解几何题技巧

时间:2019-05-15 08:05:33下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《解几何题技巧》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《解几何题技巧》。

第一篇:解几何题技巧

分析已知、求证与图形,探索证明的思路。

对于证明题,有三种思考方式:

(1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里就不详细讲述了。

(2)逆向思维。顾名思义,就是从相反的方向思考问题。运用逆向思维解题,能使学生从不同角度,不同方向思考问题,探索解题方法,从而拓宽学生的解题思路。这种方法是推荐学生一定要掌握的。在初中数学中,逆向思维是非常重要的思维方式,在证明题中体现的更加明显,数学这门学科知识点很少,关键是怎样运用,对于初中几何证明题,最好用的方法就是用逆向思维法。如果你已经上初三了,几何学的不好,做题没有思路,那你一定要注意了:从现在开始,总结做题方法。同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。例如:可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样我们就找到了解题的思路,然后把过程正着写出来就可以了。这是非常好用的方法,同学们一定要试一试。

(3)正逆结合。对于从结论很难分析出思路的题目,同学们可以结合结论和已知条件认真的分析,初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。

第二篇:八年级数学几何题证明技巧

能达培训学校内部资料

能达学校八年级数学讲义

姓名:日期: 2006-1-2

4辅助线的添加技巧

人说几何很困难,难点就在辅助线。辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。斜边上面作高线,比例中项一大片。半径与弦长计算,弦心距来中间站。

一、角平分线专题

1.角分线,分两边,对称全等要记全。(牢记,角平分线就是一个对称轴,所以可以将其中的一个△翻转180度,构造全等。也可以应用角分线定理作垂直)基本图形

B

图一

圆上若有一切线,切点圆心半径连。切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆 如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。

B图二

C

B图三

C

例题:

1.已知,CE、AD是△ABC的角平分线,∠B=60°。求证:AC=AE+CD。

2.已知,AB=2AC,∠1=∠2,DA=DB。求证:DC⊥AC。

B

图二

图三

3.已知,四边形ABCD中,ABCD,∠1=∠2,∠3=∠4。求证:BC=AB+CD。

4.已知,在△ABC中,∠CAB=2∠B,AE平分∠CAB交BC于E,AB=2AC。求证:

(1)∠C=90°;(2)AE=2CE。

B

图五

5.已知,在RT△ABC中,∠A=90°,AB=AC,BD是∠ABC的平分线。求证:BC=AB+AD。

6.已知,△ABC中,∠C=2∠B,AD平分∠A。求证:AB-AC=CD。

注意:只要看到平分线上的点,要想到向两边作垂线了(点分线,垂两边)

7.已知,在△ABC中,∠A=90°,AB=AC,∠1=∠2。求证:BC=AB+AD。

图八

8.已知,AB>AD,∠1=∠2,CD=BC

9.已知,AB>AD,∠1=∠2,CE⊥AB,AE=

2(AB+AD)。

图十

求证:∠D+∠B=180°。

10.已知:∠1=∠2,∠3=∠4,求证:AP平分∠BAC。

图十一

2.角平分线+垂线,角平分线+平行线,等腰三角形要呈现,线段和差倍分都实现。

G

1图2-1

图2-2

例题

1. 已知,∠1=∠2,AB

>AC,CD⊥AD于D,H是BC求证:DH=12

(AB-AC)。

2. 已知,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BE。求证:BD=2CE。

图2

3. 已知,∠1=∠2,CF⊥AE于E,BE⊥AE于E,G为BC中点,连接GE、GF。求证:GF=GE。

图3

第三篇:初一几何题

初一几何试题

一、选择题(每题2分,共52分)

1.下列说法中,正确的是()

A、棱柱的侧面可以是三角形

B

C、正方体的各条棱都相等 D、棱柱的各条棱都相等

2.用一个平面去截一个正方体,截面不可能是()A、梯形B、五边形C、六边形D、圆

3.下列立体图形中,有五个面的是()

A、四棱锥B、五棱锥C、四棱柱D、五棱柱

4.一个正方体,六个面上分别写着六个连续的整数的一个数字,且每个相对面上的两个数之和相等,如图所示,你能看到的数为7、10、11,则六个整数的和为()

