高等数学考研知识点总结5

时间:2019-05-12 01:39:16下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高等数学考研知识点总结5》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高等数学考研知识点总结5》。

第一篇:高等数学考研知识点总结5

@第五讲 中值定理的证明技巧

一、考试要求

1、理解闭区间上连续函数的性质(最大值、最小值定理,有界性定理,介值定理),并会应用这些性质。

2、理解并会用罗尔定理、拉格朗日中值定理、泰勒定理,了解并会用柯西中值定理。掌握这四个定理的简单应用(经济)。

3、了解定积分中值定理。

二、内容提要

1、介值定理(根的存在性定理)

(1)介值定理

在闭区间上连续的函数必取得介于最大值 M 与最小值m之间的任何值.(2)零点定理

设f(x)在[a、b]连续,且f(a)f(b)<0,则至少存在一点,c(a、b),使得f(c)=0

2、罗尔定理

若函数f(x)满足:

(1)f(x)在a,b上连续(2)f(x)在(a,b)内可导(3)f(a)f(b)

则一定存在(a,b)使得f'()0

3、拉格朗日中值定理

若函数f(x)满足:

(1)f(x)在a,b上连续(2)f(x)在(a,b)内可导

则一定存在(a,b),使得f(b)f(a)f'()(ba)

4、柯西中值定理

若函数f(x),g(x)满足:(1)在a,b上连续(2)在(a,b)内可导(3)g'(x)0

f(b)f(a)f'()g'()则至少有一点(a,b)使得g(b)g(a)

5、泰勒公式

x如果函数f(x)在含有0的某个开区间(a,b)内具有直到n1阶导数 则当x在(a,b)内时 f(x)可以表示为xx的一个n次多项式与一个余项Rn(x)之和,即

0f(x)f(x0)f(x0)(xx0)1f(x0)(xx0)2    1f(n)(x0)(xx0)nRn(x)2!n!

f(n1)()Rn(x)(xx0)n1x(n1)!其中(介于0与x之间)

在需要用到泰勒公式时,必须要搞清楚三点:

1.展开的基点; 2.展开的阶数;

3.余项的形式.

其中余项的形式,一般在求极限时用的是带皮亚诺余项的泰勒公式,在证明不等式时用的是带拉格朗日余项的泰勒公式.

而基点和阶数,要根据具体的问题来确定.

6、积分中值定理

若f(x)在[a、b]上连续,则至少存在一点c∈[a、b],使得

baf(x)dx=f(c)(b-a)

三、典型题型与例题

题型一、与连续函数相关的问题(证明存在使f()0或方程f(x)=0有根)方法:大多用介值定理 f(x)满足:在[a,b]上连续;f(a)f(b)<0.思路:1)直接法

2)间接法或辅助函数法

1、设f(x)在[a,b]上连续,ax1x2xnb,ci0(i1,2,,n),证明存在[a,b],使得

f()c1f(x1)c2f(x2)cnf(xn)

c1c2cn例

2、设ba0,f(x)在[a,b]上连续、单调递增,且f(x)0,证明存在(a,b)

使得

a2f(b)b2f(a)22f()

*例

3、设f(x)在[a,b]上连续且f(x)0,证明存在(a,b)使得

af(x)dxf(x)dxb1bf(x)dx。2a

.例

4、设f(x),g(x)在[a,b]上连续,证明存在(a,b)使得

5、设f(x)在[0,1]上连续,且f(x)<1.证明:2xf(t)dt1在(0,1)内有且仅

0xg()f(x)dxf()g(x)dx

ab有一个实根。例

6、设实数a1,a2,,an满足关系式a1ana2(1)n10,证明方程 32n1

a1coxsa2co3sxancos2(n1)x0,在(0,)内至少有一实根。

2例

7、(0234,6分)

设函数f(x),g(x)在[a,b]上连续,且g(x)>0,利用闭区间上连续函数的性质,证明存在一点[a,b]使得

题型

二、验证满足某中值定理

3x2,x12例

8、验证函数f(x),在[0,2]上满足拉格朗日中值定理,并求

1,x1x满足定理的

baf(x)g(x)dxf()g(x)dx

ab题型

三、证明存在, 使f(n)()0(n=1,2,…)

