高等数学总结

时间:2019-05-12 12:48:59下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高等数学总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高等数学总结》。

第一篇:高等数学总结

FROM BODY TO SOUL

高等数学

第一讲 函数、极限和连续

一、函数 1.函数的概念

几种常见函数 绝对值函数: 符号函数: 取整函数: 分段函数:

最大值最小值函数:

2.函数的特性

有界性: 单调性: 奇偶性: 周期性:

3.反函数与复合函数

反函数:

复合函数:

第二篇:高等数学难点总结

高等数学难点总结 上册:

函数(高等数学的主要研究对象)

极限:数列的极限(特殊)——函数的极限(一般)极限的本质是通过已知某一个量(自变量)的变化趋势,去研究和探索另外一个量(因变量)的变化趋势

由极限可以推得的一些性质:局部有界性、局部保号性……应当注意到,由极限所得到的性质通常都是只在局部范围内成立

在提出极限概念的时候并未涉及到函数在该点的具体情况,所以函数在某点的极限与函数在该点的取值并无必然联系

连续:函数在某点的极限 等于 函数在该点的取值 连续的本质:自变量无限接近,因变量无限接近

导数的概念

本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限,更简单的说法是变化率

微分的概念:函数增量的线性主要部分,这个说法有两层意思,一、微分是一个线性近似,二、这个线性近似带来的误差是足够小的,实际上任何函数的增量我们都可以线性关系去近似它,但是当误差不够小时,近似的程度就不够好,这时就不能说该函数可微分了

不定积分:导数的逆运算 什么样的函数有不定积分

定积分:由具体例子引出,本质是先分割、再综合,其中分割的作用是把不规则的整体划作规则的许多个小的部分,然后再综合,最后求极限,当极限存在时,近似成为精确 什么样的函数有定积分

求不定积分(定积分)的若干典型方法:换元、分部,分部积分中考虑放到积分号后面的部分,不同类型的函数有不同的优先级别,按反对幂三指的顺序来记忆

定积分的几何应用和物理应用

高等数学里最重要的数学思想方法:微元法

微分和导数的应用:判断函数的单调性和凹凸性

微分中值定理,可从几何意义去加深理解

泰勒定理:本质是用多项式来逼近连续函数。要学好这部分内容,需要考虑两个问题:

一、这些多项式的系数如何求?

二、即使求出了这些多项式的系数,如何去评估这个多项式逼近连续函数的精确程度,即还需要求出误差(余项),当余项随着项数的增多趋向于零时,这种近似的精确度就是足够好的。下册

(一):

多元函数的微积分:将上册的一元函数微积分的概念拓展到多元函数

最典型的是二元函数

极限:二元函数与一元函数要注意的区别,二元函数中两点无限接近的方式有无限多种(一元函数只能沿直线接近),所以二元函数存在的要求更高,即自变量无论以任何方式接近于一定点,函数值都要有确定的变化趋势

连续:二元函数和一元函数一样,同样是考虑在某点的极限和在某点的函数值是否相等

导数:上册中已经说过,导数反映的是函数在某点处的变化率(变化情况),在二元函数中,一点处函数的变化情况与从该点出发所选择的方向有关,有可能沿不同方向会有不同的变化率,这样引出方向导数的概念

沿坐标轴方向的导数若存在,称之为偏导数

通过研究发现,方向导数与偏导数存在一定关系,可用偏导数和所选定的方向来表示,即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况

高阶偏导数若连续,则求导次序可交换

微分:微分是函数增量的线性主要部分,这一本质对一元函数或多元函数来说都一样。只不过若是二元函数,所选取的线性近似部分应该是两个方向自变量增量的线性组合,然后再考虑误差是否是自变量增量的高阶无穷小,若是,则微分存在

仅仅有偏导数存在,不能推出用线性关系近似表示函数增量后带来的误差足够小,即偏导数存在不一定有微分存在

若偏导数存在,且连续,则微分一定存在

极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂

极值:若函数在一点取极值,且在该点导数(偏导数)存在,则此导数(偏导数)必为零

所以,函数在某点的极值情况,即函数在该点附近的函数增量的符号,由二阶微分的符号判断。对一元函数来说,二阶微分的符号就是二阶导数的符号,对二元函数来说,二阶微分的符号可由相应的二次型的正定或负定性判断。