A、51B、52C、57D、58

5.如图中是正方体的展开图的有()个

A、2个B、3个C、4个D、5个

6、下列说法中,正确的个数为()

①两点确定一条直线②两条直线相交,只有一个交点

③将一条线段分成两条相等线段的点叫线段的中点

④用5倍放大镜看一个20º的角,看到的是100º的角

A、4B、3C、2D、17、下列命题正确的是()

A、射线是直线的一半;B、若线段AB=BC,则B是线段AC的中点;

C、两点之间,只有线段最短; D、把角平分的直线是这角的平分线.8、已知BD为∠ABC的平分线,则∠ABD=

A、∠ACB,B、∠BCD,C、∠DBC,D、以上都不对

9、∠a的四等分线的条数为()

A、2条B、3条C、4条D、无数条

10、线段AB=9cm,C、D为AB的三等分点,则CD=()

A、6cm

2B、3cmC、92cm D、以上都不对 11.下列说法正确的是()A、若APAB,则P是AB的中点;B、若AB=2PB,则P是AB的中点;

2ABC、若AP=PB,则P是AB的中点;D、若APPB,则P是AB的中点;

12、如果在一条直线上得到10条不同的线段,那么在这条直线上至少要选用()个不同的点

A、20B、10C、7D、513.平面内两两相交的6条直线,其交点个数最少为m个,最多为n个,则m+n=()

A、12B、16C、20D、以上都不对

14.已知x,y都是钝角的度数,甲、乙、丙、丁计算(xy)的结果依次为500,260,720,900,其中只有6

1一个正确的结果,那么算得结果正确的是()

A、甲B、乙C、丙D、丁 15.如图,已知A、B、C、D、E五点 A D C E 在同一直线上,D点是线段AB的中点,点E是线段BC的中点,若线段AC=12,则线段DE等于()B

A、10B、8C、6D、416.如右图所示,C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()

D

A2(a-b)B2a-bCa+bDa-b

17.如图,115,AOC90,点B、O、D

在同一直线上,C

B

则2的度数为()

A. 75B.15C.105D.165 D2OA

18.在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的()

A 南偏西50度方向B南偏西40度方向

C 北偏东50度方向D北偏东40度方向

19、一个角的余角是它的补角的,则这个角为()

31(A)22.5°(B)45°(C)50°(D)135°

20、如果一个角的补角是150°,那么这个角的余角的度数是()

A30° B60°C90°D120°

21、已知∠1和∠2互补,且∠1>∠2,那么∠2与

012(∠1—∠2)的关系是()A、互余B、互补C、和为45D、差为22.5022、五位老朋友a、b、c、d、e在公园聚会,见面时候握手致意问候,已知a握了4次,b握了1次,c 握

了3次,d握了2次,到目前为止,e握了()次。

A、1B、2C、3D、423.将三角形绕直线I旋转一周,可以得到左图所示立体图形的是()

llll

l

24.物体如图甲所示,则这两个物体的俯视图应是()ABCD甲

25.一节课45分钟,分针所转过的角度为()

A.45°B.135°C.180°D.270°

26.已知∠AOB=3∠BOC,若∠BOC = 30°,则∠AOC =()

A.120°B.120°或60°C.30°90°

二、填空题(每题3分,共27分)

1、右图中以A为端点的线段共

2、若比较两角∠α与∠ß重合,其中一条边重合,不重合的∠α一边落在∠ß的外部则∠α∠ß(填 >、= 或 <)

3、右图中AB+BCAC(填 >、= 或 <)

依据为.4、某人从A点出发,每前进10米,就向右转18º,再前进10米又向右转18º,这样下去他第一次回到出发地A点时一共走了米.5、如果∠A=35°18′,那么∠A的余角等于一个角的补角是36°43′,则这个角的度数是。ACD6、21.36′,9°21′18″。

7.点A、B、C在直线l上,AB=5cm,BC=3cm,那么AC=cm8、如右图,已知∠AOB=90,OM是∠AOC的平分线,ON是∠BOC的平分线,则∠MON=___________度。

9、如下图:已知线段AB=8cm,AB的中点是C,线段BC的中点是D,线段AD的中点是E,那么AE=___________cm。

OAMCNB

三、解答题(写出必要的步骤,1、2、3各4分,4题5分,5、6、7、8各6分)

1、已知互余两角的差为20,求这两个角的度数.AECDB2、一个角的余角比它的补角的还多1,求这个角.9

23.已知一个角的余角与该角的补角的和是220°,试求这个角的余角与补角的度数。

4、已知线段AB=10cm,在直线AB上画线段AC=3cm,求线段BC的长。

5.老师要求同学们画一个750的角,右图是小红画出的图形. 0(1)检验小红画出的角是否等于75;

(2)利用我们常用的画图工具,你有哪些检验方法?

