《聚合物近代仪器分析》期末考试重点总结

时间:2019-05-12 06:26:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《聚合物近代仪器分析》期末考试重点总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《聚合物近代仪器分析》期末考试重点总结》。

第一篇:《聚合物近代仪器分析》期末考试重点总结

《聚合物近代仪器分析》--期末考试重点总结

海大09级

紫外光谱

【重点内容】

1、基本概念

 紫外光谱:是一种波长范围在200-400nm之间,根据电子跃迁方式的差异来鉴别物质的吸收光谱。导致吸收光的波长范围的不同,吸收光的几率不同。

 吸收光谱:是由于光与分子发生相互作用,分子能吸收光能从低能级跃迁到高能级而产生的光谱(红外、紫外)

 发散光谱:是由于分子有高能级回复到低能级释放出光能形成的光谱(荧光) 散射光谱:是由于当光被散射时,随着分子内能级的跃迁,散射光频率发生变化形成的光谱(拉曼)

 发色团:具有双键结构,能对紫外或可见光有吸收作用,产生

跃迁的集团  助色团:本身不具有生色作用,但与发色集团相连时,通过非键电子的分配,扩散了发色团的共轭效应,从而影响发色团的吸收波长,增大了其吸收系数的一类集团。

2、主要规律

1)光吸收定律  吸光度A:

A= lg(I0/I)= lg(1/T)=εCl

I0入射光强

I透射光强

T透光率

ε吸光系数 C溶液浓度 l样品槽厚度

2)电子跃迁类型

 σ—σ*能量大,吸收波长小于150nm的光子,真空紫外区  n--σ* 含O、N、S和卤素等杂原子的饱和烃的衍生物发生此类跃迁 150-250nm  π—π* 不饱和烃、共轭烯烃和芳香烃类发生此类跃迁,紫外区  n—π* 分子中孤对电子和π键同时存在时,大于200nm,吸收系数小,为10-100  d-d 跃迁:过渡金属络合物溶液中

 电荷转移跃迁:吸收谱带强度大,吸收系数一般大于10 000 3)UV的谱带种类

 R吸收带:双键+孤对电子  K吸收带:共轭

 B吸收带:芳香化合物及杂环芳香化合物的特征谱带,容易反应精细结构  E吸收带

4)影响紫外光谱最大吸收峰位移的主要因素

 最大吸收波长λmax,吸光系数εmax

【补充内容】  光谱分析法:当光照射到物体上时,电磁波的电矢量就会与被照射物体的原子核分子发生相互作用引起被照体内分子运动状态发生变化,并产生特征能级之间跃迁分析方法。 紫外光谱特点:

1)反应分子中价电子能级跃迁情况,主要用于共轭体系(共轭烯烃和不饱和羰基化合物)及芳香化合物的分析

2)光谱较简单,峰形较宽,定性分析较少 3)共轭体系的定量分析,灵敏度高

 极性溶液:使n—π*跃迁向低波移,称为蓝移;π—π*向高波移,红移  酸性:蓝移,碱性:红移 红外光谱 【重点内容】

1、基本概念

 红外光谱:是由于分子内原子核之间振动和转动能级的跃迁而形成的吸收光谱。 伸缩振动:原子沿键轴方向伸缩使键长发生变化的振动,用符号ν表示

 弯曲振动:原子垂直于价键方向振动,使得分子内键角发生变化的振动,用ν表示  基频吸收:处于基态的具有红外活性的分子振动,被红外辐射激发后,跃迁到第一激发态所产生的红外吸收

 倍频吸收:非线性谐振的分子振动时,除基频跃迁外,发生由基态到第二或第三激发态的跃迁所产生的红外吸收

2、主要规律

1)红外光谱产生的条件

 辐射应具有能满足分子产生振动跃迁所需的类型  辐射与分子间有相互耦合作用

2)IR谱带强度和吸收频率受哪些因素影响

 诱导效应:吸电基是吸收峰向高频移(蓝移),供电基(红移) 共轭效应:电子云平均化(红移)

 环的张力作用:环减小,张力增大(蓝移)

 氢键作用:使正常共价键伸长,键能降低,频率降低(红移),谱线变宽

 耦合效应:振动耦合,相同的两个基团相邻时且振动频率相近时,可能发生耦

合,引起吸收峰裂分,一个移向高频,一个移向低频

3)熟悉主要官能团的特征谱线

【补充内容】

 红外光谱的三要素:谱峰位置、形状、强度

a.谱峰位置:即谱带的特征振动频率,定性分析

b.谱带形状:研究分子内是否存在缔合以及分子的对称性旋转异构、互变异构 c.谱带强度:与分子振动时偶极矩的变化率有关,定量分析的基础

荧光、拉曼光谱 【重点内容】

1、基本概念

 荧光:当电子从最低单线态S1回到单线基态S0时,发射出光子,陈称为荧光

 磷光:当电子从最低单线态S1进行系间窜越到最低激发三线态T1,再从T1回到单

线基态S0时,发射出光子,称为磷光

 拉曼散射:当光透过样品被散射时,光子与样品分子之间发生非弹性碰撞,有能量

交换,这种散射叫做拉曼光谱散射

 瑞利散射:当光透过样品被散射时,光子与样品分子之间发生弹性碰撞,没有能量

交换

2、主要规律

1)荧光和磷光光谱的产生原理及现象特点

a.荧光:寿命一本为10-8-10-10s,停止光照,荧光熄灭

b.磷光:波长较长,寿命可达数秒至十秒,停止光照后会在短时间内发射,常在低温测量,比荧光弱

2)红外光谱和拉曼光谱的共同性与差异

相同点:a.同属分子振动光谱,波数范围相同;

b.红外中定性三要素对其也适用

不同点:a.红外较适合高分子侧基和端基,特别是一些极性基团的测定,而拉曼对研究骨架特征特别有效

b.对具有对称中心的基团的非对称振动而言,红外是活性,而拉曼是非活性,反之,对称振动,红外是非活性,拉曼是活性;对无对称中心基团,都是活性

【补充内容】

 四个量子数:主量子数n,磁量子数m,角量子数l,自旋量子数ms

 统一物质在相同条件下观察到的各种荧光,其波长相同,只是发光途径和寿命不同。

物质确定,能级确定

 斯托克斯线:在拉曼散射中,若光子把一部分能量给样品分子,散射能量减少,此时

(ν0-ΔE/h)处产生的散射光线叫·。若获得能量,叫反斯托拉斯线。

 拉曼位移:斯托拉斯线或反斯托拉斯线与入射频率之差

核磁共振

【重点内容】

1、基本概念

 核磁共振:是通过将样品置于强磁场中,然后用射频元辐射样品,是具有磁矩的原子核发生磁能级的共振跃迁而形成吸收波谱

 屏蔽效应:当原子核处于外磁场中时,核外电子运动产生感应磁场,就像形成一个磁屏蔽,使外磁对原子核的作用减弱了,即实际作用在原子核上的磁场为H0(1-σ),而不是H0,σ称为屏蔽常数

 化学位移:共振发生变化,在谱图上反应为波峰位置的移动,称为化学位移  磁各向异性效应(电子环流效应):

 耦合常数:分裂峰之间的距离,一般用J表示,单位为Hz

3、主要规律

1)核磁共振的条件

 核有自旋(核磁距):自旋量子数I不等于零(质量数和原子序数不同为偶数) 外磁场,能级裂分

 照射频率满足:ν=γh0/(2π)2)影响化学位移的主要因素

 电子云密度升高,屏蔽效应上升,核磁共振发生在高场,化学位移减小

氧的电负性升高,氢原子周围电子云密度下降,移向低场,化学位移增大  电子环流效应:

 氢键:能使较低场发生共振。升温或稀释溶剂,高场移动,加入氘,消失  溶剂效应:在氢谱测定中不能用带氢的溶剂,若必须测,用氘带试剂 3)常见基团的化学位移 4)1H-NMR谱图解析 5)13C-核磁共振波谱解析 【补充内容】

 对于同一种核,磁旋比为定值  为什么以TMS为基准?

a.12个氢处于完全相同的化学环境,只产生一个尖峰

b.b.屏蔽强烈,位移最大,与有机化合物中的原子峰不重叠 c.化学惰性

d.易溶于有机溶剂,沸点低,易回收。1 H-NMR谱图可以提供的主要信息

a.化学位移:确认氢原子锁处的化学环境,及属于何种基团 b.耦合常数:推断相邻氢原子的关系与结构 c.吸收峰面积:确定分子各类氢原子的数量比

气象色谱

【主要内容】

1、基本概念

 保留时间:组分从进样到出现最大峰所需要的时间(或载气体积) 分离度:色谱峰的分离程度,即混合各组分的分离程度  校正因子:具有校正作用的因子交做校正因子

2、主要规律

1)气相色谱的分离原理

 分配色谱法:利用被分离组分在固定相和流动相中的溶解度差别而实现分离  吸收色谱法:利用被分离组分对固定相表面吸附中心吸附能力的差别实现分离  离子交换色谱法:利用被分离组分交换能力的差别而实现分离

 空间排阻色谱法:根据被分离组分分子的线团尺寸进行分离—凝胶渗透色谱 2)热导池检测器和氢火焰离子检测器的工作原理

 热导检测器:利用载气和样品组分热导系数的不同,当它们通过热敏元件时,阻值出现差异而产生电信号。

 火焰离子检测器:利用有机物在氢火焰中燃烧时生成的离子,在电场作用下产生电信号。

3)定量分析的方法有哪些,各适合于什么情况

 归一化法:当试样中全部组分都显示出色谱峰,且每个组分相应的校正因子都已知时可用下式计算:

XI=fi*Ai/∑(fi*Ai)XI为试样中组分,fi组分i的校正因子,Ai组分的峰面积

 内标法:当试样组分不能全部从色谱柱流出,或有些组分在检测器上没有信号

Xi=miAifs,i/mAs

Ai, A分别代表组分和内标物的峰面积;fs,i校正因子;m和ms分别为试样和内标物的质量

 外标法:分别将等量试样和韩待测组分的标准试样进行色谱分析

χi=EIAi/AE

χi为试样中组分的质量分数 EI 为标准试样中组分i的含量

Ai,AE 为峰面积  叠加法:加入一定量的待测组分,再测出此两组分的峰值

热分析

【主要内容】

1、基本概念

 DSC:示差扫描量热法。是使试样和参比物在程序升温或是降温的相同环境中,用热量补偿器以增加电功率的方式,即对参比物或试样中温度低的一方给予热量的补偿,是两者的温差保持为零,测量所做的功,即试样的吸收热量变化量对温度(或时间)的依赖关系的的一种技术

 DTA:差热分析法。是参比物语等量试样在相同环境中等速变温的情况下相比较,试样的任何化学和物理变化,和它处于同一环境中的标准物质比较,要出现暂时的增高或降低

 TG:热失重法。是在程序升温的环境中,测量试样的质量对温度(或时间)的依赖关系的一种技术

2、主要规律

1)DSC和DTA技术的主要差别

 DSC:根据热量差和温度的关系  DTA:根据温度和温度差的关系

 DSC的温度差为零,是他们最大的区别 2)影响DSC测定结果的主要因素

 试样的用量:10mg左右

 升温速率:影响峰的位置和峰面积

 气氛:防止氧化,减少挥发组分对检测器腐蚀

 热历史:样品转变受松弛受加工温度、冷热处理时间和速率、防止温度与时间 3)DSC和TG主要应用范围

 提供有关聚合物体系的各种转变温度  热转变的各种参数  结晶聚合物的结晶度  聚合物的热稳定性

 聚合物的固化、氧化和老化等方面

【补充内容】

 热量变化与曲线峰面积的关系

m*ΔH=K*A M样品质量

ΔH单位质量样品的焓变

K修正系数

A峰面积 TG曲线:样品失重积累量,积分型曲线

DTG曲线:TG曲线对温度或时间的一阶导数,质量变化率  a.玻璃化温度Tg:第一个转折点的切线重点位置

b.结晶温度Tc:第二个转折点,波峰位置 c.熔融温度Tm:第三个转折点,波谷位置 d.分解温度Tf:第四个转折点,峰值位置

GPC 【主要内容】

1、基本概念

 GPC:凝胶渗透色谱。也称为尺寸排除色谱,是一种液相色谱。基于体积排阻的分离原理

 排斥极限:凡是相对分子质量比此点大的分子均被;排斥在凝胶空外  渗透极限:凡是相对分子质量小于此值的都可以渗透入全部孔隙

2、主要规律

1)GPC的分离原理

平衡排除理论:大分子进入孔洞少,在孔内流经的路程也短,最先出来。 限制扩散理论:分子质量高的样品,扩散速度小,流速大时,两相不能平衡  流动分离理论:细长管子模型,大分子从中间流过,小分子粘附在管壁 2)检测器的种类和应用