级数敛散性的判别思路:首先看通项是否趋于零,若不趋于零则发散。若通项趋于零,看是否正项级数。若是正项级数,首先看能否利用比较判别法,注意等比级数和调和级数是常用来作比较的级数,若通项是连乘形式,考虑用比值判别法,若通项是乘方形式,考虑用根值判别法。若不是正项级数,取绝对值,考虑其是否绝对收敛,绝对收敛则必收敛。若绝对值不收敛,考察一般项,看是否交错级数,用莱布尼兹准则判断。若不是交错级数,只能通过最根本的方法判断,即看其前n项和是否有极限,具体问题具体分析。

比较判别法是充分必要条件,比值和根值法只是充分条件,不是必要条件。

函数项级数情况复杂,一般只研究幂级数。阿贝尔定理揭示了幂级数的重要性质:收敛区域存在一个收敛半径。所以对幂级数,关键在于求出收敛半径,而这可利用根值判别法解决。

逐项求导和逐项积分不改变幂级数除端点外的区域的敛散性,端点情况复杂,需具体分析。

一个函数能展开成幂级数的条件是:存在任意阶导数。展开后的幂级数能收敛于原来函数的条件是:余项(误差)要随着项数的增加趋于零。这与泰勒展开中的结论一致。

微分方程:不同种类的方程有不同的常见解法,但理解上并无难处。

第三篇:高等数学难点总结

高等数学难点总结

函数(高等数学的主要研究对象)

极限:数列的极限(特殊)——函数的极限(一般)

极限的本质是通过已知某一个量(自变量)的变化趋势,去研究和探索另外一个量(因变量)的变化趋势

由极限可以推得的一些性质:局部有界性、局部保号性……应当注意到,由极限所得到的性质通常都是只在局部范围内成立

在提出极限概念的时候并未涉及到函数在该点的具体情况,所以函数在某点的极限与函数在该点的取值并无必然联系

连续:函数在某点的极限 等于 函数在该点的取值 连续的本质:自变量无限接近,因变量无限接近

导数的概念

本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限,更简单的说法是变化率

微分的概念:函数增量的线性主要部分,这个说法有两层意思,一、微分是一个线性近似,二、这个线性近似带来的误差是足够小的,实际上任何函数的增量我们都可以线性关系去近似它,但是当误差不够小时,近似的程度就不够好,这时就不能说该函数可微分了

不定积分:导数的逆运算 什么样的函数有不定积分

定积分:由具体例子引出,本质是先分割、再综合,其中分割的作用是把不规则的整体划作规则的许多个小的部分,然后再综合,最后求极限,当极限存在时,近似成为精确 什么样的函数有定积分

求不定积分(定积分)的若干典型方法:换元、分部,分部积分中考虑放到积分号后面的部分,不同类型的函数有不同的优先级别,按反对幂三指的顺序来记忆

定积分的几何应用和物理应用

高等数学里最重要的数学思想方法:微元法

微分和导数的应用:判断函数的单调性和凹凸性

微分中值定理,可从几何意义去加深理解

泰勒定理:本质是用多项式来逼近连续函数。要学好这部分内容,需要考虑两个问题:

一、这些多项式的系数如何求?

二、即使求出了这些多项式的系数,如何去评估这个多项式逼近连续函数的精确程度,即还需要求出误差(余项),当余项随着项数的增多趋向于零时,这种近似的精确度就是足够好的 下册

(一):

多元函数的微积分:将上册的一元函数微积分的概念拓展到多元函数

最典型的是二元函数

极限:二元函数与一元函数要注意的区别,二元函数中两点无限接近的方式有无限多种(一元函数只能沿直线接近),所以二元函数存在的要求更高,即自变量无论以任何方式接近于一定点,函数值都要有确定的变化趋势

