第一篇:高等数学上册总结(张守刚)
高等数学上册总结 张守刚
一、主要内容
一元函数,极限,导数,微分,微分中值定理,不定积分,定积分,微分方程。从某种角度来说,主要是函数。
学习的目的是认知,很小的时候我们经常被谈认识客观世界,改造客观世界,因而学习就是必经之捷径。
人类社会存在着万千事物,它们之间的纽带或联系用量的方法来陈述也许就可以用函数来表示。因此,从这种角度来说,高数主要研究函数。
二、内容探讨
1、关于函数
(1)什么是函数?为什么研究函数?
客观世界中,事物与事物之间的具有千丝万缕的联系或者关系。从哲学角度来说,研究这种联系可以更好的帮助我们认识客观世界。但这是不够的,因为事物与事物还存在着丰富的数量关系,函数就是表现这种数量关系的工具,能够更加精确的帮助人类认识客观世界,改造客观世界。
客观世界中,相互之间的联系主要有四种表现形式,一对一,一对多,多对一,多对多。一对一表现出来的数量关系就可以用一元函数来刻画,而一对多可以分成有限个一对一,故我们需要研究一元函数,这就是上册的研究对象。(现在很多教材将一对多也看做是一元函数,我个人觉得这不好,因为我们研究的一定是最简单的,最基本的)多对一表现出来的数量关系就可以用多元函数来刻画,同样,多对多可以分解为有限个多对一,故多元函数也是我们的研究重点,这是我们下册的主要研究对象。
因为由一元函数推广到二元函数存在着突变过程,有着显著区别,故单独分开来研究。而二元函数到多元函数是一个渐变过程,区别不大,因此,我们主要以二元函数为代表研究多元函数。
(2)如何研究函数?
第一、一元函数的定义、基本初等函数,初等函数,以及函数的结构,即加减乘除、求逆、复合六种运算法则;
第二、一元函数的基本性态,主要有:有界性,单调性,奇偶性,周期性,凹凸性,连续性等,以及单调区间、凹凸区间、最小正周期等的确定;
第三、重点要谈一下连续性。因为连续函数我高等数学的研究对象。连续的客观世界表现是渐变,间断的本质是突变。但需要注意,渐变突变都不是绝对的,客观世界的发展很多方面都是基于渐变突变的基础上所推动的。关于这方面略。客观世界中,绝对的连续也许不存在,我是这么认为的。但我们学习本来就是研究的理想状态下,因此,假定连续,理想状态下。那么,如何刻画连续呢?这需要研究渐变,从而建立极限思想。
第四、函数的构造,或者数量关系的建立,其实这里面也必须用到极限的思想。关于函数构造这是一个非常重要的问题,以后同学们的学习过程中必须经常遇到。而我们上课时却谈的很少,这也许就是所谓的教学脱离实际吧?
2、关于极限
(1)什么是极限?为什么研究极限?
客观世界是不变与变的矛盾统一。不变就跟死水一样,没有生机;变创造了客观世界的生动与美丽。而极限就是刻画客观世界变化的一个美丽的武器。有很多案例可以查询,比如我们后面要谈到的分割、近似、求和、取极限思想。在此不赘述。
简单来说,极限是对事物未来变化趋势的一种肯定。最简单的莫过于唯一的、确定的变化趋势,这就是极限。因为函数就是刻画客观世界理想变化的一种工具,因此,我们主要研究函数的变化趋势,即函数的极限。
在研究函数极限时,必须很好的认识到定义,因为这是基础。它用符号刻画了极限存在的充分必要条件。
基于定义,我们可以建立16个基本初等函数的极限公式、极限的加减乘除、求逆、复合六种运算法则,从而可以建立初等函数的极限公式,以及展开后续讨论。(2)如何研究极限?
第一、当然是极限的定义,包括哲学定义与数学定义,以及极限的判定准则; 第二、极限的计算方法。
1)16个基本初等函数的极限公式,应用六种运算法则。这是最最基本的。当其它方法不能解决极限时,就需要回到基本定义及基本法则。2)两个重要准则,即夹逼准则、单调有界准则;这是判断极限是否存在的非常重要的准则; 3)两个常用极限公式;
4)等价无穷小量。其实无穷小量,无穷大量的提出不是为了求极限,其只是完善了误差理论。因为极限等价于逼近,逼近又约等于近似,这就建立了客观世界与理想世界之间的桥梁。后面我们可以看到,误差理论才是我们工科学生学习高等数学的核心。5)L’Hospital法则。这是非常重要的求极限方法。
6)Taylor中值定理。Taylor定理非常漂亮,是误差理论的一个基础。7)定积分。
(3)极限就是理论联系实际的桥梁,当然是在认识、改造客观世界中。这一点大家需要时间慢慢去体会。
3、关于微分学
微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一。简单的来说,微分学就是从微观角度研究客观世界,而积分学从宏观角度。微积分学中一个重要的数学符号是,微小的形变,很好的理解微小的形变是学习微积分的基础。
(1)连续函数
连续函数是微积分研究对象。连续函数等价于渐变,理想状态下的渐变通过极限刻画,即通过之间的关系刻画。(2)导数
导数刻画了事物随事物变化的相对趋势,当一个事物发生变化时,另外一个事物也随着发生相应变化。最简单的一类是线性变化,即成比例。但客观世界当中大量的是非线性变化,导数就是刻画这种变化趋势大小的一个指标,即也通过来刻画。从哲学角度来谈的话,其等价于平均与瞬时问题。(3)微分
微分与导数是一个相对的概念,但有着本质区别。微分概念是基于线性逼近理论基础上所提出来的,或者说是基于误差理论所提出来的。关于线性逼近或者线性近似的理论及线性近似的优越性在这里不详谈。相对于导数刻画了变化趋势大小,而微分刻画了一个事物有确定变化量时,引起的另一个事物的近似变化量,是一个相对变化量,只不过这个相对量刚好是导数而已。但可以非常美妙的诠释复杂问题简单化,呵呵。(4)导数的计算问题 1)基本定义,可以建立16个基本初等函数的导数公式,加减乘除四则运算、求逆、复合运算法则,可以建立初等函数的导数公式; 2)隐函数求导问题,对数求导法则等;(5)微分的计算问题