 浓度检测器:根据流出液的浓度不同,折光指数不同的原理  粘度检测器:测定柱后流出液的特性粘度

 分子量检测器:直接测定淋出液中聚合物的重均相对分子量 3)GPC定量分析的方法

【补充内容】

 色谱柱使用的上限:聚合物最小分子尺寸<最大凝胶颗粒孔径

下限:聚合物最大尺寸分子>最小凝胶颗粒孔径  基本原理

a.按分子大小(体积大小,流动力学)分离 b.洗脱次序:大分子先流出,小分子最后流出 c.流出相不参与分离

第二篇:化学仪器分析期末考试总结

离子色谱法测定自来水中卤素离子

实验原理

离子色谱在分离阴离子时,常用NaHCO3混合溶液为滚动相(淋洗液),以阴离子交换交换柱为固定相,水样中待测离子随淋洗液进入离子交换柱系统(由保护柱和分离柱组成)。根据分离柱对各种阴离子亲和力不同,已分离的阴离子流经阴离子抑制系统转换成搞颠倒的强酸,二淋洗液则转换成弱电导率的碳酸。由电导检测器测量各种离子组分的电导率,已保留时间定性、峰高或峰面积定量。

思考题

1、离子色谱仪如何抑制淋洗液NaHCO3-Na2CO3电导 淋洗液电解生成的H+可有效地淋出液的背景电导值。样品溶液进入离子色谱后,其阴离子最终将色谱柱中所有可交换的离子置换出来,同时由检测器转换为恒定的信号—基线。然后进样少量样品,样品离子即被树脂柱所接受,并与等同数量的淋洗液离子交换。如果样品中所有离子的浓度大于淋洗液离子浓度,当他沿着柱子移动,并通过电导检测器便得到一个正峰,反之得到一个负峰。进样后,淋洗液离子继续不断地经泵输入色谱,对树脂的可交换部位与样品离子进行竞争,并且使样品离子沿着柱子移动。由于样品离子对数值有着不同的亲和能力,因而不同的样品,离子沿柱以不同的速度移动,最后完成分离。

2、在一定固定相色谱条件测定试样中F-、Cl-、Br-、NO3-、PO43-、SO42-简述决定保留时间参数规律

影响保留时间的参数:离子的性质(价态,尺寸,极化程度,酸的电离强度)

参数①价态 待测离子的价态越高,保留时间越长。但多价离子的保留如正磷酸盐与淋洗液的pH值有关,例如PO43-pH在8~9时,PO43-以H3PO4-形式存在,离子价态H3PO43-

参数③极化程度 离子极化程度越强,保留时间越长 红外光谱测定有机化合物的结构

实验原理

红外光谱时研究分子振动和转动信息的分子光谱,它反映了分子化学键的特征吸收频率,根据红外光谱的峰位,峰强及峰形,判断化合物中可能存在的官能团,从而可用于化合物结构判断。当一定频率(一定能量)的红外光照射分子时,如果分子某个基团的振动频率和外界红外辐射频率一致,二者就会产生共振。此时,光的能量通过分子偶极炬的变化传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁(由原来的基态跃迁到较高的振动能级,从而产生红外吸收光谱。用连续改变频率的红外光照射某试样,将分子吸收红外光的情况用仪器记录下来,就得到试样的红外吸收光谱图。由于振动能级的跃迁伴随着转动能级的跃迁,因此所得的红外光谱不是简单的吸收线,而是一个吸收带。思考题

1、用压片法制样时,为什么要将固体试样研磨到颗粒度在2m左右?为什么要求KBr粉末干燥避免吸水受潮? ①红外压片时要求颗粒尽量细小,这样才会使制得的压片对红外光的透过性好。当研磨时不到位,致使颗粒过大,将严重影响红外光透过,降低实验结果的准确性。

②因为水本身对红外光有吸收,为了防止干扰样品谱,KBr粉末必须要干燥,并且潮湿的KBr粉末对制片也会产生影响。

2、羟基化合物谱图的主要特征是什么?

O-H伸缩振动在3700~3100cm-1,游离的-OH伸缩振动在3650~3580cm-1,缔合的-OH伸缩振动在3400~3200cm-1,缔合羟基移向低波数,由于氢键的存在频率降低,谱带变宽,小于3600cm-1。缔合程度越大,峰越宽,移向低波数是羟基化合物红外谱图的主要特征。

3、芳香烃的红外特征吸收在谱图的什么位置?

基频区:①伸缩振动在3000cm-1以上为不饱和烃(包括芳烃)C-H伸缩振动 ②单环芳烃的C=C伸缩振动在1620~1450cm-1范围内有四个吸收峰,其中1520~1480cm-1和1620~1590cm-1区域的两个吸收频率是判断芳环是否存在的重要标志。③苯的衍生物在2000~1677cm-1区域出现C-H面外弯曲振动的泛频峰,强度很弱。

指纹区:苯环的C-H面外弯曲振动在900~650cm-1出现吸收谱带。电感耦合等离子体发射光谱(ICP-AES)测定废水中的铜锌锰

实验原理

思考题

1、电感耦合等离子体发射光谱(ICP-AES)法测定的特点是什么 优点:①等离子体激发温度高(5000~8000K)左右

②对所测定的元素可以同时测定,选择性强(Mn选灵敏度低的)③准确度高,检出限低,分析灵敏度高(可检出ng/ml级含量)④线性范围宽,可选4~6个数量级,既可测定试样中的常量组分元素,又可测定主成分元素

⑤基体效应小。能够进行定性及定量分析,能实现一次进样多元素同时分析,分析软件及数据处理系统便于操作,功能强大。控制及数据处理系统:中文软件、Windows系统界面操作,使用十分方便,大大提高了分析效率 ⑥分析速度极快

缺点:非金属元素不易检测或检出的灵敏度低,仪器昂贵,气体贵

2、简述现代ICP-AES仪器编程、点燃、熄灭的操作过程(1)①先调气压0.6MPa ②开启稳压电源开关(预热五分钟)预热中打开计算机、打印机 ③待机器正常,打开主机开关

④打开Salsa软件,检查联机通讯情况。⑤设定参数 a光室程序34℃(33~35℃)b水可观测 c激发功率1.1KW,冷却气体流量20LPM 辅助气体流量0.21LPM 雾化气压力30PSI d检测器制定-设定制定状态为-40℃(达到-40℃时方可点火)

(2)测定编程:选测定元素,分析线Cu:324.754 Zn:213.856 Mn:293.306 波长校正、标准溶液配置

(3)点火:打开循环水、排风扇开关,检测器降温-40℃点火(4)标准溶液测定,绘制标准曲线,继续样品测定,统计计算(5)按软件要求关机①进样系统洗5min ②主机熄火 ③关检测器(温度至室温)④关循环水 ⑤推出计算机控制、数据处理系统 ⑥关计算机 ⑧关稳定电源 ⑨关氩气开关 ⑩关总开关

分子荧光法测定奎宁的含量

实验原理

奎宁在稀酸溶液中是强荧光物质,它有两个激发波长250nm和350nm,荧光发射峰在450nm。在低浓度时,荧光强度与荧光物质量浓度成正比。Ifkc

分析荧光法的基本原理:处于第一电子激发单重态最低振动能级的分子,以辐射跃迁的形式返回基态各振动能级时,就产生了分析荧光。由于激发态中存在有振动弛豫和内转化现象,使得荧光的光子能量比其分子受激发所吸收的光子能量低。因此荧光波长λ3总比激发波长λ1或λ2要长,而且不论电子开始被激发至哪个能级,都将只发射波长为λ3的荧光。荧光的产生在10-9~10-6s内完成。思考题

1.能用0.05mol/L的HCl来代替0.05mol/L的H2SO4稀释溶液吗?为什么?

不能。因为盐酸中的-Cl可以和硫酸奎宁相互作用,可减弱分子中π电子的共轭性,使荧光减弱甚至猝灭。2.哪些因素可能会对奎宁荧光产生影响?

内部因素:①共轭双键。荧光物质中含有共轭双键的强吸收基团,共轭体系越大,荧光效率越高。②刚性平面结构。刚性平面结构有利于荧光的产生。

外部因素:①溶剂。同一种荧光物质在不同的溶剂中,其荧光光谱的位置和荧光强度可能会有一定的差别,尤其是那些分子中含有极性取代基的荧光物质,它们的荧光光谱易受到溶剂的影响。溶剂极性强,荧光强度大。②去离子水。③温度。对于大多数荧光物质,升高温度会使非辐射跃迁引起的荧光的效率降低。④表面活性剂。表面活性剂的存在会使荧光效率增强。⑤pH:pH值对含有酸性或碱性取代基团的芳香族化合物的荧光性质有影响。⑥浓度。⑦物质的顺磁性:顺磁性物质如溶液中溶解氧的存在会使荧光效率降低。⑧重原子照应使荧光下降。高效液相色谱法分析测定苯系化合物

实验原理

本实验采用反向液相色谱法分离分析芳香族化合物。此法是在液-液色谱法的基础上发展的键合相色谱法,色谱柱中被共价结合到载体(硅胶)上的是一些直链饱和烷烃,C8,C18使用的最多,它的疏水特性随碳氢键的长度而增加,在反向色谱柱中溶质由于疏水作用其滞留时间也固定相碳氢键长度的增加而增加。溶质与固定相之间的相互作用主要是非极性相互作用或是疏水相互作用,因此溶剂的强度随溶剂极性的降低而增加。(水是极性最强的溶剂,也是反向色谱中最弱的溶剂。在反向色谱中最弱的溶剂。在反向色谱中,疏水性越强的化合物越容易从流动相中挤出去,因而在色谱柱中保留时间也越长。)所以在反向色谱中不同的化合物根据它们的疏水特性得到分离。思考题

1.根据反相液相色谱的分离方法,判别试样中各组分的出峰顺序。在反相液相色谱中,溶质的极性越强,其与固定相烷基键键合作用越弱,出峰时间越长,极性顺序为苯乙酮>硝基苯>苯>甲苯。故出峰顺序依次为苯乙酮,硝基苯,苯,甲苯。

2.为什么水是反相液相色谱中最弱的洗脱溶剂?

在化学键合相色谱中,溶剂的洗脱能力直接与它的极性相关。在负相色谱中,溶剂的洗脱能力随极性的增强而减弱。水是极性最强的溶剂,也是反向色谱中最弱的洗脱溶剂,所以反相色谱的流动相通常以水作基础溶剂,再加入一定量的能与水互溶的极性调整剂。气相色谱检测器灵敏度的测试及混合物定性、定量分析

实验原理

色谱法是一种高效分离技术。色谱法是根据不同物质在互不相溶的两相中具有不同的分配系数。当两相作相对运动时,这些物质在两相中进行反复多次的分配。使得有些分配系数只有微小差异的组分产生很大的分离效果,从而达到彼此分离。气相色谱定性方法-标准样品对照法 在相同的色谱固定相和操作条件下,同一种物质应具有相同的保留值。用标准样保留值对各色谱峰进行定性,所以需要标准样品。气相色谱的定量方法-归一化法

miCi%100%m1m2Amnfi'Ai'(fiAi)t1n100%

fi'正己烷0.89 环己烷0.94 正戊烷0.88 氯仿1.41 思考题

1.使用热导检测器能否先接通电源在开载气,为什么? 不能,防止热导检测器里的热敏元件被氧化,色谱仪开机后就升温了,而固定液和检测器在高温下与空气中的发生作用,先通载气,是起保护作用的。

2.如何选择适当桥电流和载气种类以提高热导池检测器灵敏度? ①桥电流:由于热导池的灵敏度与桥电流的三次方成正比,因此提高桥电流可以明显提高热导池检测器的灵敏度。但桥电流过高,将会使热丝处于灼热状态,可能引起基线不稳,数据精度降低,热丝还可能由于温度过高而氧化烧毁,所以当使用热导系数较大的载气,如H2或He时,桥电流可控制在180~200mA,当使用热导系数较小的氮气等作载气时,其桥电流可控制在80~120mA ②载气种类:由于热导池的检测原理是基于不同物质有不同导热系数,所以载气的导热系数对热导池的灵敏度有相当的影响,即载气与试样的导热系数相差较大,其灵敏度越高。由于一般物质的导热系数都较小,因此选择导热系数大的载气,在相同的电桥电流下,热丝温度会较低,电桥不平衡电压信号相对较大,可使热导池的灵敏度相对提高,因此采用氢气或氦气做载气,如果采用氮气做载气,由于氮气与被测组分导热系数的差别小,会使灵敏度较低。3.进样操作应注意哪些事项?一定色谱条件下,进样量大小是否会影响色谱峰保留时间?

用微量进样器进样时,切记防止用力过猛,避免折弯针柄。进样和拔针均动作迅速。正确的进样方法是:取样后,一手持注射器(防止气化室的高气压将针芯吹出),另一只手保护针尖(防止插曲隔壁时弯曲)。先小心地将注射针头穿过隔壁。随即快速将注射器插到底,并将样品注入气化室。

进样量大小基本不会改变色谱峰保留时间。对于同一样品,进样量大小在其他色谱条件不变的条件下,保留时间基本不会变,而进样量大小改变的是峰高及峰面积大小,当进样量大到过载,出现峰宽改变,进而出现前伸或拖尾时,保留时间会改变很小,可以忽略。

紫外吸收光谱测定蒽醌试样中蒽醌含量和摩尔吸收系数

实验原理

1.测定波长的选择:利用紫外吸收光谱进行定量分析时,必须选择合适的测定波长。由于在蒽醌试样中含有邻苯二甲酸酐,为了避开其干扰,选用323nm波长作为测定波长。在此波长处蒽醌中有一中等强度的吸收峰,而邻苯二甲酸酐基本无吸收。

2.测定波长的选择:依据A=εbc等量关系式,在选定波长下,以乙醇为参比溶液,测定蒽醌标准溶液系列及蒽醌试液的吸光度,以蒽醌标准溶液的吸光度为纵坐标,浓度为横坐标绘制标准曲线,根据蒽醌试液的吸光度,在标准曲线上查得对应的浓度。3.摩尔吸收系数:摩尔吸收系数ε是衡量吸光度定量分析方法灵敏度的重要指标,可利用求标准曲线斜率的方法求得。思考题

1.为什么选用323nm而不选用251nm波长作为蒽醌定量分析的测定波长?

