第一篇:初二几何题精选
(矩形)如图,矩形ABCD的边长AB=6,BC=8,将矩形沿EF折叠,使C点与A点重合,则折痕EF的长是()
(A)7.5(B)6(C)10(D)
5(矩形)如图,E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.求证:PF+PG=AB.
(正方形)如图已知正方形ABCD中,F是CD的中点,E是BC边上的点,且AF平分∠DAE,求证:AE=EC+CD
(旋转C)
在正方形
ABCD中,E,F分别是BC和CD边上两点,且EF=BE+DF,∠EAF的度数是____________
(梯形B)直角梯形ABCD中,AD∥BC,AB⊥BC,AD = 2,将腰CD以D为中心逆时
针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为. ADFBEC
(平行四边形A)已知,如图,△ABC为任意三角形,△BCD,△AEC,△ABE都是等边三角形,求证:四边形CDEF是平行四边形。
(正方形B)如图6,在正方形ABCD中,G是BC上的任意一点,(G与D、C两点不重合),E、F是AG上的两点(E、F与A、G两点不重合),若AF=DF+EF,∠1=∠2,请判断线段AG与DF有怎样的位置关系,并证明你的结论.提示:先证 DF // BE A2EFBDC
图6
(矩形):在△ABC中,BE、CF分别是边AC、AB上的高,点D是边BC上的中点,试说明DE=DF
(正方形)如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1和2,则正方形的边长是.(菱形)如图,已知△ABC的面积为3,且AB=AC,现将△ABC沿CA方向平移CA长度得到△EFA.
(1)求四边形CEFB的面积;
(2)试判断AF与BE的位置关系,并说明理由;
(矩形)如图,把一张矩形的纸ABCD沿对角线BD折叠,使点C落在点E处,BE与AD交于点F.
⑴求证:ΔABF≌ΔEDF;
⑵若将折叠的图形恢复原状,点F与BC边上的点M正好重合,连接DM,试判断四边形BMDF的形状,并说明理由.
E
A
F
D
B
M
第22题图
C
如图,正方形ABCD的边长为2,点E在AB边上.四边形EFGB也为正方形,设△AFC的面积为S,则()
A.S=2B.S=2.4C.S=4D.S与BE长度有关
(矩形)如图,矩形ABCD的边长AB=6,BC=8,将矩形沿EF折叠,使C点与A点重合,则折痕EF的长是()
(A)7.5(B)6(C)10(D)
5(矩形)如图,E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD上任意一点,PF⊥BE,PG⊥AD,垂足分别为F、G.求证:PF+PG=AB.
(正方形)如图已知正方形ABCD中,F是CD的中点,E是BC边上的点,且AF平分∠DAE,求证:AE=EC+CD
(旋转C)在正方形ABCD中,E,F分别是BC和CD边上两点,且EF=BE+DF,∠EAF的度数是____________
(梯形B)直角梯形ABCD中,AD∥BC,AB⊥BC,AD = 2,将腰CD以D为中心逆时
针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为.
B
E
A
D
F
C
(平行四边形A)已知,如图,△ABC为任意三角形,△BCD,△AEC,△ABE都是等边三角形,求证:四边形CDEF是平行四边形。
(正方形B)如图6,在正方形ABCD中,G是BC上的任意一点,(G与D、C两点不重合),E、F是AG上的两点(E、F与A、G两点不重合),若AF=DF+EF,∠1=∠2,请判断线段AG与DF有怎样的位置关系,并证明你的结论.D
图6
A
E
F
CB
提示:先证 DF // BE
第二篇:数学初二下册几何题
1、如图,在△ABC中,点D在AB上,且CD=CB,点E为BD的中点,点F为AC的中点,连结EF交CD于点M,连接AM.
(1)求证:EF= 1/2AC
(2)若∠BAC=45°,求线段AM、DM、BC之间数量关系.
2、如图,在△ABC中,D、E分别是的中点,过点E作EF∥AB,交BC于点F.
(1)求证:四边形DBFE是平行四边形.(2)当△ABC满足什么条件时,四边形DBFE是菱形?为什么?
3、D、E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB、AC的中点.O是△ABC所在平面上的动点,连接OB、OC,点G、F分别是OB、OC的中点,顺次连接点D、G、F、E.
(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系?
4、如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.
5、如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB⊥AC,试判断ADCF的形状,并证明你的结论.6、如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;
(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.
7、.在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点,顺次连接EF、FG、GH、HE.