一元函数微分等价于导数。(6)导数与微分的应用 1)近似计算,逼近理论
2)5大微分中值定理:Fermat引理,Rolle定理,Lagrange定理,Cauchy定理,Taylor定理。该5大定理很好的从理论角度诠释了微积分学的应用。3)利用导数刻画函数的单调区间,凹凸区间;
4)优化问题或者极值最值问题。优化问题生活中处处存在,可以说我们的生活跟优化息息相关,这点请读者自己领会。
5)不定积分。及已知导数,求原函数;
6)微分方程。包括微分方程的建立与常见微分方程求解问题。关于微分学的应用实在是非常重要的一件事情,只不过我们在课堂上体会甚少,我们老师也是身不由己。
4、关于积分学
积分学主要包含不定积分与定积分。从本质上来说,而这风马牛不相干。但Newton-Leibniz将二者很好的统一在了一起。(1)不定积分
不定积分是求导的逆过程。一方面为定积分建立基础,一方面为微分方程求解提供理论基础。不定积分的计算还是一样,16个基本初等函数的积分公式,加减乘除四则运算法则,以及由复合求导法则所导出的换元法和分部积分法。(2)定积分
定积分的本质是分割、近似、求和、取极限思想的应用。客观世界可以分为规则或均匀与不规则或不均匀构成。当我们认识客观世界时,我们首先建立标准,确定某些基本的度量,如,我们规定单位长度、单位面积、体积;规定单位重量,等等,从而很多理想状态下规则的、或均匀问题我们都能够量化,如长度、面积、体积、质量、位移、速度等等。但记住,理想状态,客观世界很难存在的,这里面就有可以忽略的误差。
那么不规则、不均匀问题如何处理呢?有人说近似,关键是如何近似?误差大小?误差能不能接受?
古人谈到,复杂问题简单化,大事化小,小事化了,其实积分学就是这么一种道理。我们首先对不规则问题进行分割,然后对其进行近似,然后求和,从而可以得到原问题的一个近似解决方案,但误差不可控制,可以想象,分割的越细,误差肯定越小,因此,当分割的块数无穷多,每一个小块无限逼近于0时,最终求和结果能够无限逼近真实值。这就是定积分的基本思想。大量案例我就不在这里赘述。
第一、积分学三大理论:连续函数原函数存在定理、原函数之间相差一个常数定理、Newton-Leibniz定理。
该三大定理与微分学5大定理构成了微积分学8大基本定理,是整个微积分学的基础理论。第二,定积分的计算。第三,定积分的应用。
三、展望高等数学下册
1、解析几何 空间解析几何的产生是数学史上一个划时代的成就。法国数学家笛卡尔和费马均于十七世纪上半叶对此做出了开创性的工作。我们知道,代数学的优越性在于推理方法的程序化,鉴于这种优越性,人们产生了用代数方法研究几何问题的思想,这就是解析几何的基本思想。要用代数方法研究几何问题,就必须沟通代数与几何的联系,而代数和几何中最基本的概念分别是数和点。于是首先要找到一种特定的数学结构,来建立数与点的联系,这种结构就是坐标系。通过坐标系,建立起数与点的一一对应关系,就可以把数学研究的两个基本对象数和形结合起来、统一起来,使得人们既可以用代数方法研究解决几何问题(这是解析几何的基本内容),也可以用几何方法解决代数问题.平面解析几何的知识对学习一元函数微积分是不可缺少的一样,空间解析几何对多元函数的微分学和积分学将起到重要的作用。
2、多元函数微分学
多元函数中代表性函数是二元函数,由二元函数推广到多元函数是很容易的,但由一元函数到二元函数有着突变的现象。
第一、多元函数的定义,基本性态,以及基本结构。多元函数由一元基本初等函数函数通过6种运算构成。
第二、多元函数的极限。这里要强调,一元函数的极限是从两个方向逼近,而多元函数的极限是沿着任意方向逼近,更复杂。
第三、多元函数导数,包括偏导数与方向导数。二元函数的几何意义是空间曲面,因此,沿着任何方向,函数都在变化,故沿着任何方向都有变化趋势,即方向导数。但任何方向的变化趋势与X方向和Y方向都满足三角分解关系。故我们主要研究X方向变化率与Y方向变化率,即俗称偏导数,其计算跟导数计算一致。
第四、多元函数全微分,区别于一元函数微分。二元函数几何含义是空间曲面。一元函数可微等价于在某一点处可以用切线近似,故二元函数可微等价于在某一点处可用切平面近似。还是误差理论,需要好好研究。
第四、多元函数最优化问题,即极值最值问题。这是很重要的一块内容。
3、多元函数积分学
一共包含定积分(一重积分),二重积分,三重积分,两类曲线积分,两类曲面积分。定积分本质是沿直线分割。
二重积分本质沿平面分割,如空间几何形体体积,不均匀平板质量等。三重积分本质沿空间分割,如空间不均匀几何形体质量等。
曲线积分本质是沿曲线分割,之所以分为两类,是包含方向与否。如教室中椅子靠背面积,可以直接对曲线分割,不带方向;如物理中变力沿曲线做功,带方向。因我们分割对象是曲线,故命名为曲线积分。
曲面积分本质沿空间曲面分割,同样分为带不带方向。如水流从曲面左侧流向右侧与右侧流向最侧,在物理学中是两个量,需要考虑方向。
总之,积分的基本思想就是分割,近似,求和,取极限。针对问题的不同,所提出的不同概念,请读者在学习过程中慢慢体会。(1)关于定义
所有定义形式都跟定积分定义一致。(2)关于计算
最终都是回到定积分的计算。(3)关于应用 慢慢理解学习。
4、无穷级数 简单来说,无穷多个数之和是否是个常数?无穷多个函数之和是否是个函数?反过来,任何一个初等函数,能否找到一个多项式函数去近似?任何一个周期函数,能否用三角函数系去表示?