方法:

1、用费马定理

2、用罗尔定理(或多次用罗尔定理)

3、用泰勒公式

思路:可考虑函数f(n1)(x)

9、设f(x)在[a,b]上可导且f(a)f(b)0,证明至少存在一个

(a,b)使得f()0

10、设f(x)在[0,3]上连续,在(0,3)内可导,且f(0)f(1)f(2)3,f(3)1,证明存在一个(0,3)使得f()0

*例

11、设f(x)在[0,2]上连续,在(0,2)内具有二阶导数且

1f(x)lim0,21f(x)dxf(2),证明存在(0,2)使得f()0 12xcosx2 题型

四、证明存在, 使G(,f(),f())0

方法:1)用罗尔定理(原函数法,常微分方程法),2)直接用拉格朗日中值定理和柯西中值定理(要求a,b分离)

思路:1)换为x

2)恒等变形,便于积分 3)积分或解微分方程

4)分离常数:F(x,f(x))C F(x,f(x))即为辅助函数(1)用罗尔定理 1)原函数法:

步骤:将换为x;

恒等变形,便于积分;

求原函数,取c=0; 移项,得F(x).例

12、设f(x),g(x)在[a,b]上连续,在(a,b)内可导,且g(x)0(x(a,b)),求证

f(a)f()f()存在(a,b)使得

g()g(b)g()

13、(0134)设f(x)在[0,1]上连续,(0,1)内可导,且

f(1)kxe1xf(x)dx,k1

证明:在(0,1)内至少存在一点, 使 f()(11)f().1k0例

14、设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b)>0,f(a)f(在[a,b]上连续,试证对(a,b),使得f()g()f()..ab)0, g(x)2*例

15、设f(x)在[0,1]上连续,在(0,1)内一阶可导,且f(x)dx0,xf(x)dx0.0011试证:(0,1),使得 f()(11)f()..2)常微分方程法:

适用: ,f()(,f())

步骤:x,f(x)(x,f(x))

解方程 G(x,f(x))c

令 F(x)G(x,f(x))

16、设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)f(b),证明存在(a,b)使得f()f()*例

17、设f(x)在[0,1]上连续,在(0,1)内可导,且 f(0)=0,f(1)=1, 证明:对任意实数,必存在(0,1), 使得f()[f()]

1(2)直接用拉格朗日或柯西中值定理

例18、设f(x)在[a,b]上连续,在(a,b)内可导,求证存在(a,b),使得

bf(b)af(a)f()f()

ba

19、设f(x)在[a,b]上连续,在(a,b)内可导,求证存在(a,b),使得

bn1baf(a)anf(b)n1[nf()f()],n1

例20、设f(x)在[a,b]上连续,在(a,b)内可导(0ab),求证存在(a,b),b使得 f(b)f(a)lnf()

a例

21、设f(x)在[a,b]上连续,在(a,b)内可导(0ab),求证存在(a,b),f(b)f(a)f()使得

(a2abb2)2ba3

题型

5、含有f()(或更高阶导数)的介值问题

方法:1)原函数法(对f(x)仍用微分中值定理:罗尔定理,拉格朗日,柯 西中值定理);

2)泰勒公式

22、设f(x)在[0,1]上二阶可导,且f(0)=f(1), 试证至少存在一个(0,1), 使

2f()f()

1

23、(012,8分)设f(x)在[a,a](a0)上具有二阶连续导数,f(0)=0(1)写出f(x)的带拉氏余项的一阶麦克劳林公式。(2)证明在[a,a]上至少存在一个使得

af()3f(x)dx

a3a例

24、设f(x)在[-1, 1]上具有三阶连续导数,且f(-1)=0, f(1)=1, f(0)=0, 证明: 在(-1,1)内存在一点,使得f()3..例

25、(103)设函数f(x)在闭区间[0, 3]上连续, 在开区间(0, 3)内二阶可导, 且 f(0)=20f(x)dx= f(2)+ f(3).(I)证明存在  (0, 2), 使得f()= f(0);(II)证明存在  (0, 3), 使得 f()=0..题型