在蒽醌试样中含有邻苯二甲酸酐,如果是单一溶液,则选择最大吸收峰处的波长(即251nm)处进行测定,但蒽醌中混有杂质且在251nm波长附近有邻苯二甲酸酐的强吸收峰λmax,为避免干扰,选用323nm。直接电位法测定自来水中含氟量——

标准曲线法和一次标准加入法

实验原理

以氯离子选择电极为指示电极(负极Ewe)饱和甘汞电极为参比电极(正极Esce),插在含有氟离子的溶液中,组成电池,根据测得的电池电动势E,在一定条件下与氟离子活度的对数值呈线性关系,测量时,25℃条件下:

EEEESCEEweESCE(K0.059lgaF)(ESCEK)0.059lgaF EK'SlgaF

acEK'SlgaF EKSlgSlgCF

温度不变,总离子强度I一定时,也一定

当溶液的总离子强度不变时,活度系数不变,上式可改写为: EKSlgSlgCF EK'SlgCF EKS(lgCF)因此在一定条件下,电池电动势与试液中的氯离子浓度的对数成线性关系,可用标准曲线法和标准加入法测定 思考题

本实验中加入总离子强度调节缓冲溶液的目的是什么?

1、维持试液和标准溶液恒定的离子强度,使活度系数恒定;

2、维持溶液在适宜的pH范围内,满足离子电极的要求;

3、使被测离子释放成为可检测的游离离子,掩蔽干扰离子。

测F-过程所使用的TISAB典型组成:1mol/L的NaCl,使溶液保持较大稳定的离子强度;0.25mol/L HAc和0.75mol/L NaAc,使溶液pH值在5左右:0.001mol/L的柠檬钠,掩蔽Fe3+、Al3+等干扰离子

火焰原子吸收光谱法灵敏度和来自自来水中钙镁侧定

实验原理

原子吸收光谱法是将待测元素的分析溶液净喷雾器雾化后,在高温下进行待测组分的原子化使其竭解离基态原子。锐线光源-空心阴极灯发出待测元素特征波长的白光辐射,经过原子蒸汽时,一部分被基态原子吸收,经单色器分光后,再通过检测系统检测,测得吸收前后特征辐射强度变化,从而测得其吸光度。

在使用锐线光源下,基态原子蒸汽对共振线的吸收符合朗伯-比尔定律:AlgI0KLN0。式中A为吸光度,I0为入射光强度,I为经原子I蒸气吸收后透射光强度,K为吸光系数,L为辐射光穿过原子蒸气的光程长度,N0为基态原子密度。

当试样原子化时,火焰的温度低于3000K时,对大多数元素来讲,原子蒸气中基态原子数目实际接近于原子总数,一定实验条件下,待测元素的原子总数与该元素在试样中的浓度成正比,则式子可写作A=K’C。用A-C标准曲线法或标准加入法,可以求算出元素的含量。由原子吸收法灵敏度的定义,按下式计算其灵敏度S:S=C*0.0044/A(mg/L)思考题

1、影响原子吸收吸光度大小的因素有哪些?测定前仪器都需要哪些最佳化调节?

①影响原子吸收吸光度大小的因素有:火焰高度、燃气比例、灯电流、通带宽度和波长等。

②(1)元素的最佳反应高度由其在火焰不同区域分布的基态原子数目来决定,元素不同,最佳反应高度也不相同,因此必须对各元素适宜的燃料器高度进行优化,以达到最佳的测试效果。

(2)吸光度的大小实际上是与待测元素的基态原子数成正比的,乙炔流量取决于燃气比例。

(3)灯电流的大小也影响吸光度。灯电流太小,吸光度下降,无法得到可观的检测信号。灯电流太高,不但可能产生自吸效应,使吸光度降低,灵敏度降低,而且会缩短空心阴极灯的使用寿命。因此一般灯电流选额定电流的40%左右,光电倍增管电压以200~500V最佳

2、与ICP-AES仪器相比,你认为原子吸收有哪些不足之处?他的特点是什么?

与ICP-AES相比:①原子吸收不能多元素同时进行分析,测定元素不同,必须更换光源灯,麻烦。

②原子吸收光谱法难以测定难熔元素的灵敏度

③还不能测定共振线处于真空紫外区域的元素,如磷、硫等 ④标准工作曲线线性范围窄(一般在一个数量级范围),精密度下降。特点:①选择性强。因为原子吸收带宽很窄的缘故,因此测定比较快速简便,并有条件实现自动化操作

②灵敏度高,原子吸收光谱法时目前最灵敏的方法之一,火焰原子吸收法的灵敏度是ppm到ppb级,常规分析中大多数均能达到ppm数量级,如果采用特殊手段,如预富集,还可以进行ppb数量级浓度范围测定,该方法灵敏度高,缩短分析周期,加快测量进程,需进样量少。③分析范围广。在原子吸收光谱分析中,只要化合物解离成原子就行了,不必激发。

循环伏安法

实验原理

循环伏安法是在电极上施加一个线性扫描电压,当从起始电位达到某设定的终止电位后,再反向扫描至起始电位,形成一个循环。进行正向扫描时,若溶液中存在氧化态,电极上将发生还原反应OxneRed。

反向扫描时,电极上生成的还原态将发生氧化反应RedOxne 对可逆体系:(1)ipa/ipc=1(2)还原峰电位和氧化峰电位电位差EEpaEpc0.059V n思考题

铁氰化钾与抗坏血酸的循环伏安图有什么不同?能得出什么结论? 铁氰化钾循环伏安图有还原和氧化峰,且两个峰在起始和终止电压处构成一个首尾相连的循环,说明铁氰化钾构成的电池可以多次充电放电。

而抗坏血酸的循环伏安图只有一个氧化峰,构不成循环。

说明铁氰化钾与抗坏血酸的溶质电池,只能用一次,不能循环使用。

第三篇:几种近代仪器分析方法小结

几种近代测试分析方法小结

一、裂解气相色谱法

1、概述

裂解气相色谱法(Pyrolysis Gas Chroma-tography简称PGC)是在热裂解和气相色谱两种技术的基础上发展起来的。自1954年W.H.T.Davison等人首先对高聚物的裂解产物进行气相色谱分离记出谱图而加以鉴别以来,经过S.B.Martin,RS.Lehrle等人把高聚物的裂解技术直接同气相色谱仪连结在一起,由此建立了裂解气相色谱法。三十多年来,通过对裂解装置的不断改进和完善,以及采用毛细管分离、程序升温和微处理机系统,这一方法不仅广泛应用于高分子领域,并且也在微生物、生物、医学、药物、司法检验、地质、矿物燃料等方面得到了日益增长的应用。而方法本身,也从一种经验式的技术,发展为一门相对独立的分枝学科,成为同红外光谱法和核磁共振法相辅相成的分析和研究高分子及非挥发性有机化合物的不可缺少的有效的方法。

随着色-质谱联用技术的发展,以及场电离/解吸场电离-质谱(FI/FD-MS)和化学电离/解吸化学电离-质谱(CI/DCI-MS)技术的出现,裂解-色谱/质谱(PY-GC/MS),裂解-质谱(PY-MS)等方法也相继发展起来,PGL法的范围也就进一步扩展,人们提出了分析裂解法(Analytical Pyro-lysis)。

2、基本原理

由于高分子及非挥发性有机化合物的裂解过程,通常遵循着某些反应规律进行,因而所得的产物分布具有特征性和统计性。裂解色谱主要研究高分子及非挥发性有机物的裂解反应产物、分布和机理,研究反应产物与物质本身的组成、结构和物化性能之间的关系,以及与裂解温度、裂解时间等因素的变化关系。方法原理是将样品放入裂解器内,加热使之瞬间裂解,生成可挥发的小分子物质,并立即被载气带入气相色谱系统的分离柱,分离后,在记录仪上获得重复的特征的裂解色谱图(Pyro-gram)通过对谱图的解析和处理,进行定性定量分析,结构表征、热稳定性、裂解机理和动力学等研究。上述过程反映了裂解色谱是一种化学与物理相结合的方法,在实验中样品被破坏,从这一角度考虑,它是一种破坏性的仪器分析方法,同在实验中样品未被破坏的IR,NMR等物理方法比较有着本质上的差别。

3、特点和局限性

同IR,NMR等方法比较,裂解色谱法的突出优点在于:

(1)灵敏度高,样品的用量很少,一般为微克和毫克量考级,有时甚至可以小于1ug,达到0.01ug;

(2)样品一般不需要预先提纯或处理,可以直接使用任何物理形态的样品进行实验,因此特别适用于那些不溶的、难以处理的固体样品,并且由于用原样分析,避免了因预ご处理

可能带来的分析失真和其他信息的丢失;

(3)不受无机填料和少量有机添加剂的干扰和影响,能够通过对谱淄图的解析,对主要组分作出准确的判断;

(4)由于进样和操作方便,样品分析的速度较快,一般可在20分钟内完成一个样品的分析;

(5)设备较简单,用一般的气相色谱仪加装一个裂解装置就组成一台裂解色谱仪,因此造价较低,易于推广普及;

(6)能够获得其他方法难以得到的一些独特的信息。

由于裂解色谱法在原理上的特点,使其在应用上带来了某些局限性,主要是(1)由于

/ 5

实验室之间谱图的重复性没有解决,迄今国内外还没有一整套有关某一类非挥发性有机物的标准谱图,因此人们必须在各自的实验室做出和积累已知样品的谱图,这无疑给分析工作造成困难;(2)一般只能建立相对定量分析法,不能建立绝对定量分析法;(3)谱图同样品的组成和结构之间的对应性,不是像其他方法那样都能存在,妨碍了对某些样品的分析和研究。

4、注意事项

裂解反应是一个复杂的过程,受诸多因素影响,必须严格控制实验条件和操作过程,有效地、正确地进行样品的测定,才有可能获得重复的、特征的、高分辨的和定量的裂解谱图。按照研究的目的和要求,对谱图进行解析和处理,得出完满的实验结果。

样品的裂解反应主要包括解聚(或分解)反应、副反应和二次反应。前两者为初级反应,通常生成特征性的产物;后者为次级反应,是初级反应产物进步化合、分解或其他反应,生成非特征性的产物,并改变裂解产物分布。因此在实验中要尽量考减少二次反应的发生。

5、应用——在高分子微细结构表征中的应用(1)LDPE较长的支化结构

650℃裂解,OV-1融熔石英毛细管柱,产物经催化加氢。模型共聚物除E—P,E—B,E—H外,还有E—HP(庚烯),E—O(辛烯),对几种LDPE样品的测定结果是:丁基>乙基>戊基>甲基>己基,同支链总的含量无关。另外,当比较5-乙基壬烷特征峰强度的实测和计算值时观察到,样品中还含有1,3-双乙基和2-乙基己基支链,它们可能通过下列的断裂机理生成该产物:

(2)加氢BD-AN共聚物的表征

加氢BD—AN共聚物在550℃的裂解产物,经聚甲基苯基硅氧烷融熔石英毛细管柱分离后,得到一系列较高沸点的产物,这些产物有效地反映了样品的序列结构和加氢过程。主要特征产物庚烯腈-1C7—MN和十一烯腈-1C11—MN分别由含有AN—BD—AN和AN—BD—BD—AN序列的分子链的断裂生成:

同样,连接两个BD链节的序列,其分子链断裂后,经连续两次自由基转移,随后-断裂,生成Cu—MN。这两者的产率都随着加氢度的增大而增加,反映了样品中的双键随着加氢反应的进行而减少。

二、分子荧光光谱法

/ 5

1、概述

分子荧光光谱(MFS)分析也叫荧光分光光度法,是利用某些物质被紫外光或可见光照射后所产生的,并且能够反映出该物质特性的荧光,对其进行定性和定量的分析,是当前普遍使用并有发展前途的一种光谱分析技术.目前,荧光分析方法己成为一种重要且有效的光谱化学分析手段,具有重大的应用价值和深远的科学意义.本文在介绍荧光光谱法基本原理的基础上,介绍几种荧光光谱技术在科学研究和工程技术中的应用实例。

2、基本原理

当紫外光照射到某些物质的时候,这些物质会发射出各种颜色和不同强度的可见光,而当紫外光停止照射时,这种光线也随之很快地消失,这种光线称为荧光。每种物质分子中都具有一系列相隔的能级,称为电子能级,而每个电子能级中又包含一系列的振动能级和转动能级。物质受光照射时,可能部分或全部吸收入射光的能量。在物质吸收入射光的过程中,光子的能量传递给物质分子,于是发生电子从较低能级到较高能级的跃迁。这个过程进行的很快,费时约10-15us。处于激发态的分子是不稳定的,它可能通过辐射跃迁和非辐射跃迁等分子内的去活化过程丧失多余的能量而返回基态。辐射跃迁去活化过程,发生光子的发射,伴随着荧光和磷光现象。激发单重态间的辐射跃迁伴随的是荧光发射。