第一二个问题等价,我们主要研究幂函数系,对于无穷多个函数的和的问题,当确定x的取值时,就可以得到一个常数级数。如果和是确定常数,称为收敛,反之发散。对于无数多个函数,我们要做的工作有两个:在那些点处收敛,即收敛于;和是多少,或和函数。用多项式函数去近似初等函数,实际上是taylor公式的延伸,是误差理论的核心。
第二篇:高等数学上册总结
《工程应用数学A》课程总结
无论我们做什么事都要不断地思考,不断地总结,学习也是这样,所以这次就借此机会对于这一学期所学内容进行一次总结,也算是对自我的一次思考。
一、课程主要知识
本课程主要以函数为起始,然后引出极限的定义以及极限的应用。然后以极限为基础介绍导数,微分。在微分中主要讲了一些求微分的定理,例如拉格朗日中值定理,柯西中值定理等等。其次讲了函数微积分,重点讲了一些求积分的方法,例如换元积分法,分部积分法。最后学习微分方程,这一块可以说是比较难的一章,什么一阶微分方程,二阶微分方程,二阶常系数齐次线性微分方程等等,计算量也比较大。所以总的来说全书的知识点都是相连起来的。后面知识总是以前面所学知识为基础,一层一层展开的。
二、个人学习心得体会
其实不瞒老师,我高中的时候数学不是太好,平时考试数学有就有点拖后腿,而且我高考数学只考了70多分。有一天老师说,高考没及格的同学数学一定要好好学,否则极有可能挂科。当时,我还不相信,至少认为这种事不会发生在我身上。自己平时在数学上多少也花了点功夫。可以说做的准备工作比高中还多。基本上在每次上课前
都能预习,课上也认真听,而且课也差不多都能听懂,作业也都是自己独立完成的。我想及格应该不是问题,但后来的第一次过程考核,我才发现差距在哪,题目基本上不怎么会写,而且后来成绩出来,刚好考了60分。当时心就碎了。感觉落差好大。于是感叹“高树”太高了!我想是不是我题目做少了,难道说大学学数学也要用题海战术吗?可是我看班里有些同学平时上课也不听,作业基本靠抄,有事没事就拿着手机看电子书,但是考试却比我高,我就很郁闷,难道是他们比我聪明还是他们另有技巧?
经过一段时间的学习之后,我发现课前预习很重要。课前预习能够让你上课更有效率,也不会那么累。老师上课在黑板上的板书很多都是书上的。如果你课前预习了,就会知道老师说的在哪,书上有没有,记笔记的时候就可以抓住重点。不用完整地抄下来。但是你不预习的话,因为不知道书上有没有或是哪里是重点就得全部抄下来,很浪费时间,这样一来一节课就全部用在记笔记上了,根本没什么时间去听课,上课也就不会有效率。所以课前预习很重要。其次必要的练习也不可缺少。比如说上课老师说的定理不太懂,这时候就需要用练习来加强对知识的理解。
三、本课程对个人的影响
高等数学在整个大学的学习过程中占有一定的重要地位,它不仅对以后将会学到的线性代数和概率统计有影响,而且还是考研必考的科目。对于我们网络工程专业准备考研的同学来说,这绝对是一个重
头戏。对于不准备考研的同学来说,也有一定的影响,它可以培养我们的逻辑思维能力、计算能力,使我们的思维更缜密。数学是科学之母,任何学科的发展都离不开它。所以高数一定要学好。
四、总结
学习如逆水行舟不进则退,对于高数这门课程尤其是这样。因为只要你一节课没跟上就会步步跟不上,所以高数的学习不能放松,必须抓紧。相信我能学好!一定可以的!