(1)请判断四边形EFGH的形状,并给予证明;
(2)试探究当满足什么条件时,使四边形EFGH是菱形,并说明理由。
8、如图,在直角三角形ABC中,∠ACB=90°,AC=BC=10,将△ABC绕点B沿顺时针方向旋转90°得到△A1BC1.
(1)线段A1C1的长度是多少?∠CBA1的度数是多少?(2)连接CC1,求证:四边形CBA1C1是平行四边形.
9、如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;
(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.
10、已知:如图,在平行四边形ABCD中,AE是BC边上的高,将△ABE沿BC方向平移,使点E与点C重合,得△GFC.(1)求证:BE=DG;
(2)若∠B=60°,当AB与BC满足什么数量关系时,四边形ABFG是菱形?试证明.11、如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F.
求证:(1)FC=AD;(2)AB=BC+AD.
12、如图,在△ABC中,AB=AC,D是BC的中点,连结AD,在AD的延长线上取一点E,连结BE,CE.
(1)求证:△ABE≌△ACE
(2)当AE与AD满足什么数量关系时,四边形ABEC是菱形?并说明理由.
13、如图,在平行四边形ABCD中,点E是边AD的中点,BE的延长线与CD的延长线交于点F.(1)求证:△ABE≌△DFE;
(2)连结BD、AF,判断四边形ABDF的形状,并说明理由.14、如图,已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.(1)求证:AE=DF;
(2)若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.
15、在梯形ABCD中,AD∥BC,AB=DC,过点D作DE⊥BC,垂足为点E,并延长DE至点F,使EF=DE.连接BF、CF、AC.(1)求证:四边形ABFC是平行四边形;
(2)若DE²=BE-CE,求证:四边形ABFC是矩形.16、.如图,△ABC中,AB=AC,AD、AE分别是∠BAC和∠BAC的外角平分线,BE⊥AE.(1)求证:DA⊥AE(2)试判断AB与DE是否相等?并说明理由。
17、如图,在△ABC中,AB=AC,点D是BC上一动点(不与B、C重合),作DE∥AC交AB于点E,DF∥AB交AC于点F.(1)当点D在BC上运动时,∠EDF的大小_______(变大、变小、不变)(2)当AB=10时,四边形AEDF的周长是多少?
(3)点D在BC上移动的过程中,AB、DE与DF总存在什么数量关系?请说明.18、如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.(1)求证:四边形AECD是菱形;
(2)若点E是AB的中点,试判断△ABC的形状,并说明理由.19、如图,平行四边形ABCD中,E为BC的中点,连结AE并延长交DC的延长线于点F.(1)求证:AB=CF(2)当BC与AF满足什么数量关系时,四边形ABFC是矩形?并说明.20、如图,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连结BG并延长交DE于点F.(1)求证:△BCG≌△DCE(2)将△DEC绕点D顺时针旋转90°得到△DMA,判断四边形MBGD是什么特殊四边形?
21、.将平行四边形纸片ABCD如图方式折叠,使点C与点A重合,点D落到D’处,折痕为EF.(1)求证:△ABE≌△AD’F D’
(2)连结CF,判断四边形AECF是什么特殊四边形,说明理由.22、.如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为E.(1)求证:四边形ADCE是矩形;
(2)当△ABC满足什么条件时,四边形ADCE是正方形?说明理由.23、四边形ABCD、DEFG都是正方形,连结AE、CG.(1)求证:AE=CG;(2)猜想AE与CG的位置关系,并证明.24、如图,在四边形ABFC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.(1)试探究四边形BECF是什么特殊四边形,并说明理由;
(2)当∠A的大小满足什么条件时,四边形BECF是正方形?请回答并证明你的结论.
25、如图,在平行四边形ABCD中,AB⊥AC,AB=1,BC=根号5,对角线AC、BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC、AD于点E、F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试探究在旋转过程中,线段AF与EC有怎样的数量关系,并证明;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数.26、如图,B、C、E是同一直线上的三个点,四边形ABCD与四边形CEFG都是正方形,连结BG、DE.(1)猜想BG与DE之间的大小关系,并证明你的结论;
(2)在图中是否存在通过旋转能够互相重合的两个三角形?若存在,请指出,并说明旋转过程;若不存在,请说明理由.27、如图,矩形ABCD中,O是AC与BD的交点,过点O的直线EF与AB、CD的延长线分别交于点E、F.(1)求证:△BOC≌△DOF;
(2)当EF与AC满足什么关系时,四边形AECF是菱形?并说明.28、如图,△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF.(1)请在图中找出一对全等三角形,并加以证明;(2)判断四边形ABDF的形状,并说明理由.29、如图,△ABC是等边三角形,点D是线段BC上的动点(点D不与B、C重合),△ADE是以AD为边的等边三角形,过E作BC的平行线,分别交AB、AC于点F、G,连结BE.(1)求证:△AEB≌△ADC;
(2)四边形BCGE是怎样的四边形?说明理由.30、已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且AE=AC.(1)求证:BG=FG;
(2)若AD=DC=2,求AB的长.