连续:二元函数和一元函数一样,同样是考虑在某点的极限和在某点的函数值是否相等

导数:上册中已经说过,导数反映的是函数在某点处的变化率(变化情况),在二元函数中,一点处函数的变化情况与从该点出发所选择的方向有关,有可能沿不同方向会有不同的变化率,这样引出方向导数的概念

沿坐标轴方向的导数若存在,称之为偏导数

通过研究发现,方向导数与偏导数存在一定关系,可用偏导数和所选定的方向来表示,即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况

高阶偏导数若连续,则求导次序可交换

微分:微分是函数增量的线性主要部分,这一本质对一元函数或多元函数来说都一样。只不过若是二元函数,所选取的线性近似部分应该是两个方向自变量增量的线性组合,然后再考虑误差是否是自变量增量的高阶无穷小,若是,则微分存在

仅仅有偏导数存在,不能推出用线性关系近似表示函数增量后带来的误差足够小,即偏导数存在不一定有微分存在

若偏导数存在,且连续,则微分一定存在

极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂

极值:若函数在一点取极值,且在该点导数(偏导数)存在,则此导数(偏导数)必为零

所以,函数在某点的极值情况,即函数在该点附近的函数增量的符号,由二阶微分的符号判断。对一元函数来说,二阶微分的符号就是二阶导数的符号,对二元函数来说,二阶微分的符号可由相应的二次型的正定或负定性判断。

级数敛散性的判别思路:首先看通项是否趋于零,若不趋于零则发散。若通项趋于零,看是否正项级数。若是正项级数,首先看能否利用比较判别法,注意等比级数和调和级数是常用来作比较的级数,若通项是连乘形式,考虑用比值判别法,若通项是乘方形式,考虑用根值判别法。若不是正项级数,取绝对值,考虑其是否绝对收敛,绝对收敛则必收敛。若绝对值不收敛,考察一般项,看是否交错级数,用莱布尼兹准则判断。若不是交错级数,只能通过最根本的方法判断,即看其前n项和是否有极限,具体问题具体分析。

比较判别法是充分必要条件,比值和根值法只是充分条件,不是必要条件。

函数项级数情况复杂,一般只研究幂级数。阿贝尔定理揭示了幂级数的重要性质:收敛区域存在一个收敛半径。所以对幂级数,关键在于求出收敛半径,而这可利用根值判别法解决。

逐项求导和逐项积分不改变幂级数除端点外的区域的敛散性,端点情况复杂,需具体分析。

一个函数能展开成幂级数的条件是:存在任意阶导数。展开后的幂级数能收敛于原来函数的条件是:余项(误差)要随着项数的增加趋于零。这与泰勒展开中的结论一致。

微分方程:不同种类的方程有不同的常见解法,但理解上并无难处。下册

(二)定积分、二重积分、三重积分、第一类曲线积分、第一类曲面积分都可以概率为一种类型的积分,从物理意义上来理解是某个空间区域(直线段、平面区域、立体区域、曲线段、曲面区域)的质量,其中被积元可看作区域的微小单元,被积函数则是该微小单元的密度

这些积分最终都是转化成定积分来计算

第二类曲线积分的物理意义是变力做功(或速度环量),第二类曲面积分的物理意义是流量

在研究上述七类积分的过程中,发现其实被积函数都是空间位置点的函数,于是把这种以空间位置作为自变量的函数称为场函数

场函数有标量场和向量场,一个向量场相当于三个标量场

场函数在一点的变化情况由方向导数给出,而方向导数最大的方向,称为梯度方向。梯度是一个向量,任何方向的方向导数,都是梯度在这个方向上的投影,所以梯度的模是方向导数的最大值

梯度方向是函数变化最快的方向,等位面方向是函数无变化的方向,这两者垂直

梯度实际上一个场函数不均匀性的量度

梯度运算把一个标量场变成向量场

一条空间曲线在某点的切向量,便是该点处的曲线微元向量,有三个分量,它建立了第一类曲线积分与第二类曲线积分的联系

一张空间曲面在某点的法向量,便是该点处的曲面微元向量,有三个分量,它建立了第一类曲面积分和第二类曲面积分的联系

物体在一点处的相对体积变化率由该点处的速度场决定,其值为速度场的散度 散度运算把向量场变成标量场

散度为零的场称为无源场

高斯定理的物理意义:对散度在空间区域进行体积分,结果应该是这个空间区域的体积变化率,同时这种体积变化也可看成是在边界上的流量造成的,故两者应该相等。即高斯定理把一个速度场在边界上的积分与速度场的散度在该边界所围的闭区域上的体积分联系起来