6、双介值问题F(,,)0

方法:1)同时两次用拉格朗日中值定理或柯西中值定理 2)用一次后再用一次中值定理

26、设f(x)在[a,b]上连续,在(a,b)内可导,0ab,求证存在,(a,b)使f()得f()(ab)

2

27、(051,12分)已知函数f(x)在[0,1]上连续,在(0,1)内可导,且f(0)0,f(1)1

证明:(1)存在(0,1),使得f()1

(2)存在两个不同的点,(0,1)使得f()f()1 题型

7、综合题

*例

29、(011,7分)

设函数f(x)在(-1,1)内具有二阶连续导数,且f(x)0,试证(1)对于(-1,1)内的任意x0,存在唯一的(x)(0,1)使得

f

f(x)f(0)x((x成立)x

1(2)lim(x)

x0

2例29、试证明若f(x)在[a,b]上存在二阶导数,且f(a)f(b)0,则存在4(a,b)使得f()f(b)f(a)2(ba)*例30、设e

aeaeblnalnb0 1

b1e13

第二篇:2018考研数学三高等数学常考知识点分享

2018考研数学三复习之高等数学常考知识点

来源:智阅网

高等数学是考研数学三中很重要的学科,也是考研数学三中常考的内容。所以,就让我们一起来了解一下高等数学的常考知识点吧!

1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。

2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。

3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。

4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。

我们还可以通过汤家凤老师的2018《考研数学绝对考场最后八套题》(数学三),掌握高等数学等的常考题型和解题方法。想买考研数学三相关内容的朋友,可以去天猫商城北京世纪文都图书专营店、智阅网上看看,最近有“双十一”购书优惠活动,买得越多,折扣越多,非常划算。

第三篇:2018考研高等数学知识点复习先后顺序_毙考题

下载毙考题APP

免费领取考试干货资料,还有资料商城等你入驻

2018考研高等数学知识点复习先后顺序

高等数学复习难度大,考生最好早点开始复习。怎么复习?先看什么?小编来聊聊高数知识点复习的先后顺序,大家参考:

首先按照考试大纲划分复习范围。在熟悉大纲的基础上对考试必备的基础知识进行系统的复习,了解考研数学的基本内容、重点、难点和特点。

其次按照大纲对数学的基本概念、基本方法和基本定理准确把握。高等数学考查还是以考查考生的基本知识和基本技能为住,考卷中偏题和怪题不是很多,所以考生先要从基础学起,先把教材中的一些概念、定理、公式复习好,牢牢地记住,并在此基础上选择一些题目进行强化。如果基础不是非常好,我建议暑期或者秋季报个考研辅导班,在老师的带领下将所学的知识进一步强化巩固。

最后基本功扎实后,就要大量做题。数学只有通过做大量的题目才能有质的飞跃。基础阶段高数主要做教材上的习题及课后练习题,做一本书尽量好做详细的计划,当然做计划也是有技巧的:每天完成一章。因为每一章的内容多少和难度不同,不能一概而论,否则就会出现某一章一会就做完了,另外一章却做了一天也没结束,这样还容易打乱你其他科目的复习计划,毕竟考研不是只考数学。小编建议:比如第一章,感觉一下这章对于自己而言的难度,一共有多少页,自己计划几天完成,然后定好每天完成多少页,计划要定的稍微宽裕一天,以防出现突然有事,或者这章难度超出预料。不要觉得这费时间,一本书定个详细的计划一个小时足够了吧,而一个详细的计划会让自己效率提高很多。

数学复习是要保证熟练度的,平时应该多训练,应该一抓到底,经常练习,一天至少保证三个小时。把一些基本概念、定理、公式复习好,牢牢地记住。同时数学还是一种基本技能的训练,像骑自行车一样。尽管你原来骑得非常好,但是长时间不骑,再骑总有点不习惯。所以考生们经常练习是很重要的,天天做、天天看,一直到考试的那一天。这样的话,就绝对不会生疏了,解题速度就能够跟上去。