第三篇:高等数学上册
《高等数学》上册
一、函数与极限
1.函数基本概念—了解
1. 集合及集合的运算
2. 数轴、无穷大和无穷小的几何表示、区间 3. 常量和变量
4. 函数的定义和函数的表达方式 5. 函数的定义域和函数的计算 6. 基本初等函数
7. 复合函数和初等函数 8. 分段函数
2.函数的极限及运算法则—理解极限的含义,会计算求极限的题目;涉及范围较广,高等数学上册下册均有求极限的题目,极限的方法是研究函数的工具。(不会涉及证明用极限定义证明极限的题目)
1. 数列及数列极限 2. 函数的极限
3. 无穷大和无穷小的极限表示
4. 无穷大和无穷小的关系及无穷小的性质(运算注意前提条件有限个和无限个的区别)5. 极限的有界性定理及应用
6. 复合函数求极限(变量代换的方法)
3.两个重要极限(两个极限的运算法则的条件、推广和应用)
1. 第一个重要极限
2. 第一个重要极限的应用 3. 第二个重要极限
4. 第二个重要极限的应用(注意:单调 且有界是证明题的关键部分)4.无穷小的比较
等价无穷小及其应用
重要部分!5.函数的连续性和间断点
1. 增量
2. 函数连续的两个定义 3. 左连续和右连续
4. 函数的间断点分类(重要,出小题)
5. 连续函数四则运算的连续性(运算法则的条件、推广和应用)6. 反函数和复合函数的连续性
7. 连续函数的性质(注意:闭区间上连续函数的性质,重要,但一般不单独出题)一致连续性不用看 练习题一
2.导数与微分(重要,小题必考章节!)1.导数的定义和导数四则运算法则
1. 导数的定义(重要),2. 导数的几何意义(理解;其中数一数二导数的物理意义;数三,经济意义、边际函数、弹性函数)
3. 函数可导性与连续性的关系(必需的!)4. 求导公式表(必需的,熟悉到1+1=2!)
5. 函数导数的四则运算(必需的,熟悉到1+1=2!)2.不同类型函数的求导法则及高阶导数
1. 复合函数的求导法则(必需的,熟悉到1+1=2!)2. 隐函数的求导法则(必需的,熟悉到1+1=2!)
3. 参数方程所确定的函数的求导法则(小题,理解!多元隐函数的求导)4. 高阶导数(重要)
3.函数的微分及应用(理解,重要同导数必考,小题)
1. 微分的定义
2. 微分的几何意义
3. 微分的基本公式和运算法则 4. 复合函数的微分公式
5. 利用微分进行近似计算(除去不用看)练习题二
3.导数的应用(考大题 难题,重要章节!)
1.中值定理和洛必达法则(中值定理包括费马定理的应用及相关的证明题,必须会做证明题!)
1. 罗尔定理及几何意义
2. 拉格郎日中值定理及几何意义
3. 利用拉格郎日中值定理证明不等式
4. 洛必达法则(必考;泰勒公式及其应用,参照张宇的老师的导学或视频)2.函数的极值和最值(考小题,单调性及极值点、最大值最小值)
1. 函数的单调性及判断 2. 函数的极值 3. 函数的最值
3.曲线的凸凹性,拐点及函数作图(考小题,单调性及极值点、凹凸性及拐点、渐近线的定义理解)
1. 曲线的凸凹性及判断 2. 曲线的拐点 3.曲线的渐近线
4.函数作图(会大致描绘图形帮助做题)5.曲率
(了解即可)练习题三
4.不定积分(重要!运算的基础知识。与数
一、数三相比,数二有可能大题。)
1.不定积分的概念和基本公式
1. 原函数与不定积分(理解原函数)
2. 不定积分的定义(必需的,熟悉到1+1=2!)3. 不定积分的性质(必需的,熟悉到1+1=2!)4. 基本积分表(必需的,熟悉到1+1=2!)5. 直接积分法(必需的,熟悉到1+1=2!)2.换元积分法
1. 换元积分法的引入
2. 第一类换元法(必需的,熟悉到1+1=2!)
3. 第一类换元法的应用(必需的,熟悉到1+1=2!)4. 第二类换元法(必需的,熟悉到1+1=2!)
5. 第二类换元法的应用(必需的,熟悉到1+1=2!)3.分部积分法和不定积分技巧的综合应用
1. 分部积分法(必需的,熟悉到1+1=2!)
2. 被积函数和积分变量的选取(必需的,熟悉到1+1=2!)
3.有理函数的积分(重要,常见的一些题型,基本的运算方法的综合利用)4.综合题举例(积分表不必看)
5.定积分(重要!非常重要,是多元函数的二重积分,三重积分,线面积分的基础)1.定积分的定义和基本运算
1. 定积分的定义(理解!)
2. 定积分的性质
3. 变上限的积分函数(理解!)
4. 牛顿—莱布尼兹公式 各种题型的必需的,熟悉到1+1=2!
2.定积分的换元法和分部积分法
若不定积分学好,这一部分涉及的计算应该1. 定积分的换元法 很简单!2. 定积分的分部积分法
3. 利用方程和数列求定积分
常见的各种类型的题目一定要熟悉,再熟悉,3.广义积分(理解!考小题)再再熟悉,怎么熟悉都不为过!