3、特点

荧光分析法在生物化学、医学、工业和化学研究中的应用与日俱增,其原因主要是是荧光分析法具有高灵敏度的优点,且荧光现象具有有利的时间表度。当物质吸收紫外光和可见光后,它的电子能级跃迁至激发态,然后将这一部分能量释放出来,接着返回基态。由于物质分子结构不同,所吸收光的波长和发射的荧光波长也不同。利用这一特性,可以定性鉴别物质。研究分子的荧光光谱可为研究分子微观结构、分子的构象特点及变化情况提供帮助。

4、应用

(1)在酒业中的应用

 乙醇被广泛地应用于医药和食品工业之中,而甲醇却是一种剧毒品。因为甲醇的香味比乙醇的更能被人所接受,因此在食用乙醇中混有甲醇具有很大的欺骗性。为此建立简便快捷和正确的区别两种醇类物质的方法在食品安全方面具有明显的实际意义。近年来,随着光谱分析技术的发展,人们通过对甲醇溶液、乙醇溶液以及其他醇类物的比较研究现:甲醇溶液、乙醇溶液的吸收光谱、荧光光谱的峰值位置有显著的差异。因此,利用紫外吸收和荧光光谱法能很好地达到辨别真假酒的目的。(2)在水质监测中的应用

荧光光谱法具有灵敏度高、选择性强、试样量少和方法简单等优点,为复杂的环境样品中微量及痕量物质的分析提供了新手段。2007年夏天,无锡太湖中的蓝藻爆发,水质的好坏成为老百姓最关心的问题。江南大学一教授利用SP22558多功能光谱测量系统,对太湖水、普通自来水和纯水在紫外光激励下产生的荧光光谱及其特性进行了实验研究他用波长

290nm的紫外光分别激励三种试样,测量其产生的荧光光谱,并绘于同一坐标系中,如图1所示。太湖水强而宽的荧光光谱来自于污染物,荧光光谱的差异对应水质污染的情况。该研究方法可作为鉴别水质污染的一种有效手段。当然,该方法只能粗略地分析水质的好坏。近年来同步荧光测定、荧光偏振测定、荧光免疫测定、低温荧光测定、固体表面荧光测定、荧光反应速率法、三维荧光光谱技术与其他技术联用得以不断涌现和完善,3 / 5

可为环境分析提供更加广阔的前景。

三、凝胶渗透色谱法

1、概述

聚合物分子量具有多分散性,即聚合物的分子量存在分布。不同的聚合方法、聚合 工艺会使聚合物具有不同的分子量和分子量分布。分子量对聚合物的性能有十分密切的 关系,而分子量分布的影响也不可忽视。当今高分子材料已向高性能化发展,类似分子 量分布等高一层次的高分子结构的问题,越来越引起人们的重视。

自高分子材料问世以来,人们不断探索分子量分布的测定方法,直到60年代凝胶 渗透色谱诞生,成为迄今为止最有效的分子量分布的测定方法。

2、基本原理

凝胶渗透色谱(Gel Permeation Chromatography,简称GPC)也称为体积排除色谱(Size Exclusion Chromatography,简称SEC)是一种液体(液相)色谱。和各种类型的色谱一样,GPC/SEC的作用也是分离,其分离对象是同一聚合物种不同分子量的高分子组份。当样品中不同分子量的各组份的分子量和含量被确定后,就可得到聚合物的分子量分布,然后可以很方便地对分子量进行统计,得到各种平均值。

一般认为,GPC/SEC是根据溶质体积的大小,在色谱中由于体积排除效应即渗透能 力的差异进行分离。高分子在溶液中的体积决定于分子量、高分子链的柔顺性、支化、溶剂和温度,当高分子链的结构、溶剂和温度确定后,高分子的体积主要依赖于分子量。

3、局限

凝胶渗透色谱的固定相是多孔性微球,可由交联度很高的聚苯乙烯、聚丙烯酸酰胺、葡萄糖和琼脂糖的凝胶以及多孔硅胶、多孔玻璃等来制备。色谱的淋洗液是聚合物的溶剂。当聚合物溶液进入色谱后,溶质高分子向固定相的微孔中渗透。由于微孔尺寸与高分子的体积相当,高分子的渗透几率取决于高分子的体积,体积越小渗透几率越大,随着淋洗液流动,它在色谱中走过的路程就越长,用色谱术语就是淋洗体积或保留体积增大。反之,高分子体积增大,淋洗体积减小,因而达到依高分子体积进行分离的目的。基于这种分离机理,GPC/SEC的淋洗体积是有极限的。当高分子体积增大到已完全不能向微孔渗透,淋洗体积趋于最小值,为固定相微球在色谱中的粒间体积。反之,当高分子体积减小到对微孔的渗透几率达到最大时,淋洗体积趋于最大值,为固定相微孔的总体积与粒间体积之和,因此只有高分子的体积居于两者之间,色谱才会有良好的分离作用。对一般色谱分辨率和分离效率的评定指标,在凝胶色谱中也沿用。

4、应用

(1)检测菊糖相对分子质量

菊芋原产于北美洲,为多年生草本植物,现我国各地普遍栽培。菊芋块茎富含菊糖,总菊糖含量一般为14%~17%,还含有氨基酸、维生素等,既可作蔬菜,也可制作淀粉和酒精[1]。菊芋提取物菊糖是由D-呋喃果糖分子以β-(2,1)-糖苷键连接生成的直链多糖[2],可以作为果糖生产原料,还是极好的天然功能性食品配料,能促进双歧杆菌增殖,改善肠道功能,降低血脂血糖,促进矿物质吸收等。多糖的性质往往与其相对分子质量有一定关系,因此,测定多糖的相对分子质量对研究多糖的理化性质和生物活性均有一定的意义。

建立利用高效凝胶渗透色谱测定菊糖相对分子质量的方法,采用GPC 色谱柱,示差折光检测器检测,以三蒸水为流动相,流速0.8ml/min,柱温30℃。结果表明不同分子量标准右旋糖酐的保留时间与相应的相对分子质量对数值(lgMw)在相对分子质量1.0 × 103~2.5 ×

/ 5

范围内具有良好的线性关系(r= 0.9894),精密度实验RSD 为0.24%,重现性实验RSD 为0.21%,稳定性实验RSD 为0.38%,准确度实验相对误差在0.4% 左右。该法简便、快速、灵敏度高,精密度、重现性及稳定性均较好。(2)测定聚合物的分子量分布

合成聚合物一般是由不同分子量的同系物组成的混合物,具有两个特点:分子量大和同系物的分子量具有多分散性。目前在表示某一聚合物分子量时一般同时给出其平均分子量和分子量分布。分子量分布是指聚合物中各同系物的含量与其分子量间的关系,可以用聚合物的分子量分布曲线来描述。聚合物的物理性能与其分子量和分子量分布密切相关,因此对聚合物的分子量和分子量分布进行测定具有重要的科学和实际意义。而凝胶色谱法具有快速、精确、重复性好等优点,目前成为科研和工业生产领域测定聚合物分子量和分子量分布的主要方法。

[参考资料] 1.方征

《高分子物理》

浙江大学出版社

2005.2 2.曾幸荣

《高分子近代测试分析技术》

华南理工大学出版社

2007.5 3.许金钩 王尊本

《荧光分析法》第三版

科学出版社

2006.7 4.N.Frii and A.E.Hamielec, Adv.Chromatogr.13,41(1995)

/ 5

第四篇:吉林大学《仪器分析》 考试重点

绪论:仪器分析是指采用比较复杂或特殊的仪器设备,通过测量物质的某些物理或物理化学性质的参数及其变化来获取物质的化学组成、成分含量及化学结构等信息的一类方法。

仪器分析的特点:1.灵敏度高,检出限低。2.选择性好。3.操作简便,分析速度快,易于实现自动化。4.相对误差一般较大。5.价格一般来说比较昂贵。光学分析法

依据:物质发射光或光与物质的相互作用为基础。主要测量参数:波长、强度、方向等性质的变化。

电化学分析法测量某些电参数,如电阻(电导)、电位、电流、电量的变化。

色谱分析法:根据混合物的各组分在互不相溶的两相(固定相和流动相)中的吸附能力、分配系数或其它亲和作用的差异而建立起来的分离、测定方法。质谱法测量参数:m/z 色色谱谱分分析析法法

气固色谱(GSC):用多孔性固体为固定相,分离的对象主要是一些永久性的气体和低沸点的化合物

气液色谱(GLC):固定相是用高沸点的有机物涂渍在惰性载体上.由于可供选择的固定液种类多,故选择性较好,应用亦广泛。

分配系数;分配比k

色谱流出曲线: 检测器对组分的响应信号为纵坐标,流出时间为横坐标 ①峰高h②标准偏差δ③峰面积A④半峰宽Y1/2 =2.354δ⑤峰展宽Y = 4δ 死时间;保留时间;校正保留时间;相对保留值r

塔板理论;速 率 理 论

分离度Rs:用R = 1.5作为相邻两色谱峰完全分开的标志。

在曲线的最低点,塔板高度H最小(H最小),此时柱效最高。与H最小所对应的流速为最佳流速u最佳

柱温不能超过固定液最高允许使用温度。宽沸程的试样:宜采用程序升温的方法

柱长增加,分离度增大,对分离有利。但柱长增加,也使传质阻力增大。

气相色谱仪:气路系统;进样系统;分离系统;检测系统;可测液体样品和气体样品 分离系统由色谱柱组成,它是色谱仪的核心部件,其作用是分离样品。有两类:填充柱和毛细管柱。

1)填充柱由不锈钢或玻璃材料制成,内装固定相,一般内径为2~4 mm,长1~3m。

2)毛细管柱

与填充往相比,其分离效率高、分析速度块、样品用量小,但柱容量低、要求检测器的灵敏度高,并且制备较难。

载体(担体)和固定液组成气液色谱固定相

载体类型

大致可分为硅藻土和非硅藻土两类。硅藻土载体是目前气相色谱中常用的一种载体,又分为: 红载体和白色载体。固固定定液液::对固定液要求首先是选择性好

对固定液的选择并没有规律性可循。一般可按“相似相溶”原则来选择。在应用时,应按实际情况而定。

(i)分离非极性物质:一般选用非极性固定液,这时试样中各组分按沸点次序流出,沸点低的先流出,沸点高的后流出。(ii)分离极性物质:选用极性固定液,试样中各组分按极性次序分离,极性小的先流出。极性大的后流出。(iii)分离非极性和极性混合物:一般选用极性固定液,这时非极性组分先流出,极性组分后流出。(vi)分离能形成氢键的试样:一般选用极性或氢键型固定液。试样中各组分按与固定液分子间形成氢键能力大小先后流出,不易形成氢键的先流出,最易形成氢键的最后流出。(v)复杂的难分离物质:可选用两种或两种以上混合固定液。

色谱柱老化:除去残有溶剂、挥发杂质等。

气相色谱检测器是把载气里被分离的各组分的浓度或质量转换成电信号的装置。目前检测器的种类多达数十种。根据检测原理的不同,可将其分为浓度型检测器和质量型检测器两种:

(l)浓度型检测器: 测量的是载气中某组分浓度瞬间的变化,即检测器的响应值和组分的浓度成正比。如热导检测器和电子捕获检测器。

(2质量型检测器: 测量的是载气中某组分进入检测器的速度变化,即检测器的响应值和单位时间内进入检测器某组分的量成正比。如火焰离子化检测器和火焰光度检测器等。热导检测由于结构简单,性能稳定,几乎对所有物质都有响应,通用性好,而且线性范围宽,价格便宜,因此是应用最广,最成熟的一种检测器。其主要缺点是灵敏度较低。火焰离子化检测器是以氢气和空气燃烧的火焰作为能源,灵敏度很高,比热导检测器的灵敏度高约103倍;检出限低;火焰离子化检测器能检测大多数含碳有机化合物;死体积小,响应速度快,线性范围也宽;而且结构不复杂,操作简单,是目前应用最广泛的色谱检测器之一。缺点是不能检测永久性气体、水、一氧化碳、二氧化碳、氮的氧化物、硫化氢等物质。

电子捕获检测器也称电子俘获检测器,它是一种选择性很强的检测器,对具有电负性物质(如含卤素、硫、磷、氰等的物质)的检测有很高灵敏度。它是目前分析痕量电负性有机物最有效的检测器。缺点是线性范围窄,只有103左右,且响应易受操作条件的影响,重现性较差。

火焰光度检测器,又称硫、磷检测器,它是一种对含磷、硫有机化合物具有高选择性和高灵敏度的质量型检测器,检出限可达10-12g·S-1(对P)或10-11g·S-11(对S)。