31、如图,已知矩形ABCD,延长CB到E,使CE=CA,连结AE并取中点F,连结AE并取中点F,连结BF、DF,求证BF⊥DF.
32、已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.33、如图,△ABC中,M是BC的中点,AD是∠A的平分线,BD⊥AD于D,AB=12,AC=18,求DM的长.34、如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.(1)求证:DH=1/2(AD+BC)
(2)若AC=6,求梯形ABCD的面积。
35、如图,P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E、F分别为垂足,若CF=3,CE=4,求AP的长.36、如图,等腰梯形ABCD中,AD∥BC,M、N分别是AD、BC的中点,E、F分别是BM、CM的中点.
(1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论;(2)判断并证明四边形MENF是何种特殊的四边形?(3)当等腰梯形ABCD的高h与底边BC满足怎样的数量关系时?四边形MENF是正方形(直接写出结论,不需要证明).1、雅美服装厂现有A种布料70m,B种布料52m,现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料0.6m,B种布料0.9m,可获利润45元;做一套N型号的时装需用A种布料1.1m,B种布料0.4m,可获利润50元.若设生产N型号的时装套数为x套,总利润为y元.(1)请帮雅美服装厂设计出生产方案.(2)求y与x的函数关系式,利用一次函数性质,选出利润最大的方案.2、如图,直线L1的解析式为y=-3x+3,且L1与x轴交于点D,直线L2经过点A、B,点B的坐标为(3,-3/2),直线L1、L2交于点C.(第一套26题)(1)求直线L2的解析式.(2)求△ADC的面积.(3)在直线L2上存在异于点C的另一点P,使△ADP和△ADC的面积相等,求点P的坐标.(4)若点H为坐标平面内任意一点,在坐标平面内是否存在这样的点H,使A、D、C、H为顶点的四边形是平行四边形?若存在,求出H的坐标.3、如图,在平行四边形ABCD中,AB=6,E是BC边的中点,F为CD边上一点,DF=4.8,∠DFA=2∠BAE,则AF长多少?(第二套14题)
第三篇:初二几何证明题
1如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF=DCCF.(1)求证:D是BC的中点;(2)如果AB=ACADCF的形状,并证明你的结论
A
E
B
第四篇:初二几何证明
24.(1)如图(1),△ABC是等边三角形,D、E分别是AB、BC上的点,且BDCE,连接AE、CD相交于点P.请你补全图形,并直接写出∠APD的度数;=
(2)如图(2),Rt△ABC中,∠B=90°,M、N分别是AB、BC上的点,且AMBC,BMCN,连接AN、CM相交于点P.请你猜想∠APM=°,并写出你的推理过程.24.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合.三角板的一边交CD于点F,另一边交CB的延长线于点G.(1)求证:EFEG;
(2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;
(3)如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若ABa,BCb,求
EF的值. EG
24.问题1:如图1,在等腰梯形ABCD中,AD∥BC,AB=BC=CD,点M,N分别在AD,CD上,若∠MBN=1∠ABC,试探究线段MN,AM,CN有怎样的数量关系?请直接写出你的猜想,不用证明;
21∠ABC仍然成立,请你进一步探究线段MN,AM,CN又有怎样的数量关系?写出2问题2:如图2,在四边形ABCD中,AB=BC,∠ABC+∠ADC=180°,点M,N分别在DA,CD的延长线上,若∠MBN=
你的猜想,并给予证明.5.(丰台区)在Rt△ABC中,AB=BC,∠B=90°,将一块等腰直角三角板的直角顶点O放在斜边AC上,将三角板绕点O旋转.
(1)当点O为AC中点时,①如图1,三角板的两直角边分别交AB,BC于E、F两点,连接EF,猜想线段AE、CF与EF之间存在的等量关系(无需证明);
②如图2,三角板的两直角边分别交AB,BC延长线于E、F两点,连接EF,判断①中的猜想是否成立.若成立,请证明;若不成立,请说明理由;
(2)当点O不是AC中点时,如图3,,三角板的两直角边分别交AB,BC于E、F两点,若AO1,AC
4求OE的值.