1. 积分区间为无穷区间的广义积分 一元函数的极限,导数,微分,不定积分,定2. 被积函数有无穷间断点的广义积分(Г积分这是高等数学的基础,根本所在;然后多函数不用看)元函数(二元函数)的类似运算,只要把定义4.定积分的运用(会应用)相关推理过程理解了,则 自然会有 水到渠成1. 定积分的元素法 效果,难点不再难点!2. 利用定积分求平面图形面积
3. 利用定积分求体积(数三只看旋转体 体积)
4.曲线的弧长(数
一、数二公式记住,数 三不考)
第四篇:个人总结---张海刚
个人总结
今年对于自己来说最大的事就是自己由学生转变成了一个真正的职业者,荣幸加入蓝山屯河这个大家庭,开始自己的职业生涯。公司良好的团队建设、温馨的文化氛围、执着的领导干劲时时刻刻感染着我,使我深深的爱上这个团队和集体,我相信我的梦想会在这里绽放,更相信公司的蓝图在我们的不懈奋斗下更加辉煌。
入职六个月来,自己的各个方面和层次都得到了大幅度提升。从化工基础知识的认知和思考,到乙炔工艺流程图的了解和熟知。从化工原理的的分析和讨论,到干法乙炔的工业制法和工艺思路。不仅掌握了许多工艺知识,而且在培训和学习过程中学到了团队意识和团队思想。对于我们刚刚开始从事化工工作的新人来说,面对公司严峻的发展形势,无工作经验是一个非常大的挑战,为了顺利完成公司以及厂安排的每项任务,我们在厂领导及班组长的帮助和指引下,利用工作时间和同事们沟通,利用工作之余查找资料,学习和巩固工艺生产知识,很好地完成了公司和厂安排的各项工作,这为以后我们的开车生产技能有了很大的提高。
第一方面,基础理论专业知识的培训。
1、学习化工知识和乙炔基础知识,及安全知识。(干法乙
炔的方法和主要成分、反应器的讲解、干法乙炔的安
全培训、6S可视化管理规范、乙炔安全知识、化工基
础知识培训)
2、学习干法乙炔的技术协议、操作规程、现场流程等相关
知识。(干法乙炔的技术协议、电石渣气力输送系统技
术指标和物料说明以及设计输送能力、操作规程的讲
解、现场流程见习、巡检维护规范要求、化工企业相关
的法律)
3、以工艺主体设备为主要内容,从泵类、阀门、仪表、换热器、焊接等设备基础。
4、学习乙炔岗位操作规范和相关规程;公司项目建设期的各项管理制度。(干法乙炔岗位操作法、能源公司项目筹
建期培训管理制度、消防知识讲座、化工操作问答的学习、员工手册培训)
第二方面,团队建设和文化建设的培训及拓展。
1、以执行力为主要内容,从思想、行为、行动力的相结合 上,达到以高效的工作效果和力度。(执行力的三个核
心、解码能力、执行力的特色、反对自由主义)
2、以公司文化建设为主要内容,从意识、思维能力、行动
表现的相结合上,达到全员参与、择优发展的工作效果。
(积极参与文明稿件活动、参加PPT创意大赛、参加“创
新提升价值,责任成就梦想”主题演讲活动)
第三方面,自我问题的梳理和相关措施。
1、问题:接受新知识时往往眼高手低,不愿做笔录,在学习化学基础知识时,对于似是而非的理论知识,常常未能及时解决。
措施:学习时要勤动手、勤动笔、及时作出笔录,在基
础知识学习时要分类整理,并作出及时复习。
2、问题:学习乙炔专业知识及内容时因为多次提到反复学习而心不在焉,从而影响了听课效率,课后有些
问题仍是知其然而不知其所以然。
措施:针对专业和重要知识,通过多次记忆多次思考,总结出自己的学习方案。
3、问题:思考工艺流程的局限性过大,往往把一个问题的实质不能体现出来,仅仅单纯的在工艺上徘徊。
措施:学习时要开拓思路、系统思考、及时作出调整和
举例,在工艺基础上联系问题的实质和原理,真
正的掌握问题,解决问题。
4、问题:系统的学习和培训知识层次的衔接和重点的思考
理解力度有点偏差,知识点分散和理论性太强不
容易消化。
措施:学习时要抓重点、抓思路、及时作出笔录,在基
础知识学习时要分类整理,并作出及时复习。
5、问题:学习执行力和团队精神时在课堂上表现积极,是
在生活中运用起来,还是有很多困难,自我意力
和坚强的信心仍然不够。
措施:每天学习一两篇文章,练习半个小时的书法,坚
持爱好学习提高。
6、问题:学习生活的杂乱常常使自己不能在适宜的时间段里
安排好自己的学习和生活。
措施:学习任务及时处理,生活中加强多样性扩展兴趣,每天坚持锻炼身体。作出学习任务计划和生活作息
计划,通过工作和生活的相协调来指导自我管理、自我进步。
在之后的工作中,我会认真钻研新方法、吃透工艺流程,积极开拓工作思路,把一些先进的化工理论、科学的工作方法及优秀手段灵活运用于实际工作中,努力培养自我交流、自主探究、勇于创新等能力。工作目标明确,既注重知识的运用,又注意学习能力的培养。我要求做到把好实际操作环节中的每一关,工作详尽、细致,针对工艺特点,精心学习操作方案。注意与同事的沟通与交流,并且注重工作方法,充分发挥领导、同事两个主体的资源性和优势性,有效的学习提高各方面的应变能力,构建了自己的工作思路和方法,促进产品质量和公司发展。我还要不断地完善自己,虚心学习,以企业精神、公司宗旨,严格要求自己,为公司的进步和发展尽自己的一份力量和责任。
报告人:张海刚
二○一三年十一月二十八日
第五篇:高等数学上册复习
第一章复习提要 第一节 映射与函数
1、注意几个特殊函数:符号函数,取整函数,狄利克雷函数;这些函数通常用于判断题中的反例
2、注意无界函数的概念
3、了解常用函数的图像和基本性质(特别是大家不太熟悉的反三角函数)第二节 数列的极限 会判断数列的敛散性 第三节 函数的极限