一个优良的检测器应具以下几个性能指标:灵敏度高,捡出限低,死体积小,响应迅速,线性范围宽,稳定性好。通用性检测器要求适用范围广;选择性检测器要求选择性好。保保留留指指数数人人为为规规定定正正构构烧烧烃烃的的保保留留指指数数为为其其碳碳数数乘乘110000,如如正正己己烷烷和和正正辛辛烷烷的的保保留留指指数数分分别至则别为为660000和和8800OO。至于于其其他他物物质质的的保保留留指指数数,则可可采采用用两两个个相相邻邻正正构构烷烷烃烃保保留留指指数数进进行行标标定定。I=100?[nlgtr'(x)-lgtr'(Cn)

lgtr'(Cn+1)-lgtr'(Cn)色色谱谱定定性性鉴鉴定定方方法法::1.利用纯物质定性的方法:

利用保留值定性:通过对比试样中具有与纯物质相同保留值的色谱峰,来确定试样中是否含有该物质及在色谱图中位置。不适用于不同仪器上获得的数据之间的对比。

利用加入法定性:将纯物质加入到试样中,观察各组分色谱峰的相对变化。

2.利用文献保留值定性:相对保留值r21:相对保留值r21仅与柱温和固定液性质有关。在色谱手册中都列有各种物质在不同固定液上的保留数据,可以用来进行定性鉴定。3.保留指数定性 色色谱谱定定量量分分析析方方法法::色谱峰面积的测定方法:①峰高乘半峰宽法 ②峰高乘峰低宽度法

③峰高乘平均峰宽法

④峰高乘保留时间法

⑤自动积分仪法 常用的几种定量方法:(1)归一化法:归一化法简便、准确;进样量的准确性和操作条件的变动对测定结果影响不大;仅适用于试样中所有组分全出峰的情况。

(2)外标法也称为标准曲线法,外标法不使用校正因子,准确性较高;操作条件变化对结果准确性影响较大。对进样量的准确性控制要求较高,适用于大批量试样的快速分析。(3)内标法:内标物要满足以下要求:(1)试样中不含有该物质;(2)与被测组分性质比较接近;(3)不与试样发生化学反应;(4)出峰位置应位于被测组分附近,且无组分峰影响。内内标标法法特特点点::

(1)内标法的准确性较高,操作条件和进样量的稍许变动对定量结果的影响不大。(2)每个试样的分析,都要进行两次称量,不适合大批量试样的快速分析。气相色谱法的局限性:

在缺乏标准样品的情况下定性比较困难;沸点太高或热不稳定的物质都难于应用气相色谱法进行分析。高高效效液液相相色色谱谱法法

特点:高压、高效、高速,高沸点、热不稳定有机及生化试样的高效分离分析方法。(1)高压输液泵(2)梯度淋洗装置(3)进样装置:流路中为高压力工作状态,通常使用耐高压的六通阀进样装置(4)高效分离柱(5)高效液相色谱检测器:紫外光度检测器最常用 在高效液相色谱中, 速率方程中的分子扩散项B/U较小,可以忽略不计,而只有两项,即:

H = A + C u

故液相色谱H-u曲线与气相色谱的形状不同 影响分离的主要因素有流动相的流量、性质和极性。

柱子内径一般为 1 ~ 6 mm,柱长一般为0.5m,形状为直形柱。光谱分析法导论

光学分析法是基于测量物质所发射或吸收的电磁波的波长和强度的分析方法。

原子光谱(发射、吸收、荧光),分子光谱;线光谱,带光谱

把原子中所可能存在的光谱项---能级及能级跃迁用平面图解的形式表示出来, 称能级图。自然变宽;热(Doppler)变宽;压力变宽 自吸;自蚀

原子发射光谱分析

方法原理:原子的核外电子一般处在基态运动,当获取足够的能量后,就会从基态跃迁到激发态,处于激发态不稳定,迅速回到基态时,就要释放出多余的能量,若此能量以光的形式出显,既得到发射光谱。

光源的类型:电弧:直流电弧、交流电弧;火花;电感耦合等离子体焰炬ICP; 直流电弧: 稳定性差,只能作定性分析

交流电弧: 稳定性好,可作定量分析;缺点:蒸发温度低,灵敏度差

ICP光源的特点:1.具有好的检出限。溶液光谱分析一般元素检出限都很低。2.ICP稳定性好,精密度高,相对标准偏差约1%。3.基体效应小。4.光谱背景小。5准确度高,相对误差为1%,干扰少6自吸效应小 灵敏线:信号强的谱线

共振线: 电子由高能态跃迁至基态所发射的谱线.原子吸收与原子荧光光谱法

原子吸收:是基于物质所产生的原子蒸气对特定谱线的吸收作用来进行定量分析的方法。基态→第一激发态,又回到基态,发射出光谱线,称共振发射线。

原子吸收线的半宽度:一般在0.01~0.1Å; 发射线半宽度:一般在0.005~0.02 Å 锐线光源:空心阴极灯,即发射线半宽度远小于吸收线半宽度光源.对光源的要求:辐射强度大,稳定性高,锐线性,背景小等。(1)火焰原子化器

构造:三部分:喷雾器,雾化器,燃烧器。

雾化器--使试液雾化; 燃烧器--预混合型燃烧器,将雾化的试液与燃气混合 火焰原子化器特点: 优:简单,火焰稳定,重现性好,精密度高,应用范围广。

缺:原子化效率低只能液体进样。

石墨炉原子化器:优点:绝对灵敏度高,检出

达10-12-10-14g 原子核化效率高。

缺点:基体效应,背景大,化学干扰多,重现性比火焰差。分析方法:(1).工作曲线法,最佳吸光度0.1---0.5,工作曲线弯曲原因。

⑵.标准加入法,能消除基体干扰,不能消背景干扰。使用时,注意要扣除背景干扰。原子荧光光谱法是通过测量原子在辐射能激发下所发射的荧光强度进行定量分析的发射光谱分析法。但所用仪器与原子吸收光谱法相近。

产生:气态自由原子吸收特征辐射后跃迁到较高能级,然后又跃迁回到基态或较低能级,同时发射出与原激发辐射波长相同或不同的辐射即原子荧光。光源可用空心阴极灯,检测系统可用光电检测(光电倍增管), 与原子吸收区别:(1)光源与检测系统不在一条直线上(2)光源需使用高强度HCL(3)分光系统可不用光栅,甚至可用非色散型滤光片,或用日盲管PMT(320nm以上不响应)

紫外:

紫外光谱的形成:分子在入射光的作用下发生了价电子的跃迁,吸收了特定波长的光波形成。

各种跃迁所所需能量(ΔE)的大小次序为: s?s*n?s*p?p*n?p*常见术语:  生色团:分子中产生紫外吸收带的主要官能团

 助色团:本身在紫外区和可见区不显示吸收的原子或基团,当连接一个生色团后,则使生色团的吸收带向红移并使吸收强度增加,一般为带有p电子的原子或原子团

 红移:向长波移动;蓝移:向短波移动

 增色效应:使吸收带的吸收强度增加的效应;减色效应:使吸收带的吸收强度降低的效应

溶剂的选择:1溶剂必须溶解被测物;2.选非极性溶剂(对有机物)3.考虑截止波长

光源

钨灯(卤钨灯)320~2500 nm;氢灯(氘灯)

165~350 nm 吸收池:可见区——玻璃;紫外区——石英

红红外外吸吸收收光光谱谱法法

分子中的原子与化学键处于不断的运动中。除了原子外层价电子跃迁以外,还有分子中原子的振动和分子本身的转动。通常所测得的光谱实际上是振动-转动光谱,简称振转光谱,即红外光谱。

分子中基团的振动和转动能级跃迁产生:振-转光谱

红外光谱测定的优点:任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。

红外光谱图:纵坐标为吸收强度,横坐标为波数1/λ,单位:cm-1 应用:有机化合物的结构解析。

红外光谱产生的条件

(1)辐射应具有能满足物质产生振动跃迁所需的能量;

(2)辐射与物质间有相互偶合作用。

对称分子:没有电偶极矩的变化,辐射不能引起共振,无红外活性。如:N2、O2、Cl2 等。

非对称分子:有电偶极矩的变化,有红外活性。两类基本振动形式:伸缩振动,变形(弯曲)振动

影影响响峰峰位位变变化化的的因因素素::1.内部因素【1)电子效应2)空间效应:环张力,空间位阻】2.氢键效应 制制样样方方法法::气体——气体池;液体:①液膜法——难挥发液体②溶液法——液体池;固体:①研糊法(液体石腊法)②KBr压片法③薄膜法 红红外外光光谱谱的的特特征征性性::与一定结构单元相联系的、在一定范围内出现的化学键振动频率——基团特征频率(特征峰);基团所处化学环境不同,特征峰出现位置变化 常见的有机化合物基团频率出现的范围:4000~670 cm-

1(1)4000~2500 cm-1 X—H伸缩振动区(X=O,N,C,S);(2)2400~2000 cm-1 三键,累积双键伸缩振动区;(3)1900~1200 cm-1双键伸缩振动区;(4)1200~670 cm-1 X—Y伸缩,X—H变形振动区 分分子子的的不不饱饱和和度度::是指分子结构中达到饱和所缺一价元素的“对”数。如:乙烯变成饱和烷烃需要两个氢原子,不饱和度为1。

计算:

若分子中仅含一,二,三,四价元素(H,O,N,C),则可按下式进行不饱和度的计算:

Ω=(2 + 2n4 + n3-n1)/ 2

n

4nn1 分别为分子中四价,三价,一价元素数目。

核核磁磁共共振振波波谱谱法法 原原子子核核的的自自旋旋::

(1)I=0 的原子核

O(16);C(12);S(22)等,无自旋,没有磁矩,不产生共振吸收。

(2)I=1 或 I >1的原子核

I=1:2H,14N; I=3/2: 11B,35Cl,79Br,81Br; I=5/2:17O,127I

(3)I=1/2的原子核

1H,13C,19F,31P

原子核可看作核电荷均匀分布的球体,并自旋,有磁矩产生,是核磁共振研究的主要对象,C,H也是有机化合物的主要组成元素。

当置于外加磁场H0中时,相对于外磁场,可以有(2I+1)种取向

氢核(I=1/2),两种取向:(1)与外磁场平行,能量低,磁量子数m=+1/2;(2)与外磁场相反,能量高,磁量子数m=-1/2;共共振振条条件件::(1)核有自旋(磁性核)(2)外磁场, 能级裂分;(3)照射频率与外磁场的比值ν0 /H0 =γ/(2π)

由有机化合物的核磁共振图,可获得质子所处化学环境信息,进一步确定化合物结构。

在有机化合物中,各种氢核周围的电子云密度不同(结构中不同位置)共振频率有差异,即引起共振吸收峰的位移,这种现象称为化学位移。核核磁磁共共振振波波谱谱仪仪::永久磁铁;射频振荡器;射频信号接受器;样品管 化化学学位位移移的的表表示示方方法法::相对标准:四甲基硅烷 Si(CH3)4

(TMS)(内标)

位移常数

δTMS=0 为什么用TMS作为基准?(1)12个氢处于完全相同的化学环境,只产生一个尖峰;(2)屏蔽强烈,位移最大。与有机化合物中的质子峰不重迭;(3)化学惰性;易溶于有机溶剂;沸点低,易回收。质谱法

进样系统(1.气体扩散2.直接进样3.气相色谱);离子源;质量分析器;检测器

离子在磁场中的轨道半径R取决于m/e、H0、V,改变加速电压V, 可以使不同m/e的离子进入检测器。

离子的分离与检测—— 质量分析器

离离子子峰峰的的主主要要类类型型::分子离子峰;碎片离子峰;重排离子峰;同位素离子峰; 有机分子的裂解:σ―断裂,α―断裂,重排断裂 电电化化学学分分析析法法

电化学分析方法主要有下面几类:

1.电导分析法:

测定电阻参量

2.电位分析法:

测定电压参量

3.电解分析法:

测定电量参量

4.库仑分析法:

测定电流-时间参量

5.极谱法和伏安: 测定电压-电流参量

第五篇:仪器分析总结

1.紫外可见光谱产生原因?有哪些特点? 原因:分子具有不同的特征能级,当分子从外界吸收能量后,就会发生相应的能级跃迁。同原子一样,分子吸收能量具有量子化特征,记录分子对电磁辐射的吸收程度与波长的关系可以得到吸收光谱。特点:灵敏度高准确度好选择性好,仪器价格低廉操作简便,快速分析速度快应用范围广。

2.电子跃迁有哪几种类型?它们的能量补充范围。从化学键的性质考虑,与有机化合物分子的紫外-可见吸收光谱有关的电子为:形成单键的σ电子,形成双键的π电子以及未共享的或称为非键的n电子.电子跃迁发生在电子基态分子成键轨道和反键轨道之间或基态原子的非键轨道和反键轨道之间。处于基态的电子吸收了一定的能量的光子之后,可分别发生σ→σ*,σ→π*, π → σ*, n →σ*, π →π*, n→π*等跃迁类型.π →π*, n →π*所需能量较小,吸收波长大多落在紫外和可见光区,是紫外-可见吸收光谱的主要跃迁类型.四种主要跃迁类型所需能量的大小顺序为:n →π* < π →π* n →σ* < σ→σ*.一般σ→σ*跃迁波长处于远紫外区,<200 nm, π →π*, n →σ*跃迁位于远紫外到近紫外区,波长大致在150~250nm之间,n →π*跃迁波长近紫外区及可见光区,波长位于250nm~800nm之间.