(3)画这个此角的平分线;(4)解释图中几个角之间的相互关系.

6、按下列语句画图,在以O为端点的两条射线上分别取线段OA、OB使OA=OB,M、N分别为OA、OB的中点,连接A、B,连接M、N,通过度量线段MN与

AB的长度确定线段MN与AB之间的数量关系。

7、如图:O是直线AB上一点,OD平分∠BOC,∠COD=67°38′,求∠AOC的度数。

8、如图,A、O、B在同一直线上,∠DOE=20º,OC平分∠AOD,OF平分∠EOB,求∠COF的度数。

第四篇:几何证明题的技巧

几何证明题的技巧

1)证明线段相等,角相等的题,通常找到线段所在图形,证明全等

2)隐藏条件:比如特殊图形的性质自己要清楚,有些时候几何题做不出来就是因为没有利用好 隐藏条件 3)辅助线起到关键作用

4)几何证明步骤:依据—结论—定理 切记勿忽略细微条件 5)遇到面积问题,辅助线通常做高,遇到圆,多为做半径,切线 6)个别题型做辅助线:

通过连结,延长,作垂直,作平行线等添加辅助线的方法,构造全等三角形。2遇到有中点条件时,常常延长中线(即倍长中线),或以中点为旋转中心,使分散的条件汇集起来。

3遇到求边之间的和,差,倍数关系时,通常采用截长补短的方法,求角度之间的关系时,也一样。

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。

一、证明两线段相等

1.两全等三角形中对应边相等。2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。4.平行四边形的对边或对角线被交点分成的两段相等。5.直角三角形斜边的中点到三顶点距离相等。6.线段垂直平分线上任意一点到线段两段距离相等。7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。

*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。*12.两圆的内(外)公切线的长相等。13.等于同一线段的两条线段相等。

二、证明两个角相等

1.两全等三角形的对应角相等。2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。4.两条平行线的同位角、内错角或平行四边形的对角相等。5.同角(或等角)的余角(或补角)相等。

*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。8.相似三角形的对应角相等。

*9.圆的内接四边形的外角等于内对角。10.等于同一角的两个角相等。

三、证明两条直线互相垂直

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。3.在一个三角形中,若有两个角互余,则第三个角是直角。4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。8.利用勾股定理的逆定理。9.利用菱形的对角线互相垂直。

*10.在圆中平分弦(或弧)的直径垂直于弦。*11.利用半圆上的圆周角是直角。

四、证明两直线平行

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。3.平行四边形的对边平行。4.三角形的中位线平行于第三边。5.梯形的中位线平行于两底。6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。

五、证明线段的和差倍分

1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。3.延长短线段为其二倍,再证明它与较长的线段相等。4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

六、证明 角的和差倍分

1.与证明线段的和、差、倍、分思路相同。2.利用角平分线的定义。

3.三角形的一个外角等于和它不相邻的两个内角的和。

七、证明线段不等

1.同一三角形中,大角对大边。2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。*5.同圆或等圆中,弧大弦大,弦心距小。6.全量大于它的任何一部分。

八、证明两角的不等

1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。

*4.同圆或等圆中,弧大则圆周角、圆心角大。5.全量大于它的任何一部分。

九、证明比例式或等积式

1.利用相似三角形对应线段成比例。2.利用内外角平分线定理。3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

*5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。6.利用比利式或等积式化得。

十、证明四点共圆

*1.对角互补的四边形的顶点共圆。*2.外角等于内对角的四边形内接于圆。

*3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。*4.同斜边的直角三角形的顶点共圆。*5.到顶点距离相等的各点共圆 基本图形的辅助线的画法 1.三角形问题添加辅助线方法