OF
E
B F C 图1 图2 图3 F B F CA A
24. 已知:四边形ABCD是正方形,点E在CD边上,点F在AD边上,且AF=DE.
(1)如图1,判断AE与BF有怎样的位置关系?写出你的结果,并加以证明;
(2)如图2,对角线AC与BD交于点O. BD,AC分别与AE,BF交于点G,点H.
①求证:OG=OH;
②连接OP,若AP=4,OP
AB的长.
图
1(1)答:
证明:
9.(房山区)(1)如图1,正方形ABCD中,E、F分别是BC、CD边上的点,且满足BE=CF,联结AE、BF交于点H..请直接写出线段AE与BF的数量关系和位置关系;
(2)如图2,正方形ABCD中,E、F分别是BC、CD边上的点,联结BF,过点E作EG⊥BF于点H,交AD于点G,试判断线段BF与GE的数量关系,并证明你的结论;
(3)如图3,在(2)的条件下,联结GF、HD.求证:①FG+BE
②∠HGF=∠HDF.图2 B AGDG
B
第24题图1 FB
E第24题图2 F
B
E第21题图3 F
第五篇:初二数学几何综合训练题及答案
初二几何难题训练题
1,如图矩形ABCD对角线AC、BD交于O,E F分别是OA、OB的中点(1)求证△ADE≌△BCF:(2)若AD=4cm,AB=8cm,求CF的长。
2,如图,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=2DC,对角线AC⊥BD,垂足为F,过点F作EF∥AB,交AD于点E,CF=4cm.(1)求证:四边形ABFE是等腰梯形;(2)求AE的长.
3,如图,用三个全等的菱形ABGH、BCFG、CDEF拼成平行四边形ADEH,连接AE与BG、CF分别交于P、Q,(1)若AB=6,求线段BP的长;
(2)观察图形,是否有三角形与△ACQ全等?并证明你的结论
4,已知点E,F在三角形ABC的边AB所在的直线上,且AE=BF,FH//EG//AC,FH、EC分别交边BC所在的直线于点H,G 1 如果点E。F在边AB上,那么EG+FH=AC,请证明这个结论 2 如果点E在AB上,FH,AC的长度关系是什么? 点F在AB的延长线上,那么线段EG,3 如果点E在AB的反向延长线上,点F在AB的延长线上,那么线段EG,FH,AC的长度关系是什么? 请你就1,2,3的结论,选择一种情况给予证明
5,如图是一个常见铁夹的侧面示意图,OA,OB表示铁夹的两个面,C是轴,CD⊥OA于点D,已知DA=15mm,DO=24mm,DC=10mm,我们知道铁夹的侧面是轴对称图形,请求出A、B两点间的距离.
6,如图,在平行四边形ABCD中,过点B作BE⊥CD,垂足为E,连接AE,F为AE上一点,且∠BFE=∠C,(1)求证:△ABF∽△EAD ;(2)若AB=5,AD=3,∠BAE=30°,求BF的长
7,如图,AB与CD相交于E,AE=EB,CE=ED,D为线段FB的中点,GF与AB相交于点G,若CF=15cm,求GF之长。
8,如图1,已知四边形ABCD是菱形,G是线段CD上的任意一点时,连接BG交AC于F,过F作FH∥CD交BC于H,可以证明结论FH/AB =FG /BG 成立.(考生不必证明)(1)探究:如图2,上述条件中,若G在CD的延长线上,其它条件不变时,其结论是否成立?若成立,请给出证明;若不成立,请说明理由;(2)计算:若菱形ABCD中AB=6,∠ADC=60°,G在直线CD上,且CG=16,连接BG交AC所在的直线于F,过F作FH∥CD交BC所在的直线于H,求BG与FG的长.
(3)发现:通过上述过程,你发现G在直线CD上时,结论FH /AB =FG /BG 还成立吗?
9,如图,已知直角梯形ABCD中,AD∥BC,∠B=90°,AB=12cm,BC=8cm,DC=13cm,动点P沿A→D→C线路以2cm/秒的速度向C运动,动点Q沿B→C线路以1cm/秒的速度向C运动.P、Q两点分别从A、B同时出发,当其中一点到达C点时,另一点也随之停止.设运动时间为t秒,△PQB的面积为ycm2.(1)求AD的长及t的取值范围;
(2)当1.5≤t≤t0(t0为(1)中t的最大值)时,求y关于t的函数关系式;
(3)请具体描述:在动点P、Q的运动过程中,△PQB的面积随着t的变化而变化的规律.