考试使用毙考题,不用再报培训班

邀请码:8806

第四篇:考研.数学 高等数学总结1

中值定理及应用

一、基本概念定理

1、极值点与极值—设连续yf(x)(xD),其中x0D。若存在0,当0|xx0|时,有f(x)f(x0),称xx0为f(x)的极大点;若存在0,当0|xx0|时,有f(x)f(x0),称xx0为f(x)的极小点,极大点和极小点称为极值点。

2、极限的保号性定理

定理 设limf(x)A0(0),则存在0,当0|xx0|时,xx0

f(x)0(0),即函数极限大于零则邻域大于零;极限小于零则邻域小于零。

A0,因为limf(x)A,由极限的定义,xx0xx02

AA0。存在0,当0|xx0|时,|f(x)A|,于是f(x)22【证明】设limf(x)A0,取0

3、极限保号性的应用

【例题1】设f(1)0,limf(x)2,讨论x1是否是极值点。x1|x1|

【例题2】(1)设f(a)0,讨论xa是否是f(x)的极值点;

(2)设f(a)0,讨论xa是否是f(x)的极值点。

f(x)f(a)0,由极限的保号性,存在0,xaxa

f(x)f(a)0。当0|xa|时,有xa【解答】(1)设f(a)0,即lim

当x(a,a)时,f(x)f(a);当x(a,a)时,f(x)f(a)。显然xa不是f(x)的极值点。

(2)设f(a)0,即limf(x)f(a)0,由极限的保号性,存在0,当xaxa

f(x)f(a)0。0|xa|时,有xa

当x(a,a)时,f(x)f(a);当x(a,a)时,f(x)f(a)。显然xa不是f(x)的极值点。

【结论1】设连续函数f(x)在xa处取极值,则f(a)0或f(a)不存在。

【结论2】设可导函数f(x)在xa处取极值,则f(a)0。

二、一阶中值定理

定理1(罗尔中值定理)设函数f(x)满足:(1)f(x)C[a,b];(2)f(x)在(a,b)内可导;(3)f(a)f(b),则存在(a,b),使得f()0。

定理2(Lagrange中值定理)设f(x)满足:(1)f(x)C[a,b];(2)f(x)在(a,b)内可导,则存在(a,b),使得f()

【注解】

(1)中值定理的等价形式为: f(b)f(a)。ba

f(b)f(a)f()(ba),其中(a,b);

f(b)f(a)f[a(ba)](ba),其中01。

(2)对端点a,b有依赖性。

(3)端点a,b可以是变量,如f(x)f(a)f()(xa),其中是介于a与x之间的x的函数。

定理3(Cauchy中值定理)设f(x),g(x)满足:(1)f(x),g(x)C[a,b];(2)f(x),g(x)在(a,b)内可导;(3)g(x)0,x(a,b),则存在(a,b),使得f(b)f(a)f()。g(b)g(a)g()

题型一:证明f(n)()0

【例题1】设f(x)C[0,3],f(0)f(1)f(2)3,f(3)1,证明:存在(0,3)使得f()0。

【例题2】设曲线L:yf(x)(x[a,b]),f(x)C[a,b],在(a,b)内二阶可导,连接端点A(a,f(a))与B(b,f(b))的直线与曲线L交于内部一点C(c,f(c))(acb),证明:存在(a,b),使得f()0。

(a)f(b)0,证明:存在【例题3】设f(x)C[a,b],在(a,b)内可导,且f

(a,b),使得f()0。

题型二:结论中含一个中值,不含a,b,且导出之间差距为一阶

【例题1】设f(x)C[a,b],在(a,b)内可导,f(a)f(b)0,证明:存在(a,b),使得f()f()0。

【例题2】设f(x),g(x)C[a,b],在(a,b)内可导,f(a)f(b)0,证明:存在(a,b),使得f()f()g()0。

【例题3】设f(x)C[0,1],在(0,1)内二阶可导,且f(0)f(1),证明:存在(0,1),使得f()2f()。1

题型三:含中值,

情形一:含中值,的项复杂度不同

【例题1】设f(x)C[a,b],在(a,b)内可导,且f(a)f(b)1,证明:存在,(a,b),使得e[f()f()]1。

【例题2】设f(x)C[a,b],在(a,b)内可导(a0),证明:存在,(a,b),使得

f()(ab)f()。2

情形二:含中值,的项复杂度相同

【例题1】设f(x)C[0,1],在(0,1)内可导,且f(0)0,f(1)1。

(1)证明:存在c(0,1),使得f(c)1c。

(2)证明:存在,(0,1),使得f()f()1。

【例题2】设f(x)C[0,1],在(0,1)内可导,且f(0)0,f(1)1,证明:存在,(0,1),使得213。f()f()