3.紫外可见光谱的吸收光谱带有几种?原因,特点。首先有机化合物紫外吸收光谱中,如果存在饱和基团,则有σ →σ*跃迁吸收带,这是由于饱和基团存在基态和激发态的 σ电子,这类跃迁的吸收带位于远紫外区.如果还存在杂原子基团,则有n →σ*跃迁,这是由于电子由非键的n轨道向反键σ轨道跃迁的结果,这类跃迁位于远紫外到近紫外区,而且跃迁峰强度比较低.如果存在不饱和C=C双键,则有π →π*, n →π*跃迁,这类跃迁位于近紫外区,而且强度较高.如果分子中存在两个以上的双键共轭体系,则会有强的K吸收带存在,吸收峰位置位于近紫外到可见光区。对于芳香族化合物,一般在185nm,204nm左右有两个强吸收带,分别成为E1, E2吸收带,如果存在生色团取代基与苯环共轭,则E2吸收带与生色团的K带合并,并且发生红移,而且会在230~270nm处出现较弱的精细吸收带(B带).这些都是芳香族化合物的特征吸收带。4.影响紫外分子光谱的因素有哪些?

共轭效应:分子中共轭体系形成大π键,使得各能级之间的能量差减小,因而产生吸收峰长移并产生深色效应的现象。助色效应:当助色团与发色团相连,由于助色团的n电子与发色团的π电子发生共轭,结果使得吸收峰长移产生深色效应的现象。超共轭效应:由于烷基的∂电子与共轭体系的π电子共轭,使得吸收峰长移并产生深色效应的现象。溶剂效应:由于溶剂的极性不同引起某些化合物的吸收峰发生长移或短移的现象。

5.朗伯比尔定律成立的前提条件是什么?他在紫外可见分光光度法中的地位和意义。它的表达式说明了什么?(1)入射光为单色光。溶液为稀溶液(2)地位及意义。是吸光度法的基本定律。(3)表达式。表明在稀溶液中。物质对单色光的吸光度与吸光物质溶液的浓度和液层厚度的乘积成正比。

6.在紫外可见分光光度定量分析中,影响准确度的因素有哪些?如何减小测定误差?

(1)样品溶液浓度的影响:比尔定律只适用于浓度小于0.01mol/L的稀溶液,因为浓度高时吸光粒子间的平均距离减小,受粒子间电荷分布相互作用的影响,他们的摩尔吸收系数发生改变导致偏离比尔定律,因此。待测溶液的浓度应该控制在0.01mol/L以下。(2)单色光不纯引起的偏离:比尔定律只适用于单侧光,但一般的分光机所提供的入射光并不是纯的单色光,而是波长范围较窄的复色光,由于同一物质对不同波长光的吸收程度不同导致对比尔定律的偏离。实际上理论上的单色光是不存在的。我们所做的只能是让入射光的光谱带宽尽可能的小,要尽可能的靠近单色光。(3)其他原因:光通过吸收池时约有十分之一或更多光能因反射而损失。用参比溶液对比来补偿。由于仪器性能限制通过吸收知道光不是平行光,而是稍稍倾斜的光束。紫外可见分光光度计主要部件类型和性能原理。光源发射强度足够而稳定的连续入射光。

原理:电子的能级跃迁产生的,利用分子对紫外可见光的吸收特性建立起来的分析方法

仪器结构:光源-单色器-吸收池-检测器-信号指示系统。

光源(1)钨灯或卤钨灯,波长范围350至一千纳米,作为可见光源(2)氢灯或氘灯,气体放点发光,发射150-400nm的紫外连续光谱。

单色器:将来自光源的含各种波长的复色光按波长顺序色散并,从中分离所需波长的单色光。(1)色散元件,菱镜 光栅(2)准直镜,是以狭缝为焦点的聚焦镜,将进入单色器的发散光变成平行光,又将发散后的单色平行光聚焦于出光狭缝(3)狭缝。为光的进出口包括进光狭缝和出光狭缝,进光狭缝限制杂散光进入,单色光由出光狭缝分出。

样品池:用于乘装试液,为光学玻璃池或石英池

检测器:是一类光学电转器,将接受的光学电讯号转变为便于测量的电讯号,常用的有光电池,光电管及光电信增管。

信号处理与显示:将检测器输出的信号放大并显示。9.判断在紫外可见光区,下列化合物产生几个吸收带。乙烯 K带 苯乙烯 E带,K带 丁二烯 K带 R带 苯甲醛 R带 E带

8.举例说明紫外可见分光光度法在定性分析中的应用?(1)紫外光源可以用于有机化合物的定性分析通过测定物质的最大吸收波长和吸光系数或者将未知化合物的紫外吸收光谱与标准谱图对照可以确定化合物的存在。(2)可以用来推断有机化合物的结构。(3)进行化合物纯度的检查。(4)进行有机化合物,配合物或者部分无机化合物的定量测定。

1.从原理和仪器两方面比较分子荧光,磷光的异同点。荧光是激发单重态最低振动能级至基态各振动能级间跃迁产生的,磷光是由激发三重态的最低振动能级至基态各振动能级间跃迁产生的。/分子荧光和分子磷光属于光致发光,但是荧光发射,在电子能量变化中不涉及电子自旋的改变,荧光的寿命较短为10-5s。磷光发射,在电子能量变化中伴随电子自旋的改变,磷光的寿命较长,为几秒甚至更长。/化学发光基于在化学反应过程中,生成了能产生发射光谱的激发态物质,产生的光谱不一定是分析物本身的光谱,而往往是被分析物反应生成物质的光谱,有时被分析物用作抑制剂或催化剂。3.酚酞与荧光素,哪一种的荧光量子产率高。

荧光素的荧光量子产率高。因为荧光素分子中的氧桥构成三环共面的刚性平面,而这种结构可以减少分子的振动,使分子与溶剂或其他溶质分子的相互作用减小,也就减少了碰撞去活的可能性,又含羟基等给电子基增强了兀电子共轭强度,使最低激发态单重态与基态之间的跃迁概率增加,使荧光增强。

6.为什么分子荧光光度分析法的灵敏度通常比分子吸光光度法的要高。

因为荧光是从入射光的直角方向检测,即在黑背景下检测荧光的发射,而且荧光的发射强度大,可以通过各种方法来增强,从而提高检测的灵敏度,而分子吸光光度法中存在着严重的背景干扰,因此,分子荧光光度法灵敏度通常比分子吸光光度法的高。

7.激发光谱,荧光发射光谱和吸收光谱三者的关系。荧光发射光谱的形状与激发光波长无关。荧光发射光谱与吸收光谱是镜像关系。(1)吸收光谱: 当一束连续光通过透明介质时,如果光波能量和介质中从基态到激发态的能量间隔相等,介质中的状态将由基态被激发到激发态,透过透明介质的光将因这样的吸收而光强减弱,由于激发态不同,它们的吸收能量不一样,这样在记录透过透明介质后的光强时就形成了光强随着波长变化的谱线,即吸收光谱。吸收光谱可以给出材料基质和激活离子的激发态能级的位置和它们的分布情况。(2)荧光光谱: 固定激发波长,扫描发射波长,所得到荧光强度—发射波长的关系曲线。可用于荧光物质的鉴别,并作为荧光测定时选择恰当的测定波长或滤光片的依据。

(3)激发光谱: 固定发射波长,扫描激发波长,而获得荧光强度——发射波长的关系曲线。可用于荧光物质的鉴别,并在进行荧光测定时选择适宜的激发波长。4.苯胺在PH3还是PH10时荧光更强,解释之。

由于苯胺带有碱性的胺基,它在PH7~12的溶液中以分子形式存在,会发出蓝色的荧光,当PH为3时,溶液中的苯胺多数以离子形式存在,因此苯胺在PH10时的荧光比PH3时更强。

1、比较原子吸收与分子吸收的异同。

基态原子吸收其共振辐射,外层电子由基态跃迁至激发态而产生原子吸收光谱,原子吸收光谱位于光谱的紫外区和可见区,原子吸收光谱是线状光谱。分子吸收光谱也叫紫外可见吸收光谱法是利用某些物质的分子吸收200~800Nm光谱区的辐射来进行分析测定的方法,这种分子吸收光谱产生于价电子和分子轨道上的电子能级间的跃迁,是带状光谱。

3、原子化器的类型及特点

(一)火焰原子化器(1)雾化器:利用压缩空气等将样品变成高度分散状态的细小雾滴,生成的雾滴随气体流动并被加速,形成粒子直径为微米级的气溶胶,气溶胶粒子直径越小,火焰中生成的基态原子越多。(2)混合室:使气溶胶粒层更小更均匀,使燃气助燃气充分混合,记忆效应小。(3)燃烧器:通过火焰燃烧使试样雾滴在火焰中经过干燥蒸发熔融和热解毒过程,将待测原素原子化,要求原子化程度高噪声小,火焰稳定,光路原子数目多。

化学计量焰:火焰层次清晰,温度高,稳定,干扰小,适合多种元素测定。

复燃焰:温度较化学计量焰较低,有还原性,适于易形成难离解氢化物的元素测定。

贫燃焰:温度较低,有较强氧化性易于测定易离解易电离的元素。

(二)非火焰原子化器: 由电源,炉体和石墨管三部分组成,利用电热阴级发射等离子体或激光等方法使试样中待避元素形成基态自由原子。

4、什么是锐线光源,为什么原子吸收要使用锐线光源。锐线光源:发射线半宽度小于吸收线半宽度的光源,且发射线中心频率与吸收线中心频率一致的光源。

在使用锐线光源时,光源发射线半宽度很小,并且发射线和吸收线的中心频率一致。这时发射线的轮廓可以看作一个很窄的矩形,即峰值吸收系数Kn,在此轮廓内不随频率改变而改变,吸收仅限于发射线轮廓内。这样,求出一定的峰值吸收系数即可测定出一定的原子数。所以把锐线当做单色光而测量其峰值吸光度即可用朗伯-比尔定律进行定量分析。

5、用石墨炉原子化器进行测定时,为何要通惰性气体 加热光源供给原子化器能量,一般采用低压、大电流的交流电,为保证炉温恒定,要求提供的电流稳定,炉温可在1~2s内达3000℃,为防止试样及石墨管氧化,必须不断通入惰性气体,有利于难溶氧化物的原子化。

7、氘灯法校正背景存在问题

使用:先用锐线光源测定分析线的原子吸收和背景吸收的总吸光度,再用连续光源发出的辐射在同一波长下测定背景吸收,计算俩次测定吸光度之差,即可使背景吸收得到校正。

问题:只适用于波长190-350nm的吸收线,而且要求氘灯和元素空心阴极灯发出的俩光束必须严格重合。

8、原子吸收的干扰,如何消除。

(1)物理干扰:试样与标准样的黏度,表面张力,相对密度等物理性质不同时,将会使喷入火焰的速度和雾滴大小不同。由试样和标准样物理性质的差别所产生的干扰称为物理干扰。消除:配置与试样溶液组成相似的标准溶液,或采用标准加入法。

(2)电离干扰:由于很多元素在高温火焰中产生电离,使单位体积内的基态原子数减少,灵敏度降低。消除:适当控制火焰温度,加入消电离剂(钾,钠等易电离的碱金属)

(3)化学干扰:被测元素与共存的其他元素发生化学反应,生成一种稳定化合物而影响原子化效率。

1、阳离子的干扰:部分被测元素与干扰离子形成难溶的混合晶体

2、阴离子的干扰:主要是磷酸根离子和硫酸根离子对碱金属的干扰。消除:1.加入释放剂,使被测元素从化合物中释放出来。2.加入络合保护剂,使被测元素在处于保护层的情况下进入火焰,在高温下保护剂先被破坏而释放出被测元素或与干扰元素生成稳定化合物,将被测元素解离出来。3.加入助熔剂,对高熔点的待测物起助熔作用,提高灵敏度。4.利用适当高温火焰。5.沉淀、溶剂萃取、离子交换等方法。6.采用标准加入法。(4)光谱干扰1.光谱干扰:由于分析的谱线与邻近线不能完全分开而产生光谱干扰,另一种是由于发射共振线轮廓与火焰非测定元素的吸收线轮廓相互重叠所造成的干扰。消除:采用适宜狭缝宽度,降低灯电流或采用其他分析线。2.背景干扰:产生原因见6 消除:1.临近非共振线校正:用分析线测量总吸光度。以空心阴极灯发射的与分析线邻近的非吸收线测量背景吸光度。2.氘灯自动背景校正:先用锐线光源测定分析线的原子吸收和背景吸收的总吸光度,再用连续光源发出的辐射在同一波长下测定背景吸收,计算两次测定吸光度之差,即可使背景吸收得到校正。3.亲曼效应背景校正:根据磁场将简并的谱线分裂成具有不同偏振特性的成分,由谱线的磁特性和偏振特性~别被测元素和背景吸收。4.自吸收背景校正:首先使空心阴极灯在弱脉冲低电流下工作,此时发射轮廓较窄的谱线,用以测定待测~与背景吸收,再以短暂的强脉冲高电流通过空心阴极灯,使其产生自吸收并使发射线的谱线轮廓变宽,两种条件~定的吸收光度之差,是校正了背景吸收的净原子吸收的吸光度。

6、原子吸收光谱分子产生背景的原因及影响(1)分子吸收:在原子化过程中生成的气体分子、氧化物、盐类和氢氧化物等分子对光的吸收引起的干扰(减少浓度,高温火焰)(2)光散射:在原子化过程中产生的固体微粒对光的阻挡而发生的散射现象。(3)火焰气体吸收:火焰气体对光谱产生吸收,波长越短,吸收越强烈(使用空气,氢或氩气_氢火焰)

2为什么可用分离度R作为色谱柱的总分离效能指标。分离度R为相近两色谱峰的保留值之差与两峰宽度平均值之比,在色谱分析时,常碰到两个难分离的物质情况。相邻两组分在色谱柱中的分离情况,柱效只能说明柱子的效率高低,却反映不出难分离物质对的分离效果,而选择性则反映不出效率高低。分离度既可以判断两种物质是否完全分离,说明柱子的分离能力,同时在计算的过程中要引入半峰宽,这个指标可以反映柱效的高低,所以分离度R作为色谱柱的总分离效能指标。

9.色谱分离基本方程式的含义,对色谱分离有什么指导意义?

