三角形中等边对等角。
3.等腰三角形中,底边上的中线(或高)平分顶角。
4.两条平行线的同位角、内错角或平行四边形的对角相等。
5.同角(或等角)的余角(或补角)相等。
6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。
7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。
8.相似三角形的对应角相等。
9.圆的内接四边形的外角等于内对角。
0.等于同一角的两个角相等。
三、证明两条直线互相垂直
.等腰三角形的顶角平分线或底边的中线垂直于底边。
.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。
3.在一个三角形中,若有两个角互余,则第三个角是直角。
4.邻补角的平分线互相垂直。
5.一条直线垂直于平行线中的一条,则必垂直于另一条。
6.两条直线相交成直角则两直线垂直。
7.利用到一线段两端的距离相等的点在线段的垂直平分线上。
8.利用勾股定理的逆定理。
9.利用菱形的对角线互相垂直。
0.在圆中平分弦(或弧)的直径垂直于弦。
.利用半圆上的圆周角是直角。>四、证明两直线平行
.垂直于同一直线的各直线平行。
.同位角相等,内错角相等或同旁内角互补的两直线平行。
___平行四边形的对边平行。
4.三角形的中位线平行于第三边。
5.梯形的中位线平行于两底。
___平行于同一直线的两直线平行。
7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。
五、证明线段的和差倍分
.作两条线段的和,证明与第三条线段相等。
.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。
3.延长短线段为其二倍,再证明它与较长的线段相等。
4.取长线段的中点,再证其一半等于短线段。
5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。
六、证明角的和差倍分
.与证明线段的和、差、倍、分思路相同。
.利用角平分线的定义。
3.三角形的一个外角等于和它不相邻的两个内角的和。
七、证明线段不等
.同一三角形中,大角对大边。
.垂线段最短。
3.三角形两边之和大于第三边,两边之差小于第三边。
4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。
5.同圆或等圆中,弧大弦大,弦心距小。
6.全量大于它的任何一部分。
八、证明两角的不等
.同一三角形中,大边对大角。
.三角形的外角大于和它不相邻的任一内角。
3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。
4.同圆或等圆中,弧大则圆周角、圆心角大。
5.全量大于它的任何一部分。
九、证明比例式或等积式
.利用相似三角形对应线段成比例。
.利用内外角平分线定理。
___平行线截线段成比例。
4.直角三角形中的比例中项定理即射影定理。
5.与圆有关的比例定理-相交弦定理、切割线定理及其推论。
6.利用比利式或等积式化得。
十、证明四点共圆
.对角互补的四边形的顶点共圆。
.外角等于内对角的四边形内接于圆。
3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。
4.同斜边的直角三角形的顶点共圆。
5.到顶点距离相等的各点共圆。
范文仅供参考
感谢浏览