三、高阶中值定理—泰勒中值定理

背景:求极限limx0xsinx。x3

定理4(泰勒中值定理)设函数f(x)在xx0的邻域内有直到n1阶导数,则有

f(x0)f(n)(x0)2f(x)f(x0)f(x0)(xx0)(xx0)nRn(x),2!n!

f(n1)()且Rn(x)(xx0)n,其中介于x0与x之间,称此种形式的余项为拉格(n1)!

郎日型余项,若Rn(x)o[(xx0)n],称此种形式的余项为皮亚诺型余项。特别地,若x00,则称

f(0)f(n)(0)n2f(x)f(0)f(0)(xx0)xRn(x),2!n!

f(n1)(x)n1为马克劳林公式,其中Rn(x)x(01)。(n1)!

【注解】常见函数的马克劳林公式

xn

o(xn)。

1、e1xn!x

x3(1)n

2n

12、sinxxxo(x2n1)。3!(2n1)!

x2(1)n

2n3、cosx1xo(x2n)。2!(2n)!

11xxno(xn)。1x

11x(1)nxno(xn)。5、1x4、x2(1)n1

nxo(xn)。

6、ln(1x)x2n

专题一:泰勒公式在极限中的应用 【例题】求极限limx0xsinx。x3

专题二:二阶保号性问题

设函数f(x)的二阶导数f(x)0(0),这类问题主要有两个思路:

思路一:设f(x)0,则f(x)单调增加

【例题1】设f(x)在[0,)上满足f(x)0且f(0)0,证明:对任意的a0,b0有f(a)f(b)f(ab)。

【例题2】设f(x)在[a,)上满足f(x)0且f(a)2,f(a)1,证明:f(x)在(a,)内有且仅有一个零点。

思路二:重要不等式

设f(x)0,因为f(x)f(x0)f(x0)(xx0)

所以有

f(x)f(x0)f(x0)(xx0),其中等号成立当且仅当xx0。

【例题1】设f(x)C(,),f(x)0,且limx0f()(xx0)2,2!f(x)1,证明:f(x)x。x

【例题2】设f(x)0(axb),证明:对任意的xi[a,b](i1,2,,n)及ki0(i1,2,,n)且k1k2kn1,证明:

f(k1x1k2x2knxn)k1f(x1)k2f(x2)knf(xn)。

【例题3】设f(x)C[0,1]且f(x)0,证明:

101f(x2)dxf()。3

第五篇:2012考研数学重要知识点解析之高等数学(一)

在考研数学复习开始之前,万学海文数学考研辅导专家们提醒2012年的考生们要对考研数学的基本命题趋势和试题难度有比较深刻的认识,根据自己对考研数学的定位,要做到有的放矢的复习,才能达到事半功倍的效果。

复习备考的主要策略:紧扣考纲,扎实基础,注重联系,加强训练。

本文万学海文辅导老师们主要阐述如何在复习当中紧扣考纲。考研数学作为标准化考试,其命题范围有明确的规定,2012年考生基础阶段复习主要就是依据考试大纲,详细了解考试的基本要求,类别和难度特点,准确定位。我们以数一中第一章为例:

一、函数、极限、连续

考试内容

函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立

数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:

函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质

考试要求

1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.考试内容中给考生列出了第一章的考试知识点,所以考生在复习过程中首先要弄懂这些知识点。考试要求中标明了对各个知识点的掌握所应该能够达到的程度,一般分为了解、理解、会、掌握,几个层次。