方法1:有关三角形中线的题目,常将中线加倍。含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。2.平行四边形中常用辅助线的添法

平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:

(2)过顶点作对边的垂线构造直角三角形

(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线

(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形。

(5)过顶点作对角线的垂线,构成线段平行或三角形全等.3.梯形中常用辅助线的添法

梯形是一种特殊的四边形。它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。辅助线的添加成为问题解决的桥梁,梯形中常用到的辅助线有:(1)在梯形内部平移一腰。(2)梯形外平移一腰(3)梯形内平移两腰(4)延长两腰

(5)过梯形上底的两端点向下底作高(6)平移对角线

(7)连接梯形一顶点及一腰的中点。(8)过一腰的中点作另一腰的平行线。(9)作中位线

当然在梯形的有关证明和计算中,添加的辅助线并不一定是固定不变的、单一的。通过辅助线这座桥梁,将梯形问题化归为平行四边形问题或三角形问题来解决,这是解决问题的关键。常见的辅助线做法

1、遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

2、遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

3、遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

4、过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”。

5、截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明。这种作法,适合于证明线段的和、差、倍、分等类的题目。

6、特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答。

所谓“倍长中线”,就是加倍延长中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,则对应角对应边都对应相等。常用于构造全等三角形。中线倍长法多用于构造全等三角形和证明边之间的关系(一般都是原题已经有中线时用,不太会有自己画中线的时候)。

说简单一点,倍长中线就是指:延长中线,使所延长部分与中线相等,然后往往需要连接相应的顶点,构造全等三角形。

截长补短法,是初中数学几何题中一种辅助线的添加方法,也是把几何题化难为易的一种思想。截长就是在一条线上截取成两段,补短就是在一条边上延长,使其等于一条所求边

截长:1.过某一点作长边的垂线 2.在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。

补短:1.延长短边 2.通过旋转等方式使两短边拼合到一起。

第五篇:初中几何证明技巧

初中几何证明技巧(分类)

证明两线段相等

1.两全等三角形中对应边相等。

2.同一三角形中等角对等边。

3.等腰三角形顶角的平分线或底边的高平分底边。

4.平行四边形的对边或对角线被交点分成的两段相等。

5.直角三角形斜边的中点到三顶点距离相等。

6.线段垂直平分线上任意一点到线段两段距离相等。

7.角平分线上任一点到角的两边距离相等。

8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。

*9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。*10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。