方程式,主要反映了分析柱的性能,它表明分离度随体系的热力学性质的变化而变化,同时与色谱柱条件有关。(1)当体系的热力学性质一定时,分离度与n的平方根成正比。对于选择柱长有一定的指导意义,增加柱长和改进分离度但过分增加柱长会显著增长保留时间引起色谱峰扩张,同时选择性能优良的色谱柱,并对色谱条件进行优化,也可以增加提高分离度。(2)方程式说明K值增大也对分离有力,但k值太大会延长分离时间增加分析成本。(3)提高柱效选择性可以提高分离度分离效果越好,因此,可以通过选择合适的固定相,增大,不同组分的分配系数差异,从而实现分离。10.色谱定性的依据是什么?主要有哪些定性方法? 依据:根据组分在色谱柱中保留值的不同进行定性

方法:1利用标准样品对照定性,在一定的色谱条件下。一个未知物质只有一个确定的保留时间,由此将已知样品在相同的色谱条件下的保留时间与未知物的保留时间进行比较,就可以定性鉴别未知物2相对保留值法。在相同条件下,分别测出组份i的基准物质s的调整保留值,再计算即可,用已求出的相对保留值与文献相对应值比较定性。3利用加入已知纯物质增加峰高定性法:将纯物质加入试样中若发现有新峰或在未知峰上有不规则形状则两者非同种物质,若峰增高而半峰宽不相应增加则可能为同种物质。4利用文献上保留指数,用两个紧靠待测组分的标准正构烷烃标定,使待测主峰的保留值正好在两个正构烷烃的保留值之间,再进行色谱实验后计算保留指数来进行定性分析。5与化学方法配合进行定性分析,利用检测器的选择性进行定性分析,6与其他仪器联用定性。

12,为什么要用定量校正分子,什么情况下可以不用? 色谱定量分析是基于被测物质的量与其峰面积的正比关系,但由于同一检测器对不同的物质具有不同的响应值,所以两个相等量的不同物质的峰面积往往不想相等,这样就不能用峰面积来直接计算物质的含量,为了使检测器产生的响应信号能真实地反映物质的含量就要对响应值进行校正,为此引入定量校正分子,以校正峰面积,使之能真实反映组分的含量。

气相分析中间或者溶媒一般不用定量校正因子。在归一化法,测定同系物或性质很相近,响应值大小一样的话或很接近,把他们的校正因子看作一时,可省略定量校正因子,测某种很纯的物质的纯度时,因杂质含量很小,也可省略定量校正因子来计算。

13.有哪些常用的色谱定量分析方法?比较优缺点及适用情况。

(1)归一化法:把试样中所有组分的含量之和按100%计算,以他们相应的色谱峰面积或峰高为定量参数,通过下列公式计算各组分含量。

优点,简便、准确,当操作条件、进样量、流速等变化时,对分析结果影响较小

缺点,所有组分都要出峰,而且分离良好才行。这种方法常用于常量分析,尤其适用于进样量很少而体积不易准确测量的样品,条件是试样中所有组分都能流出色素柱,并在色素图显示色素峰。

(2)内标法:准确称取样品,加入一定量的某种纯物质作为内标物,然后进行色谱分析,根据被测物和内标物的质量及在色谱图上相应的峰面积比,求出某组分的含量。

优点,可消除基体带来的干扰,消除了由人为而造成的系统误差,定量较准确。

缺点,每次分析都要准确称取试样及内标物的质量,不宜做快速控制分析。

适用于试样中各组分含量相差悬殊,或只需测定试样中某个或某几个组分而且试样中所有组分不能全部出峰时

(3)外标法,将欲测组份的纯物质配制成不同浓度的标准溶液,浓度与待测组分相近,取固定量的上述溶液进行色谱分析,得到标准样品的对应色谱图,以峰高或峰面积对浓度作图。分析样品时,在上述完全相同的色谱条件下,取制作标准曲线同样量的试样分析、测得该试样的响应信号后,由标准曲线即可查出其百分含量。优点,操作简单、计算方便。缺点,结果的准确度取决于进样量的重现性和操作条件的稳定性。

此法适用于试样中各组分浓度变化范围不大时。(4)内标标准曲线法:不必测出校正因子,消除了某些操作条件的影响,适用于液体读样的常规分析。

11.何为保留指数?应用保留指数作定性指标有什么优点?如何计算?

保留指数:人为地将正构烷烃的碳数n乘以100定为其的保留指数,以正构烷为参考标准,用两个紧靠其的标准正构烷烃来标定使待测组分的保留值正好在两个正构烷烃的保留之间。优点,准确度高,可根据固定相和柱温直接与文献值对照而不必使用标准式样。1气象色谱的分离原理。

利用物质在流动相与固定相中分配或吸附性能等性质的差异,当两相做相对运动时,待测组分在两相之间进行多次反复的质量交换,使混合物中各组分达到分离,进而通过检测器达到检测分析的目的。2.气相色谱仪的构成及作用。

(1)气路系统,是一个连续运行的密闭管路系统,携带样品通过色谱柱,提供样品在柱中运行的动力。(2)进样系统采用微量进样器或进样阀引入样品,并使样品瞬间汽化。(3)分离系统,分填充柱和毛细管柱两种,样品在次得到所需要的分离。(4)检测系统,将经过色谱柱分离后的各组份的量转变成便于记录的电信号,然后对被分离物质的组成和含量进行鉴定和测量(5)温度控制系统,控制并显示汽化室、色谱柱柱效、检测器及辅助部分的温度。(6)记录系统,对色谱数据进行自动处理,又可对色谱系统的参数进行自动控制。3对载体和固定液的要求。

载体:

1、多孔性,即表面积大,使固定液与试样的接触面较大。

2、表面是化学惰性的,即表面没有吸附性或吸附性很弱,不与被测物质起化学反应。3,热稳定性好,有一定的机械强度不易破碎。

4、对载体力度的要求,均匀细小又不能过细。

固定液:1,化学稳定性要好,不与被测物质起任何化学反应,2、对试样各组分有适当的溶解能力。3,挥发性小。4,具有较高的选择性,即对沸点相同或相近的不同物质有尽可能高的分离能力。5,热稳定性好,在操作温度下呈液体状态下且不发生分解。

4.比较红色载体与白色载体的性能,何为硅烷化载体,有什么优点?

红色载体:由天然硅藻土直接煅烧而成,表面孔穴密集孔径较小表面积大,涂固定液量多,在同样大小柱中分离效率较高,结构紧密,力学性能好,但表面由许多吸附活性中心,造成极性固定液分布不均,适宜分析非极性或弱极性的样品。白色载体:是天然硅胶涂在煅烧之前加入了助溶剂,形成较大的疏松颗粒,表面孔径较大,表面积较小,机械强度不如红色载体,表面极性中心显著减少,吸附性小,可用于分析极性物质。硅烷化载体:将载体进行钝化处理,用硅烷化试剂和载体表面的硅醇、硅醚基团起反应,消除表面氢键的结合能力,屏蔽活性中心后的载体。

优点:改进了载体的性能可以分析化学性质活泼的式样。5“相似相溶”原理应用于固定液选择的合理性及其存在的问题。

合理性:当组分与固定液分子极性相似时,固定液和被测组分两种分子间的作用力强,被测组分在固定液中的溶解度就大,分配系数就大,也就是说被测组分在固定液中溶解度或分配系数的大小与被测组分和固定液两种分子间的相互作用力的大小有关。

(1)分离非极性物质一般选用非极性固定液,这时试样中各组分按沸点次序先后流出色谱柱,沸点低的先出峰,沸点高的后出峰。(2)分离极性物质,选用极性固定液,这时试样中各组分主要按极性顺序分离,极性小的流出色谱柱,极性大的后流出色谱柱。(3)分离非极性和极性化合物时一般选用极性固定液,这时非极性组分先出峰极性组分后出峰。(4)对于能形成氢键的试样,如,醇酚胺,和水等的分离,一般选择极性的或是氢键型的固定液,这时试样中各组分按与固定液分子间形成氢键的能力大小先后流出,不易形成氢键的先流出,最易形成氢键的后流出。(5)对于复杂的难分离的物质可以用两种或两种以上的混合固定液。

存在问题,以上讨论的仅是对固定液的大致的选择原则,应用时有一定的局限性,事实上在色谱柱中的作用是较复杂的,因此,固定液的选择应主要靠实践。6.热导检测器的工作原理,其灵敏度的影响因素。原理:热导池作为检测器是基于不同的物质具有不同的热导系数。当电流通过钨丝时,钨丝被加热到一定温度时,钨丝的电阻值也就增加到一定位。在未进试样时,通过热导池的两个池孔(参比池和测量池)的都是载气。由于载气的热传导作用,使钨丝的温度下降,电阻减小,此时热导池的两个池孔中钨丝温度下降和电阻减小的数值是相同的。在进入试样组分后,载气流经参比池,而载气带着试样组分流经测量池,由于被测组分与载气组成的混合气体的导热系数和载气的导热系数不同,因而测量池中的钨丝散热情况就发生变化,使两个池孔中的两根钨丝电阻值之间有了差异,此差异可以利用电桥测量出来。

影响因素:桥路工作电流、热导池体温度、载气性质和流速、热敏原件阻值及热导池死体积等对检测器灵敏度有影响。

7.氢焰电离检测器的工作原理,操作条件?

原理:火焰中的电离是化学电离,即有机物在火焰中热裂解,发生自由基反应。化学电离产生的正离子和电子在外加直流电场作用下向两极移动而产生微电流。经放大后,记录下色谱峰。

操作条件:(1)气体流速(2)气体纯度(3)极化电压(4)使用温度

1高效液相色谱与经典液相色谱有何异同?

高效 高速 高灵敏 高自动化 a在分析速度上比经典液相色谱法快数百倍。b传质阻力小,分离效率高,在经典液相色谱法中难分离的物质,一般在高效液相色谱法中都能得到满意的效果。C分析灵敏度比经典液相色谱有较大提高。

4薄层色谱与高效液相色谱相比,两者在分离方法上有何优缺点?

高效液相色谱法是色谱法的一个重要分支,以液体为流动相,采用高压输液系统,将具有不同极性的单一溶剂或不同比例的混合溶剂、缓冲液等流动相泵入装有固定相的色谱柱,在柱内各成分被分离后,进入检测器进行检测,从而实现对试样的分析。

优点:分离效率高,选择性好,检测灵敏度高,操作自动化,应用范围广; 不受试样的挥发性和热稳定性限制,应用范围广;流动相种类多,可通过流动相的优化达到高的分离效率;一般在室温下分析即可,不需高柱温。缺点:分析成本高,液相色谱仪价格及日常维护费用贵,分析时间一般比气相长。

薄层色谱法:系将适宜的固定相涂布于玻璃板、塑料或铝基片上,成一均匀薄层。待点样、展开后,根据比移值(Rf)与适宜的对照物按同法所得的色谱图的比移值(Rf)作对比,用以进行药品的鉴别、杂质检查或含量测定的方法.优点操作显色比较简单,薄层色谱法斑点集中,薄层板耐腐蚀

缺点对生物高分子的分离效果不甚理想

10什么是化学键合色谱?它的突出优点是什么? 化学键合相是利用化学反应通过共价键将有机分子键合在载体表面形成均一,牢固的单分子薄层而构成的固定相,其分离机理为吸附和分配两种机理兼有,对多数键合相来说,以分配机理为主。通常化学键合相的载体是硅胶,硅胶表面有硅醇基,他能与合适的有机化合物反应,获得各种不同性能的化学键合相。

优点:固定相不易流失,柱的稳定性和寿命较高,能耐受各种溶剂,表面较均一,传质快,柱效高,能键合不同基团以改变其选择性。

11什么叫梯度洗脱它与气相色谱中的程序升温有何异同。

梯度洗脱:在分离过程中使流动相的组成随时间改变而改变。通过连续改变色谱柱中流动相的极离子强度或PH等因素。使得被测组分的相对保留值得以改变,提高分离效率。

梯度洗脱类似程序升温,两者目的相同,不同的是程序升温是通过程序改变柱温,当流动相和固定相不变时,分配比的变化是通过温度变化引起的,而液相色谱是通过改变流动相组成 极性ph来达到改变分配比的目的,一般柱温保持恒定 16与GC和HPLC仪器相比SFC仪器有何不同。

1,为精确控制流动相流体的温度。色谱柱安装在恒温控制的柱炉内。2,SFC仪器带有一个限流器,用以对住维持一个合适的压力,并且通过它流体转化为气体后,进入检测器进行测量。3以超临界流体作为流动相。十四章

1.与HPLC相比CE更具有什么优点?