1、函数极限存在的充要条件:左右极限存在并相等。(重要)
2、水平渐近线的概念,会求函数的水平渐近线(p37)。(重要)
3、了解函数极限的局部有界性、局部保号性。第四节 无穷大和无穷小
1、无穷小和函数极限的关系:limf(x)Af(x)A,其中是无穷小。
xx0x
2、无穷大和无穷小是倒数关系
3、铅直渐近线的概念(p41), 会求函数的铅直渐近线
4、无界与无穷大的关系:无穷大一定无界,反之不对。
5、极限为无穷大事实上意味着极限不存在,我们把它记作无穷大只是为了描述函数增大的这种状态 第五节 极限的运算法则
1、极限的四则运算法则:两个函数的极限都存在时才能用。以乘法为例比如f(x)x,g(x)但是limf(x)g(x)1
x01。limf(x)0,limg(x)。xx0x02、会求有理分式函数
p(x)的极限(P47 例3-例7)(重要)q(x)xx0时:若分母q(x0)0,则极限为函数值
0型极限,约去公因子 0 若只是分母为零,则极限为无穷大。(p75页9(1))
x时,用抓大头法,分子、分母同时约去x的最高次幂。第六节 极限存在的准则,两个重要极限(重要)
1、利用夹逼准则求极限: 例 p56也习题4(1)(2),及其中考试题(B)卷第三题(1)
2、利用两个重要极限求其他的极限(p56习题2)
1sinxsinx0;lim1 3 注意下面几个极限:limxsin0;limx0xx0xxx第七节 无穷小的比较(重要)
1、会比较两个无穷之间的关系(高阶、低阶、同阶,k 阶还是等价穷小)若分子和分母同时为零,则为
x22、常见的等价无穷小:sinx,tanx,arcsinx~x;1cosx~
2ex1~x;(1x)~1nx n13、若(x)为无穷小,则sin(x)~(x),(1(x))n~(x)n,ln(1(x))~(x),e(x)1~(x)。
4、替换无穷小时必须是因式
x0limtanxsinxx3limxx3x0x0
应该
x2xtanxsinxtanx(1cosx)1limlimlim2
2x0x0x0x3x3x35、会利用等价无穷小计算极限(p60页习题4)
第八节 函数的连续性与间断点(重要)
1、函数在点x0连续 limf(x)f(x0)
xx0左连续limf(x)f(x0)且
xx0f(x)f(x0)
右连续limxx02、会判断间断点及其类型。讨论分段函数的连续性。
3、f(x)在点a连续f(x)在点a连续;但反之不对。
第九节 连续函数的运算与初等函数的连续性
初等函数在其定义域上都是连续的,因而求某点处极限时可以直接把点代入求值。
4.注意三个例题:例6-例8(重要)
5、幂指函数u(x)v(x)求极限,可以利用等式u(x)v(x)=ev(x)lnu(x)来求。(重要)
6、若含有根式,则分子或者分母有理化(p75页9(2))是求极限的一种重要方法。(重要)
7、利用分段函数的连续性求未知数的值(如p70页 6)(重要)第十节 闭区间上连续函数的性质
最大值最小值定理、零点定理、介值定理的内容 会零点定理证明方程根的存在性。(重要)补充说明 请熟悉函数e当x0,x0,x时的极限。第二章复习提要
1、导数的定义
(1)利用导数的定义求一些极限的值:例如P86页第6题 例
1、设f(0)0,f(0)k0,则limf(x)____.x0x1x例
2、设f(x0)存在,则limf(x0h)f(x0)________.(重要)
hh0(2)利用左右导数讨论函数的可导性:P125页第7题
sinx,x0例
3、已知f(x),求f(x)
x,x0注意分点处的导数应该用定义来求。(重要)
(3)利用左右导数求未知数的值:P87页第17题(重要)
sinx,x0例
4、设f(x)为可导的,求a的值
ax,x0(4)利用导数几何意义求切线和法线方程(重要)
(5)可导连续,反之不成立!
2、求导法则
(1)复合函数求导不要掉项;
(2)幂指函数u(x)v(x)ev(x)lnu(x)转化成指数来求导
3、高阶导数
(1)一般的函数求到2阶即可;(2)几个初等函数的n阶导数:
(eax)(n)aneax;y(n)sin(xn);(cosx)(n)cos(xn)
22[ln(1x)](n)(1)n1(n1)!(1x)n,(n1)!(1x)n[ln(1x)](n)(1)n1(1)n(n1)!(1x)n
由上面的求导公式我们容易推出下列求导公式:
1(n)n!()[ln(1x)](n1)(1)nn11x(1x)1(n)n!()[ln(1x)](n1)n11x(1x)(1(n)n!)[ln(ax)](n1)(1)nn1ax(ax)1(n)n!)[ln(1x)](n1)n1ax(ax)((3)二项式定理
(uv)(n)(nk)(k)Ckuv nk0n(4)间接法求高阶导数:
1x2例
5、求y的n阶导数:提示y1。
1x1x(5)注意下列函数的求导
例
6、求下列函数的二阶导数:P103页第3题(重要)(1)yf(x2);(2)yln[f(x)]
4、隐函数及参数方程求导(重要)(1)一般方法,两边对x球到后解出
dy。dx(2)会求二阶导数
(3)对数求导法适用于幂指函数和连乘或连除的函数(4)注意参数方程二阶导数的公式
dydyd()2()tdydtdx。(重要)dxdx2dtdxdxdt(5)相关变化率问题:
根据题意给出变量x和y之间的关系;
两边对t(或者是其他变量)求导
dydx和之间的关系,已知其中一个求另外一个。dtdt5、函数的微分