11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。

*12.两圆的内(外)公切线的长相等。

13.等于同一线段的两条线段相等。

证明两个角相等

1.两全等三角形的对应角相等。

2.同一三角形中等边对等角。

3.等腰三角形中,底边上的中线(或高)平分顶角。

4.两条平行线的同位角、内错角或平行四边形的对角相等。

5.同角(或等角)的余角(或补角)相等。

*6.同圆(或圆)中,等弦(或弧)所对的圆心角相等,圆周角相等,弦切角等于它所夹的弧对的圆周角。

*7.圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角。

8.相似三角形的对应角相等。

*9.圆的内接四边形的外角等于内对角。

10.等于同一角的两个角相等。

证明两条直线互相垂直

1.等腰三角形的顶角平分线或底边的中线垂直于底边。

2.三角形中一边的中线若等于这边一半,则这一边所对的角是直角。

3.在一个三角形中,若有两个角互余,则第三个角是直角。

4.邻补角的平分线互相垂直。

5.一条直线垂直于平行线中的一条,则必垂直于另一条。

6.两条直线相交成直角则两直线垂直。

7.利用到一线段两端的距离相等的点在线段的垂直平分线上。

8.利用勾股定理的逆定理。

9.利用菱形的对角线互相垂直。

*10.在圆中平分弦(或弧)的直径垂直于弦。

*11.利用半圆上的圆周角是直角。

证明两直线平行

1.垂直于同一直线的各直线平行。

2.同位角相等,内错角相等或同旁内角互补的两直线平行。

3.平行四边形的对边平行。

4.三角形的中位线平行于第三边。

5.梯形的中位线平行于两底。

6.平行于同一直线的两直线平行。

7.一条直线截三角形的两边(或延长线)所得的线段对应成比例,则这条直线平行于第三边。证明线段的和差倍分

1.作两条线段的和,证明与第三条线段相等。

2.在第三条线段上截取一段等于第一条线段,证明余下部分等于第二条线段。

3.延长短线段为其二倍,再证明它与较长的线段相等。

4.取长线段的中点,再证其一半等于短线段。

5.利用一些定理(三角形的中位线、含30度的直角三角形、直角三角形斜边上的中线、三角形的重心、相似三角形的性质等)。

证明 角的和差倍分

1.与证明线段的和、差、倍、分思路相同。

2.利用角平分线的定义。

3.三角形的一个外角等于和它不相邻的两个内角的和。

证明线段不等

1.同一三角形中,大角对大边。

2.垂线段最短。

3.三角形两边之和大于第三边,两边之差小于第三边。

4.在两个三角形中有两边分别相等而夹角不等,则夹角大的第三边大。

*5.同圆或等圆中,弧大弦大,弦心距小。

6.全量大于它的任何一部分。

证明两角的不等

1.同一三角形中,大边对大角。

2.三角形的外角大于和它不相邻的任一内角。

3.在两个三角形中有两边分别相等,第三边不等,第三边大的,两边的夹角也大。*4.同圆或等圆中,弧大则圆周角、圆心角大。

5.全量大于它的任何一部分。

证明比例式或等积式

1.利用相似三角形对应线段成比例。

2.利用内外角平分线定理。

3.平行线截线段成比例。

4.直角三角形中的比例中项定理即射影定理。

*5.与圆有关的比例定理---相交弦定理、切割线定理及其推论。

6.利用比利式或等积式化得。

证明四点共圆

*1.对角互补的四边形的顶点共圆。

*2.外角等于内对角的四边形内接于圆。

*3.同底边等顶角的三角形的顶点共圆(顶角在底边的同侧)。

*4.同斜边的直角三角形的顶点共圆。

*5.到顶点距离相等的各点共圆

下载解几何题技巧word格式文档
下载解几何题技巧.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2018国考申论解贯彻执行题技巧

    2018国考申论解贯彻执行题技巧 中公教育 董琪 申论考试,会固定积累常考题型、常规题型,一般这些题型,经过学习,大家基本都能驾驭的很好,但是,近几年国考以及各省考试中经常会出现......

    初中几何题作辅助线的方法和技巧

    题中有角平分线,可向两边作垂线。线段垂直平分线,可向两端把线连。 三角形中两中点,连结则成中位线。三角形中有中线,延长中线同样长。 成比例,正相似,经常要作平行线。圆外若有一......

    初二几何题精选

    (矩形)如图,矩形ABCD的边长AB=6,BC=8,将矩形沿EF折叠,使C点与A点重合,则折痕EF的长是(A)7.5(B)6(C)10(D)5(矩形)如图,E是矩形ABCD的边AD上一点,且BE=ED,P是对角线BD上任意一点,PF⊥BE,PG⊥AD,垂足分别......

    七年级数学几何题

    1.已知:△ABC.求证:∠A+∠B+∠C=180°.图27.1.3J解∶做AC∥BE∴∠A=∠1∠C=∠2∵∠ABC+∠1+∠2=180°∴∠A+∠B+∠C=180°2. 求证: 三角形的一个外角等于和它不相邻的两个内角的和.已知: 如图2......

    初中几何证明技巧2

    初中几何证明技巧(分类) 证明两线段相等 1.两全等三角形中对应边相等。2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 等腰三角形两腰相等;两腰上......

    高中数学教学论文 例谈向量法解几何题的优越性

    例谈向量法解几何题的优越性 【文章摘要】本文着重通过例子说明应用向量法解答一些几何题的优越性。向量法解几何题 可减少“确定角的位置”、“确定距离的位置”的论证过程......

    巧解几何难题的数学日记

    有一个长方体,正面和上面的两个面积的积为209平方厘米,并且长、宽、高都是质数。求它的体积。我见了,心想:这道题还真是难啊!已知的只有两个面面积的积,要求体积还必须知道长、宽......

    问 题 解 答

    问 题 解 答1、公司跟技术及业务骨干员工签订了《保密及竞业限制协议》,员工离职时公司是否可单方面取消竞业限制要求,不支付经济补偿金?若可以,公司应如何规范操作,需提前一个月......