无源场的体积变化为零,这是容易理解的,相当于既无损失又无补充

物体在一点处的旋转情况由该点处的速度场决定,其值为速度场的旋度

旋度运算把向量场变成向量场

旋度为零的场称为无旋场

斯托克斯定理的物理意义:对旋度在空间曲面进行第二类曲面积分,结果应该表示的是这个曲面的旋转快慢程度,同时这种旋转也可看成是边界上的速度环量造成的,故两者应该相等。即斯托克斯定理把一个速度场在边界上形成的环量与该边界所围的曲面的第二类曲面积分联系起来。该解释是从速度环量的角度出发得到的,比高斯定理要难,不强求掌握。

无旋场的速度环量为零,这相当于一个区域没有旋转效应,这是容易理解的

格林定理是斯托克斯定理的平面情形

进一步考察无旋场的性质

旋度为零,相当于对旋度作的第二类曲面积分为零——即等号后边的第二类曲线积分为零,相当于该力场围绕一闭合空间曲线作做的功为零——即从该闭合曲线上任选一点出发,积分与路径无关——相当于所得到的曲线积分结果只于终点的选择有关,与路径无关,可看成终点的函数,这是一个场函数(空间位置的函数),称为势函数——所得的势函数的梯度正好就是原来的力场——因为力场函数是连续的,所以势函数有全微分

简单的概括起来就是:无旋场——积分与路径无关——梯度场——有势场——全微分

要注意以上这些说法之间的等价性

三定理(Gauss Stokes Green)的向量形式和分量形式都要熟悉

第四篇:高等数学积分总结[推荐]

问题引例:曲边梯形的面积、变速直线运动的路程n积分定义:bfxdxlimfxiia0i1b计算方法:fxdxFbFaa一元定积分几何意义:连续曲线与x轴所围曲边梯形面积的代数和物理意义:变力沿直线做功应用几何:平面图形的面积直角坐标、极坐标、体积已知平行截面、旋转体体积平面曲线的弧长直角坐标、极坐标、参数方程、旋转曲面的面积应用物理:水压力、质量与引力、边际成本

一元不定积分:解决定积分的计算问题,将积分问题与求导问题联系起来

问题引例:曲顶柱体的体积、平面薄片的质量n积分定义:fx,ydlimf,iii0i1D计算方法:关键问题是定限,在直角坐标下d=dxdy,在极坐标下d=rdrd二重积分几何意义:以D为底,fx,y为曲顶柱体的体积的代数和物理意义:应用几何:求平面图形的面积dD应用物理问题引例:四维空间中曲顶柱体的体积问题n积分定义:fx,y,zdvlimf,,viiii0i1计算方法:直角坐标 dv=dxdydz柱面坐标xrcos,yrsin,zz,dv=rdrddz三重积分球面坐标xrsincos,yrsinsin,zrcos,dv=r2sindrdd定限的方法参考二重积分 几何意义、物理意义应用几何应用物理

问题引例:曲线形构件的质量nn积分定义:fx,ydslimf,s,fx,y,zdslimf,,siiiiiii00i1i1LL计算方法:用路径函数L化简fx,y,化为一元定积分弧长元素ds=dx2dy22ds=1+y'xdx对弧长的曲线积分2ds=1+x'ydy第一型曲线积分22ds=t+'tdt22ds=r+r'd几何意义、物理意义应用几何应用物理n问题引例:曲面不均匀薄片的质量n积分定义:fx,y,zdSlimf,,Siiii0i1对面积的曲面积分计算方法:

1、投影,2、代入,3、转换22第一型曲面积分fx,y,zdSfx,y,zx,y1zxzydxdyDxy应用几何:计算曲面面积应用物理

Pi,ixiQi,iyi问题引例:变力沿曲线作功Wlim0i1nn

1、定义:如果一阶微分方程Px,ydxQx,ydy0的左端恰好是某一个二元积分定义:Px,ydxlimP,x,Qx,ydylimQi,iyiiiiLL00i1i1函数u的全微分,此时方程的通解为u=C,因此全微分方程的关键就是求u积分的定义可推广到空间的情况,并可简写成Px,ydxQx,ydy

2、求解方法:L对坐标的曲线积分计算方法:本质是将其化为一元定积分用参数方程、将y化为x'全微分方程uu第二型曲线积分①不定积分法:P,uPdxy,PdxyQxy两种曲线积分的关系:②凑微分法PdxQdyPcosQcosds③积分因子法:见笔记PdxQdyRdzPcosQcosRcosds 其中cos,cos,cos是曲线在一点的与有向曲线同向的切向量的方向余弦 问题引例:曲面的侧的定义指明了曲面是有方向的曲面的投影,流体力学中流量问题=vdSn积分定义:limPi,i,iSzyQi,i,iSxzRi,i,iSxyPcosQcosRcosdS0i1对坐标的曲面积分nlimPi,i,iSzyQi,i,iSxzRi,i,iSxyPdydzQdxdzRdxdy第二型曲面积分0i1第一式将定义以第一型曲面积分的形式给出;第二式是我们普遍用的第二型曲面积分两个式子反应的是一个东西,也就阐明了两类曲面积分的联系计算方法:投影、代入、转换应用:流量的计算

QP 格林定理:①曲线正向的定义;②dxdy,L为D的取正向的边界曲线LPdxQdyxyD QP应用格林公式应注意:1曲线L必须封闭;2、在D内每点具有一阶连续偏导;3L为正向曲线 xy

A格林公式曲线积分的路径无关性:概念,积分值只与初始点的坐标有关PdxQdy B 四个等价命题:在一个单连通区域内,函数Px,y、Qx,y在G内有一阶连续偏导 则下面四个命题等价:QP ①=;②PdxQdy0;③PdxQdy与路径无关;④存在函数ux,y,使duPdxQdyLL xy 高斯公式:是闭曲面围成的区域,函数P、Q、R在上具有一阶连续偏导,则PQRPdydzQdzdxRdxdy++dVxyzPQRPcosQcosRcosdS++dV高斯公式通量散度xyz其中是的外侧,cos、cos、cos是点出法向量的方向余弦PQR通量与散度:=AdS,divA++xyz

斯托克斯公式:设是以为边界的有向曲面,的正向与的侧符合右手规则,P,Q,R具有一阶连续偏导  RQQPPRPdxQdyRdzdydzdzdxdxdyL yzzxxy斯托克斯公式环流量与旋度

环流量与旋度:向量场A沿有向闭曲线的曲线积分Ads称为A沿的环流量 RQPRQP旋度:rotA= ikjyzzxxy

积分应用归纳几何应用:

1、求曲边梯形的面积:用一元定积分可做

2、求曲顶柱体的体积:用二重积分可做,用三重积分可做

3、曲面的面积:1dSdS 柱面面积=fx,yds——牟合方盖的表面积Lfy,zds,fx,zdsLL该柱面以L为准线,母线平行于z轴,介于z0与曲面zfx,y之间的部分

4、平面的面积:其实就是曲面面积的特殊情况,用一元定积分可做,用二重积分可做

物理应用:

1、质量平面直线杆一元定积分线状质量线密度长度平面曲线杆对弧长的曲线积分这也就解释了为什么对弧长的积分化为定积分空间曲线杆被积函数为三元函数的对弧长的曲线积分平面面片二重积分面状质量面密度面积空间面片对曲面的面积积分立体快质量体密度体积三重积分解释了为什么对曲面的面积积分化为二重积分=fP;MfPd