1高效2高速3微量4操作模式多,分析方法开发容易5低能耗。

2.高效毛细管电泳分离的原理。

在电解质溶液中,带电粒子在电场的作用下,以不同速度向其所带电荷相反方向迁移,产生电涌流,在一般情况下,毛细管柱内表面带负电,和溶液接触时形成了一双电层,在高压电作用下,双电层的水合阳离子整体朝负极方向移动产生电渗流,带电粒子在毛细管内电解质缓冲液中的迁移速度等于电泳流和电渗流二者的矢量和,带正电的粒子迁移方向和电渗流相同,因此首先流出,所带正电荷越多,相对分子质量越小的正电粒子流出越快,中性粒子电泳速率为零,其迁移数率相当于电渗流速率,带负电的粒子的电泳流方向和电渗流相反,因电渗流速率一般大于电泳流速率,故其在中性粒子之后流出,各种粒子因差速迁移而达到区带分离。3.高效毛细管电泳的几种模式的分离机理和应用对象有何不同。

1毛细管区带电泳。溶质在毛细管内的背景电解质溶液中以不同速率迁移而形成一个一个独立的溶质带的电泳模式,应用分离出中性物质外的物质。

2毛细管凝胶电泳在毛细管中装入凝胶做支持物进行的电泳,凝胶起筛子作用使溶质按分子大小逐一分离,应用,分离分析蛋白质和DNA分子量或碱基数。

3毛细管等电聚焦,两性电解质在分离介质中的迁移造成的ph梯度由此可以使物质根据他们不同的等电点达到分离的目的,应用,两性电解质。

4毛细管等速电泳,选用淌度比样品中任何待测组分的淌度都高的电解质作为先导电解质,用淌度比样片中任何待测组分都低的电解质作为尾随电解质,夹在其间的样品组分根据自己的有效淌度的不同而分离,应用,离子性物质。

5胶束电动毛细管色谱,采用CZE技术并结合色谱原理而形成的,溶质在载体与周围介质之间的分配,同时两项在高压电场中具有不同的迁移,应用,非结合性溶质,4毛细管电色谱的特点,1分离效率比HPLC高五至十倍,2选择性比毛细管电泳高,3分析速度快分析结果重复性好,能实现样品的富集与预浓缩。

1双聚焦质谱仪为什么能提高仪器的分辨率?

在单聚焦分析器中,离子源产生的离子在进入加速电场前,初始能量不能为零,且各不相同,具有相同质荷比的离子,初始能量存在差异,因此通过分析器后,也不能完全聚焦在一起,而双聚焦分析器同时实现了方向聚焦和能量聚焦,解决了离子能量分散的问题,提高了仪器的分辨率。

2比较电子轰击电离源、场致电离源及场解析电离源的特点?

电子轰击电离源:离子化效率高,电子电离源的结构简单,缺点是电子轰击的能量远远超过普通化学键的键能,过剩的能量将引起分子多个键的断裂。

场致电离源:优点,分子离子和准分子离子峰强;碎片离子峰也很丰富;适合热不稳、难挥发性样品分析。缺点:样品涂在金属板上的溶剂也被电离,使质谱图复杂化。场解析电离源:解析所需能量远低于汽化所需能量,故有机化合物不会发生热分解,很少生成碎片离子。3常用的电离源有哪些?

电子轰击电离源 场致电离源 场解析电离源 化学电离源 快原子和快离子轰击电离源 电喷雾电离源 大气压化学电离 激光解吸源

4标准加入法 取相同体积的式样溶液两份分别移入容量瓶AB另取一定量的标准溶液加入B稀释定容测AB吸光度值设A中待测元素浓度为Cx,B瓶加入的标准浓度为Cs,A溶液吸光度为Ax,B溶液吸光度为Ao则Cx=(Ax÷Ao-Ax)Cs

某溶液中含有乙醇和甲苯,请根据所学的仪器分析方法,建立乙醇和甲苯的定量方法。

紫外可见光谱法(对照法)~取混合溶液与甲苯标准溶液分别稀释一定的倍数,制成极稀溶液样品。分别将其放入吸收池选定波长,紫外可见光照射分别测吸光度。由A样=E样L样C样,A标=E标L标C标,E样=E标L样=L标,所以C样=A样/A标*C标,即得甲苯乙醇的量。

测定蒽时的激发和荧光发射的最佳波长:400nm

在液相色谱中范氏方程中的哪一项对住效能的影响可以忽略不计:分子扩散项

对聚苯乙烯相对分子质量进行分级分析应采用哪一种液相色谱法:凝胶色谱法。

现需分离分析一氨基酸式样,拟采用哪种色谱?

氨基酸一般采用液相色谱来分析。如果采用气相色谱分析需衍生化处理才行。

提高液相色谱柱效的最有效途径是什么?

选择合适的流动相,控制相对较低的流动相相速。色谱柱填充均匀。减小固定相颗粒直径。减小固定相液膜厚度。

在液相色谱法中梯度淋洗适用于分离何种式样。保留时间过短或过长的试样,样片中有多个组分而且极性差别较大的复杂样品。(组分复杂及容量因子值范围很宽的样品)

3能否根据塔板理论数来判断分离的可能性

不能,有效塔板数仅表示柱效率的高低,柱分离能力发挥程度的标志,而分离的可能性取决于组分在固定相和流动相之间分配系数的差异

仪器分析:是通过测量表征物质的某些物理或物里化学性质的参数来确定其化学组成或结构的分析方法。量子产率:发荧光的分子数与总的激发态分子数之比,(物质吸光后发射荧光的光子数与吸收激发光的光子数的比值)。

系间跨越:不同多重态之间的一种无辐射跃迁(激发态电子改变其自旋态,分子的多重性发生改变)。

振动弛豫:被激发到激发态的分子能通过与溶剂分子的碰撞,迅速以热的形式把多余的振动能量传递到周围的分子,而自身返回该电子能级的最低振动能级的过程。重原子效应:荧光分子的芳环上被F,Cl,Br等卤素取代后,使系间跨越加强,其化合物荧光强度随卤素原子质量增加而减弱,而磷光相应增强的效应。

多普勒变宽:原子在空间做无规则热运动引起的谱线展宽。

自然变宽:没有外界影响的谱线展宽。

光谱通带:单色仪出射狭缝的辐射波长区间宽度。红移:指由于化合物的结构改变,如加入助色团,发生共轭作用以及改变溶剂等,使吸收峰向长波方向移动 蓝移:指当化合物的结构改变或受溶剂影响,使吸收峰向短波方向移动

增色效应:由于化合物结构改变或其他原因,使吸收强度增强

减色效应:由于化合物的结构改变或其他原因,使吸收强度减弱

程序升温:指在一个分析周期内柱温随时间由低温向高温作线性或非线性变化,以达到用最短时间获得最佳分离的目的

内转换:相同多重态间的一种无辐射跃迁过程

外转移:激发分子通过与溶剂或溶质间相互作用和能量转换而使荧光或磷光减弱甚至消失的过程

荧光发射:分子处于单重激发态的最低震动能层时,发射分子返回基态,这一过程称为荧光跃迁

荧光猝灭:荧光分子与溶剂或其他溶质分子之间相互作用,使荧光强度减弱的作用。

碰撞猝灭:处于激发单重态的荧光分子与猝灭剂分子碰撞,使前者以无辐射跃迁方式回到基态,产生猝灭作用

自猝灭:单重激发态分子在发射荧光之前和未激发的荧光物质分子碰撞引起自猝灭

静态猝灭:由于部分荧光分子与猝灭剂分子生成非荧光的配合物

分配系数:在一定温度和压力下,组分在固定相和流动相之间的分配达到平衡时的浓度之比值

分离度R:相邻两组分色谱峰保留值之差与两组分色谱峰底宽度总和一半的比值

分配比:又称容量因子,它指在一定温度和压力下,组分在两相间分配达平衡时,分配在固定相和流动相的质量比

磷光发射:当受激分子降至S1的最低振动能级后,如果经系间跨越至T1态,并经T2态的最低振动能级回S0态的各振动能级,此过程辐射的光称为磷光发射

镜像规则:通常荧光发射光谱与它的吸收光谱成镜像对称系

参比电极:与被测物质无关,电位已知且稳定,提供测量电位参考的电极

梯度淋洗:对组成复杂,含有多种不同极性组分样品进行液相色谱分析时,通过逐渐调节溶剂非极性和极性组分的比例而改变混合溶剂的极性,根据相似相容的原则,逐渐将不同极性的组分依次洗出色谱柱而获得良好分离的方法技术

梯度洗脱:在分离过程中使流动相的组成随时间的改变而改变。优点,通过连续改变色谱柱中流动相的极性离子强度或ph,使被测组分的相对保留值得以改变,提高分离效率。

多普勒变宽:由于分子在空间做无规则热运动所导致的,又称热变宽。

发射光谱:原来处于激发态的粒子回到低能级或基态时,往往会发生电磁辐射。

吸收光谱:物质对辐射选择性吸收而得到的原子或分子光谱。

紫外可见吸收光谱:利用某些物质的分子在200~800nm光谱区的辐射来进行分析测量的方法。

指示电极:在点位分析中电极电位随被测电活物质活度变化的电极。

生色团:分子中能吸收紫外线或可见光的结构单元。

选择因子:在定性分析中,通常固定一个色谱峰作为标准,然后再求其他峰对这个峰的相对保留值。

末端吸收:在指有机化合分子中含有能产

生 或 跃迁的,能在紫外可见范围内产生吸收的光团 积分吸收:在吸收线轮廓内,吸收系数的积分称为积分吸收,在温度不太高的火焰条件下,峰值吸收系数与原子浓度成正比。

峰值吸收:原子吸收线中心频率或波长处所对应的吸收系数。

背景吸收:原子化器中连续的分子吸收,固体颗粒散射等干扰。

检测限:以特定的分析方法,适当的置信水平被检出最低浓度或最小值。

死时间:不同固定相吸附或溶解的物质进入色谱柱时,从进样到出现峰极大值所需的时间。

正相液相色谱:流动相为非极性,固定相为极性的液相色谱即为正相液相色谱。分离中等极性化合物,易构体等。

反相液相色谱:流动相为极性,固定相为非极性的液相色谱即为反相液相色谱。可分离离子,离子化合物包括强碱强酸。

下载《聚合物近代仪器分析》期末考试重点总结word格式文档
下载《聚合物近代仪器分析》期末考试重点总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    仪器分析总结

    1.绪论 要求: 1.仪器分析概念及性质* 2.仪器分析方法的分类* 3.仪器分析方法的主要评价指标* 仪器分析概念:现代仪器分析是以物质的物理性质或化学性质及其在分析过程中所产......

    化学仪器分析期末考试知识点总结(全面)..(5篇模版)

    分子光谱法:UV-VIS、IR、F 原子光谱法:AAS 电化学分析法:电位分析法、电位滴定 色谱分析法:GC、HPLC 质谱分析法:MS、NRS ⒈经典分析方法与仪器分析方法有何不同? 经典分析方法:是......

    仪器分析与总结

    仪器分析与表征总结 在研一的这个学期,我们除了专业课的理论学习外,还开设了仪器分析与表征这门理论与实际相结合、知识与技能融会贯通的课程,课程的学习目标是能根据标准操作......

    仪器分析实验教学总结

    2005-2006学年第二学期 仪器分析化学实验总结 仪器分析法是测定物质化学组成、状态、结构的重要方法,也是监测物理、化学等过程的重要手段之一。由于物理学、电子学的发展促......

    药理学期末考试重点总结

    名词解释1 指肠,一些结合型药物在肠中受细菌和酶的水解可、肝肠循环.有些药物及代谢物经胆汁排泄入十二被再吸收,形成肠肝循环,可使药物消除缓慢,作用时间明显延长2、首过消除(首......

    行政法期末考试重点总结

    名词解释: 行政主体: 概念: 是指能够以自己的名义实施国家行政管理职能并承受相应法律后果的国家行政机关和社会组织。 注意:行政主体不是法律概念,而是学理概念。 特征: 1) 行......

    期末考试分析及总结

    西册田中学2011——2012学年第二学期期中考试质量分析联校期中考试成绩揭晓后,我校组织召开全体教师会议。专题研究分析期中考试情况,教师人人写出书面材料,分析总结本人所代学......

    期末考试分析及总结

    期末考试分析及总结中心校期末考试成绩揭晓后,我校组织召开全体教师会议。专题研究分析期末考试情况,教师人人写出书面材料,分析总结本人所代学科的得失,并制订出今后在教学中应......