(1)微分与可导的关系:可微可导且dyf(x)dx(2)利用微分的形式不变性求隐函数或显函数的微分: 显函数的例子见课本的例题;下面给出隐函数的例子 例
7、设ysinxcos(xy)0,求dy。解: 利用一阶微分形式不变性 , 有
d(ysinx)d(cos(xy))0
sinxdyycosxdxsin(xy)(dxdy)0
dyycosxsin(xy)dx。
sin(xy)sinx(3)近似计算公式:注意x0的选取原则。(一般不会考)f(x)f(x0)f(x0)(xx0)
第三章:微分中值定理与导数的应用复习提要 3.1 微分中值定理(重要)
罗尔定理、拉格朗日定理、柯西定理应用: 证明等式,一般通过证明导数为零
证明不等式:若不等式中不含x,则取x作为辅助函数的自变量;若含有x,则取t作为辅助函数的自变量。(重要)
判断方程的根(存在性用零点定理,唯一性或判断根的个数用中值定理,有时还要结合单调性,见153也习题6)(重要)
利用辅助函数和中值定理证明等式(一个函数用拉格朗日,二个用柯西)例1 设函数f(x)在[0,1]上连续,在(0,1)内可导,且f(1)0,证明至少存在一点(0,1)使得f()2f()。
证明:上述问题等价于f()2f()0。
令f(x)x2f(x),则f(x)在[0,1]上满足罗尔定理条件,于是少存在一点(0,1)使得
()2f()2f()0 即有f()2f()0。
(5)请熟悉132页例1.3.2 洛必达法则(重要)
(1)(其他类型的未定式)最终转化成0型和型未定式 0(2)每次用前需判断
(3)结合等价无穷小效果更佳。3.3 泰勒公式
(1)一般方法:求各阶导数代入公式即可;
(2)常见函数ex,ln(1x),sinx,cosx的麦克劳林公式 3.4 函数的单调性和凹凸性(1)会用列表法求函数的单调区间和凹凸区间(注意一般是闭区间),拐点。注意不要漏掉导数不存在的点也可能是单调区间的分点; 二阶导数不存在的点也可能是拐点。(2)利用单调性证明不等式(重要)(3)利用单调性判断方程的根(重要)3.5 极值和最值(重要)
(1)列表法求极值(极值可能点为驻点或不可导点)(2)最值(找出极值可能点再与端点比较)
(3)对于时间问题,若极值点唯一,则也为最值点。3.6 函数图形的描绘 注意渐近线 3.7 曲率
(1)弧微分公式
(2)曲率和曲率半径的计算公式(重要)第四章复习提要
4.1 不定积分的概念和性质
1、基本积分表
2、公式f(x)dxf(x)和f(x)dxf(x)C
3、注意如下问题:(填空、选择、判断)若ex是f(x)的原函数,则x2f(lnx)dx若f(x)是ex的原函数,则12xC 2f(lnx)1dx C0lnxC xx若f(x)的导数为sinx,则f(x)的一个原函数是(B)。A 1sinx;B 1sinx;C 1cosx;D 1cosx
4.2 换元积分法(重要)
1、第一换元法的原理:g(x)dx
把被积函数g(x)凑成g(x)f((x))(x)的形式,因而这种方法也称为凑微分法。
2、一些规律: ①f(x)1xdx2f(x)(x)2f(x)dx
11f(axb)(axb)dxf(axb)d(axb)
aa②f(axb)dx1③f(lnx)dxf(lnx)(lnx)dxf(lnx)d(lnx)
x④sin(2k1)xcosnxdxsin2kxcosnxsinxdx(1cos2x)cosnxdcosx ⑤cos(2k1)kxsinxdxcosxsinxcosxdx(1sinx)sinnxdsinx n2kn2k注:sin(2k1)xdx和cos(2k1)xsinnxdx可以看做④和⑤的特殊情形。⑥sin2kxcos2nxdx用公式sin2x⑦tanxsecn2k2n2k1cos2x1cos2x和cos2x降次。22n2kxdxtanxsecxdtanxtanx(1tanx)dtanx
注sec2kxdx可以看做⑦的特殊情形
⑧csc2k2xdxcsc2kxcsc2xdx(1cot2x)dcotx
⑨tan(2k1)xsecnxdxtan2kxsecn1xdsecx(sec2x1)secn1xdsecx ⑩利用积化和差公式:
1cosAcosB[cos(AB)cos(AB)]
21sinAcosB[sin(AB)sin(AB)]
21cosAsinB[sin(AB)sin(AB)]
21sinAsinB[cos(AB)cos(AB)]
2第二换元法
被积函数中含有a2x2,利用代换xasint,t(被积函数中含有a2x2,利用代换xatant,t(kk,)22,)22被积函数中含有x2a2,利用代换xasect,t(0,)(一般要分情况讨论)被积函数为分式,分母次数比分子次数高,到代换 利用下列积分公式:
⒃tanxdxln|cosx|C;⒄cotxdxln|sinx|C
⒅secxdxln|secxtanx|C;⒆cscxdxln|cscxcotx|C ⒇dx1xdx1xaarctanC;(21)lnx2a22axaC aa2x2a(22)xdxarcsinC;ln(xa2x2)C(23)ax2a2a2x2dx(24)dxx2a2lnxx2a2C
4.3 分部积分法(重要)
1、分部积分公式:udvuvvdu
2、u的选取原则:反对幂指三。
这个原则不是绝对的,如通常exsinxdxsinxdex。
3、如果遇到反三角函数和对数函数的高次幂,通常先换元更容易算。如(arcsinx)2dxarcsinxtt2dsint;