2、质心物理重心——质心——几何中心——形心概念解释:物理重心——是在重力场中,物体处于任何方位时所有各组成质点的重力的合力都通过的那一点。规则而密度均匀物体的重心就是它的几何中心。质心——质量中心简称质心,指物质系统上被认为质量集中于此的一个假想点。与重心不同的是,质心不一定要在有重力场的系统中。值得注意的是,除非重力场是均匀的,否则同一物质系统的质心与重心不通常在同一假想点上。形心——面的形心就是截面图形的几何中心,质心是针对实物体而言的,而形心是针对抽象几何体而言的,对于密度均匀的实物体,质心和形心重合。质心的计算:引入了静力矩的概念xx,ydyx,y薄片:xDx,yd,ydDx,yd平面DDxx,ydsyx,曲线杆:xLydsx,yds,yLx,ydsLL3、转动惯量:定义:IMr2Ixy2x,ydDIyx2x,ydDI0x2y2x,yd D



块:xxdv,yydvdvdv空间面片:xxd,yyddd曲杆:xxds,yydsdsds

第五篇:高等数学极限总结

我的高等数学 学我所学,想我所想

【摘要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基本概念阐述,着重介绍极限运算过程中极具技巧的解决思路。希望以此文能对学习者有所帮助。【关键词】高等数学 极限 技巧

《高等数学》极限运算技巧

《高等数学》的极限与连续是前几章的内容,对于刚入高校的学生而言是入门部分的重要环节。是“初等数学”向“高等数学”的起步阶段。

一,极限的概念

从概念上来讲的话,我们首先要掌握逼近的思想,所谓极限就是当函数的变量具有某种变化趋势(这种变化趋势是具有唯一性),那么函数的应变量同时具有一种趋势,而且这种趋势是与自变量的变化具有对应性。通俗的来讲,函数值因为函数变量的变化而无限逼近某一定值,我们就将这一定值称为该函数在变量产生这种变化时的极限!

从数学式子上来讲,逼近是指函数的变化,表示为。这个问题不再赘述,大家可以参考教科书上的介绍。

二,极限的运算技巧

我在上课时,为了让学生好好参照我的结论,我夸过这样一个海口,我说,只要你认真的记住这些内容,高数部分所要求的极限内容基本可以全部解决。现在想来这不是什么海口,数学再难也是基本的内容,基本的方法,关键是技巧性。我记得blog中我做过一道极限题,当时有网友惊呼说太讨巧了!其实不是讨巧,是有规律可循的!今天我写的内容希望可以对大家的学习有帮助!

我们看到一道数学题的时候,首先是审题,做极限题,首先是看它的基本形式,是属于什么形式采用什么方法。这基本上时可以直接套用的。

我的高等数学 学我所学,想我所想

1,连续函数的极限

这个我不细说,两句话,首先看是不是连续函数,是连续函数的直接带入自变量。

2,不定型

我相信所有学习者都很清楚不定型的重要性,确实。那么下面详细说明一些注意点以及技巧。

第一,所有的含有无穷小的,首先要想到等价无穷小代换,因为这是最能简化运算的。等价代换的公式主要有六个:

需要注意的是等价物穷小代换是有适用条件的,即:在含有加减运算的式子中不能直接代换,在部分式子的乘除因子也不能直接代换,那么如果一般方法解决不了问题的话,必须要等价代换的时候,必须拆项运算,不过,需要说明,拆项的时候要小心,必须要保证拆开的每一项极限都存在。此外等价无穷小代换的使用,可以变通一些其他形式,比如:

等等。特别强调在运算的之前,检验形式,是无穷小的形式才能等价代换。

当然在一些无穷大的式子中也可以去转化代换,即无穷大的倒数是无穷小。这需要变通的看问题。

在无穷小的运算中,洛必答法则也是一种很重要的方法,但是洛必答法则适用条件比较单一,就是无穷小比无穷小。比较常见的采用洛必答法则的是无穷小乘无穷大的情况。(特别说明无穷小乘无穷大可以改写为无穷小比无穷小或者无穷大比无穷大的形式,这根据做题的需要来进行)。

我的高等数学 学我所学,想我所想

第二,在含有∞的极限式中,一般可分为下面几种情况:(1),“∞/∞ ”形式

如果是幂函数形式的(包含幂函数四则运算形式),可以找高次项,提出高次项,这样其他一切项就都是无穷小了,只有高次项是常数。比如:

,这道题中,可以看到提出最高次x(注意不是)其他项都是“0”,原来的x都是常数1了。当然如果分式形式中,只有分子中含有高次项,那么该极限式极限不存在(是无穷大),如果只有分母中含有高次项,那么该极限式极限为0,如果分子分母都含有高次项,我们可以直接去看高次项的系数,基本原理其实就是上面所说的提高次项。比如上面的例子,可以直接写1/2。

如果不是纯幂函数形式,无法用提高次项的方法(提高次项是优先使用的方法),使用洛必达也是一种很好的方法。需要强调的是洛必达是一种解决“∞/∞ ”或“0/0 ”的基本方法,它的严格限制形式只有这两种,所以比较好观察。但是多数时候我们优先采用其他的方法来解决,这主要是考虑运算量的问题。(2),“∞-∞ ”形式

“ ∞-∞”形式不能直接运算,需要转换形式,即转换成“∞/∞ ”或“0/0 ”的形式,基本解法同上。比如:

这道题是转换形式之后是“∞/∞ ”的形式,提高次项解。(3)“ ”形式

我的高等数学 学我所学,想我所想

这也是需要转换的一种基本形式。因为无穷大与无穷小之间的倒数关系,所以这种转换时比较简单也是比较容易解决的。转换之后的形式也是“∞/∞ ”或“0/0 ”的形式。

第三,“ ”

这种形式的解决思路主要有两种。

第一种是极限公式,这种形式也是比较直观的。比如:道题的基本接替思路是,检验形式是“式,最后直接套用公式。

”,然后选用公式,再凑出公式的形第二种是取对数消指数。简单来说,“ ”形式指数的存在是我们解题的主要困难。那么我们直接消掉指数就可以采用其他方法来解决了。比如上面那道题用取对数消指数的方法来解,是这样的:

可以看出尽管思路切入点不一样,但是这两种方法有异曲同工之妙。三,极限运算思维的培养

极限运算考察的是一种基本能力,所以在做题或者看书的时候依赖的是基本概念和基本方法。掌握一定的技巧可以使学习事半功倍。而极限思维的培养则是对做题起到指导性的意义。如何培养,一方面要立足概念,另一方面则需要在具体的运算中体会,多做题多总结。

下载高等数学总结word格式文档
下载高等数学总结.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高等数学极限总结[最终定稿]

    【摘 要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基......

    高等数学教学总结

    高等数学教学工作总结 本学期我担任本科金融专业的高等数学教学工作,一学期来,我自始至终以认真、严谨的治学态度,勤恳、坚持不懈的精神从事教学工作。作为任课教师,我能认真制......

    高等数学上册总结

    《工程应用数学A》课程总结 无论我们做什么事都要不断地思考,不断地总结,学习也是这样,所以这次就借此机会对于这一学期所学内容进行一次总结,也算是对自我的一次思考。 一、课......

    高等数学难点总结函数

    函数(高等数学的主要研究对象) 极限:数列的极限(特殊)——函数的极限(一般) 极限的本质是通过已知某一个量(自变量)的变化趋势,去研究和探索另外一个量(因变量)的变化趋势 由极限可以推......

    《高等数学》课程建设总结

    《高等数学》课程建设总结 作为工科本科院校,高等数学课程是我校长期扶持的重点建设课程,其教学质量的好坏直接影响到我校本科教学质量能否稳步提高。为了适应大众化教育阶段......

    高等数学英文板总结(精选合集)

    函数 In mathematics, a function is a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly o......

    高等数学模拟考试活动总结

    高等数学模拟考试活动总结 期末考试即将到来,根据大一新生对开设课程的难易反馈统计,我们了解到,高等数学成为许多学生期末考试的“头痛科目”。为了测试我院大一新生对高数的......

    高等数学复习要点总结

    高等数学复习要点总结 ★高等数学复习要点总结 希望有参考作用★ 张宇 下面是我给一个朋友写的,大概是今年4月份写的,发给同学们做个参考: 我把高数的东西整理了一下,按照这个复......