了解:指对该知识点的含义要很清楚,一般在数学中指的是概念、公式、性质、定理及推论等知识内容。比如:了解函数的有界性、单调性、周期性和奇偶性等。

但是并不是说了解的内容就只是了解这些性质,知道这些知识点就行了,有人错误的认为了解的知识一般不会考,这种认识是错误的,只要是在考试大纲中出现的考试内容都有可能考到,甚至对要求了解的知识点考的也比较深入。

理解:指要对知识点懂且认识的很清楚。在考研数学当中主要指对概念、定理、推理的知识点及知识点之间的关系。在这里万学海文辅导老师提醒2012年得考生要注意了解和理解的区别,了解偏重于知道,理解在了解的基础上增加了懂得和能够体会其深层次的意思;理解也就是从表到里深层递进的含义。在考研数学大纲中要求理解的知识点考查的较多,比如:理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系等几乎每年必考.会(求、计算、建立、应用、判断等):其含义为理解、懂得,并根据所学知识能够计算表达式结果、列出方程、画出图形、建立数学模型等。在考研数学大纲中对知识点要求会求、会计算、会建立方程表达式、会描绘等,主要指计算方法、知识点的灵活运用测试的要求;万学海文数学辅导老师提醒大家学习时不仅要记住、理解定理还要会推导,才达到会求解的程度。

掌握:了解、熟知并加以运用。在考研数学大纲中所有知识点的要求中掌握的层次是最高的,要求掌握的知识点往往是考试的重点、热点和难点,比如:掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法等都是每年真题中涉及的内容;万学海文建议2012年得考生在学习时对于大纲要求掌握的知识点不仅要掌握知识点本身还要学习它的推理、证明以及解题时经常用到的结论,同时还要注意与该知识点相关联的知识点及它们之间的关系。

在了解了考研数学大纲内容及要求之后我们就可以有的放矢的进行复习了。古人云:“凡事预则立,不预则废”,这为我们下面能够扎实复习打开了一个美丽的开端。

下载高等数学考研知识点总结5word格式文档
下载高等数学考研知识点总结5.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2018考研数学三高等数学常考知识点介绍

    2018考研数学三高等数学常考知识点介绍 来源:智阅网 高等数学是考研数学三中很重要的学科,所以,就让大家一起来了解一下高等数学的常考知识点吧! 1.函数、极限与连续:主要考查极......

    考研数学之高等数学讲义第七章(考点知识点+概念定理总结)

    第七章多元函数积分学 §7.1 二重积分 (甲) 内容要点 一、在直角坐标系中化二重积分为累次积分以及交换积分顺序序问题 模型I:设有界闭区域 D(x,y)axb,1(x)y2(x) 其中1(x)......

    高等数学(上)重要知识点归纳

    1 高等数学(上)重要知识点归纳 第一章 函数、极限与连续 一、极限的定义与性质 1、定义(以数列为例) limxna0,N,当nN时,|xna| n2、性质 f(x)Af(x)A(x),其中(x)为某一个无穷小。 (......

    2013考研政治精华知识点总结

    考研政治精华知识点总结 【1】马克思主义基本原理 综合各家之后,得出:否定之否定规律,必然和偶然性,可能性与现实性,矛盾对立统一,实践,认识,真理与价值的关系,社会存在和社会意识,经......

    武大考研知识点总结

    名词解释 1. 遥感:遥感即遥远感知,是在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术.一般指的是电磁波遥感.p1 2. 电磁波:根据麦克斯韦电磁场理论,变化的......

    南京大学考研高等数学甲2010

    南京大学2010年攻读硕士学位研究生入学考试试题 (三小时)一.填空题(本大题共8小题,每小题8分,共64分) ⒈令......

    《高等数学》 各章知识点总结——第1章(五篇)

    第1章 函数与极限总结 1、极限的概念 (1)数列极限的定义 给定数列{xn},若存在常数a ,对于任意给定的正数 不论它多么小 总存在正整数N  使得对于n >N 时的一切n 恒有 |xna |......

    高等数学总结

    FROM BODY TO SOUL 高等数学 第一讲 函数、极限和连续 一、 函数 1. 函数的概念 几种常见函数 绝对值函数: 符号函数: 取整函数: 分段函数: 最大值最小值函数: 2. 函数的特性 有......