ln2x2ttdxlnxtedt x2遇到根式axb,先令taxb去根号。会做形如例7、8那样具有典型特点的题目。
4.4 有理函数的积分(重要)
1、P(x),先用多项式除法化成真分式; Q(x)P(x)的分解式: Q(x)
2、对Q(x)分解因式,根据分解结果用待定系数法确定x1x1AB:应设
(x2)(x3)(x2)(x3)x2x3 x2x2ABxC:应设 (2x1)(x2x1)(2x1)(x2x1)(2x1)(x2x1)x2x2ABx3Cx2DxE(2x1)(x2x1)2:应设(2x1)(x2x1)(2x1)(x2x1)2
原则就是分子的次数总是要比分母低一次。
3、三角函数可以通过如下换元法转化为有理函数的积分
xxx2tan1tan22tan2;cosx2;tanx2 sinxxxx1tan21tan21tan2222x令tant,则三角函数就转化成为有理函数
24.被积函数含有naxb或naxbcxd,则令tnaxb或tnaxbcxd 几个典型题目 P207页(42)x1dxdx,(43)x1x2P211页例7、8 x22x3补充说明:这一章的内容需要大家在掌握一定规律的前提下多做练习,方能取得比较好的效果 第五章:定积分
5.1 定积分的概念和性质
1、定积分的定义:f(x)dxlimf(i)xi
abni02、定积分的几何意义:曲边梯形的面积
3、定积分的性质:利用定积分的性质判断积分的取值范围或比较两个积分的大小(p235,10,13)(重要)5.2 微积分基本公式
1、yf(x),axb的积分上限的函数(重要)
(x)xaf(t)dt,axb
及其导数:(如p243,5题)(1)(x)f(x)
d(x)f(t)dtf((x))(x)adxda(3)f(t)dtf((x))(x)
dx(x)d(x)(4)f(t)dtf((x))(x)f((x))(x)
dx(x)
2、利用上面的公式计算极限、判断函数单调性等: 相应例题(p242,例7,8),相应习题(p243-244:习题9,12,12,14)(重要)(2)
3、牛顿-莱布尼茨公式:函数F(x)为函数f(x)在区间[a,b]上的一个原函数,则
baf(x)dxF(b)F(a),记作[F(x)]a或F(x)bba
注意:分段函数(或者带绝对值的函数)的积分应为分段积分的和:典型题目p244,习题10.5.3 定积分的换元法和分布积分法(重要)
1、第一换元公式:f[(x)](x)dtf(t)dt
ab
2、第二还原公式:f(x)dxf[(t)](t)dt
ab注意:一般来说应用第一换元公式,我们一般不需要把新变量写出来,因而也就
cos2不需要写出新变量的积分限,如cossinxdx 但是应用第二换元。
30公式,一般要写出新变量及其积分限,如
2023aasinta2x2dx(a0)xa22cos2tdt
003、分布积分公式:u(x)dv(x)u(x)v(x)av(x)du(x)
baabb说明:无论是还原法还是分布积分法,定积分和不定积分的计算过程都是相似的。
4、利用下面的公式能帮助我们简化计算:(重要)(1)偶倍寄零
00(2)2f(sinx)dx2f(cosx)dx(3)xf(sinx)dx020f(sinx)dx(p248, 例6,p270, 10(6))
(4)设f(x)是周期为T的连续函数:则
aTaf(x)dxf(x)dx;0TanTaf(x)dxnf(x)dx(nN).(p249,例7,p253,0T1(26))
5、形如例9这样的积分。5.4 反常积分
1、无穷限的反常积分:设F(x)是f(x)的原函数,引入记号
F()limF(x);F()limF(x)
xx则
af(x)dxF(x)|aF()F(a);f(x)dxF(x)|F()F().bf(x)dxF(x)|bF(b)F();
反常积分收敛意味着相应的F(),F()存在;特别的积分F(),F()同时存在。
f(x)dx收敛必须注意:对于无穷限积分来说,偶倍寄零原则不在成立!
2、无界函数的反常积分(瑕积分):设F(x)是f(x)的原函数,则 若b为瑕点,f(x)dx F(x)aF(b)F(a);
bab若a为瑕点,则f(x)dxF(x)aF(b)F(a);
bab若a,b都为瑕点,f(x)dx F(x)aF(b)F(a);
bab则c(a,b)为瑕点,则f(x)dxf(x)dxf(x)dxF(x)c。aF(x)caacbcbb反常积分收敛意味着相应的F(a),F(b)存在;特别的积分f(x)dx(c(a,b)ab为瑕点)收敛必须F(c),F(c)同时存在。
说明:由上面的公式看出,反常积分与定积分的计算方法是一样的。都是先求原函数然后代入两个端点,只是对于非正常点(如和瑕点)算的是函数的极限。
3、换元法也适用于反常积分
4、会利用下面的两个重要反常积分来讨论一些函数的收敛性(重要)
ap1,dx(a0)1,p1xpp1(p1)a(ba)1qb,q1dx 1qa(xa)q,q1练习:p260,2题;求积分bdx的收敛性。
b(xb)qa5、遇到形如f(x)dx积分时,注意[a,b]是否含有瑕点。否则会得到错误的结果:
adx。1x第六章 定积分的应用
6.2 定积分在几何学上的应用
1、平面图形的面积(直角坐标系和极坐标下)(重要)
2、体积(特别是旋转体的体积)(重要)
3、三个弧长公式(重要)
6.3 定积分在物理学上的应用(做功、水压力重要,引力了解)如1