第一篇:高等数学(上)重要知识点归纳
高等数学(上)重要知识点归纳
第一章 函数、极限与连续
一、极限的定义与性质
1、定义(以数列为例)
limxna0,N,当nN时,|xna|
n
2、性质
f(x)Af(x)A(x),其中(x)为某一个无穷小。(1)limxx0f(x)A0,则0,当xU(x0,)时,(2)(保号性)若limxx0of(x)0。
(3)*无穷小乘以有界函数仍为无穷小。
二、求极限的主要方法与工具
1、*两个重要极限公式
(1)lim0sin1
1(2)lim(1)e
2、两个准则
(1)*夹逼准则
(2)单调有界准则
3、*等价无穷小替换法 常用替换:当0时
(1)sin~
(2)tan~
(3)arcsin~
(4)arctan~(5)ln(1)~
(6)e1~(7)1cos~
2(8)n11~
12 n 2
4、分子或分母有理化法
5、分解因式法
6用定积分定义
三、无穷小阶的比较*
高阶、同阶、等价
四、连续与间断点的分类
1、连续的定义*
f(x)在a点连续
limy0limf(x)f(a)f(a)f(a)f(a)
x0xa可去型(极限存在)第一类跳跃型(左右极限存在但不相等)
2、间断点的分类 无穷型(极限为无穷大)第二类震荡型(来回波动)其他
3、曲线的渐近线*(1)水平渐近线:若limf(x)A,则存在渐近线:yAx(2)铅直渐近线:若limf(x),则存在渐近线:xaxa
五、闭区间连续函数性质
1、最大值与最小值定理
2、介值定理和零点定理
第二章 导数与微分
一、导数的概念
1、导数的定义* y|xaf(a)dyyf(ax)f(a)f(x)f(a)|xalimlimlimx0x0xadxxxxa
2、左右导数
左导数f(a)limx0yf(x)f(a)limxaxxa右导数f(a)limx0yf(x)f(a)limxaxxa
3、导数的几何意义* y|xa曲线f(x)在点(a,f(a))处的切线斜率k
4、导数的物理意义
若运动方程:ss(t)则s(t)v(t)(速度),s(t)v(t)a(t)(加速度)
5、可导与连续的关系:
可导连续,反之不然。
二、导数的运算
1、四则运算(uv)uv
(uv)uvuv
()uvuvuv
2vdydyduu
2、复合函数求导 设yf[(x)],一定条件下 yuxdxdudx3、反函数求导 设yf(x)和xf1(y)互为反函数,一定条件下:yx1 xy4、求导基本公式*(要熟记)
5、隐函数求导* 方法:在F(x,y)0两端同时对x求导,其中要注意到:y是中间变量,然后再解出y
xx(t)
6、参数方程确定函数的求导* 设,一定条件下
yy(t)y(t)tdyytdyytxtytxtxxt(可以不记)y,yxx3dxxtdxxt(xt)
7、常用的高阶导数公式(1)sin(n)xsin(x),(n0,1,2...)
n(2)cosxcos(x),(n0,1,2...)
2(n)n2(3)ln(1x)(1)(n)n1(n1)!,(n12...)n(1x)1n(1)nn!),(n0,1,2...)(4)(n11x(1x)(5)(莱布尼茨公式)(uv)Cnku(nk)v(k)
(n)k0n
三、微分的概念与运算
1、微分定义 * 若yAxo(x),则yf(x)可微,记dyAxAdx
2、公式:dyf(x)xf(x)dx
3、可微与可导的关系* 两者等价
4、近似计算 当|x|较小时,ydy,f(x)f(xx)f(x)x
第三章 导数的应用
一、微分中值定理*
1、柯西中值定理*(1)f(x)、g(x)在[a,b]上连续(2)f(x)、g(x)在(a,b)内可导(3)g(x)0,则:f()f(b)f(a)(a,b),使得:g()g(b)g(a)当取g(x)x时,定理演变成:
2、拉格朗日中值定理*
(a,b),使得:f()f(b)f(a)f(b)f(a)f()(ba)
ba当加上条件f(a)f(b)则演变成:
3、罗尔定理* (a,b),使得:f()0
4、泰勒中值定理 在一定条件下:
f(n)(x0)f(x)f(x0)f(x0)(xx0)...(xx0)nRn(x)
n!f(n1)()(xx0)n1o((xx0)n),介于x0、x之间.其中Rn(x)(n1)!当公式中n=0时,定理演变成拉格朗日定理.当x00时,公式变成:
f(n)(0)n5、麦克劳林公式 f(x)f(0)f(0)x...xRn(x)
n!
6、常用麦克劳林展开式
x21n(1)e1x...xo(xn)
2!n!xx3x5(1)n12n1xo(x2n)(2)sinxx...3!5!(2n1)!x2x4(1)n2nxo(x2n1)(3)cosx1...2!4!(2n)!x2x3(1)n1n(4)ln(1x)x...xo(xn)
23n
二、罗比达法则* 记住:法则仅能对,型直接用,对于0,,1,00,0,转化后用.幂指函数恒等式*fgeglnf
三、单调性判别*
1、y0y,y0y
2、单调区间分界点:驻点和不可导点.四、极值求法*
1、极值点来自:驻点或不可导点(可疑点).2、求出可疑点后再加以判别.3、第一判别法:左右导数要异号,由正变负为极大,由负变正为极小.4、第二判别法:一阶导等于0,二阶导不为0时,是极值点.正为极小,负为极大.五、闭区间最值求法* 找出区间内所有驻点、不可导点、区间端点,比较大小.00 7
六、凹凸性与拐点*
1、y0y,y0y
2、拐点:曲线上凹凸分界点(x0,y0).横坐标x0不外乎f(x0)0,或f(x0)不存在,找到后再加以判别x0附近的二阶导数是否变号.七、曲率与曲率半径
1、曲率公式K|y|(1y2)
12、曲率半径R
K32
第四章 不定积分
一、不定积分的概念* 若在区间I上,F(x)f(x),亦dF(x)f(x)dx,则称F(x)为f(x)的原函数.称全体原函数F(x)+c为f(x)的不定积分,记为f(x)dx.二、微分与积分的互逆关系
1、[f(x)dx]f(x)df(x)dxf(x)dx
2、f(x)dxf(x)cdf(x)f(x)c
三、积分法*
1、凑微分法*
2、第二类换元法
3、分部积分法* udvuvvdu
4、常用的基本积分公式(要熟记).第五章 定积分
一、定积分的定义 af(x)dxlimf(i)xi x0i
1二、可积的必要条件
有界.三、可积的充分条件
连续或只有有限个第一类间断点或单调.四、几何意义
定积分等于面积的代数和.bn 9
五、主要性质*
1、可加性 aac
2、估值 在[a,b]上,m(ba)af(x)dxM(ba)
3、积分中值定理* 当f(x)在[a,b]上连续时:af(x)dxf()(ba),[a,b]
4、函数平均值:babcbbbf(x)dxba
六、变上限积分函数*
1、若f(x)在[a,b]连续,则F(x)af(t)dt可导,且[af(t)dt]f(x)
2、若f(x)在[a,b]连续,(x)可导,则:[a
七、牛-莱公式* 若f(x)在[a,b]连续,则af(x)dx[f(x)dx]|bF(b)F(a)
axx(x)f(t)dt]f[(x)](x)
b
八、定积分的积分法*
1、换元法
牢记:换元同时要换限
2、分部积分法
audvuv|avdu
babb3、特殊积分(1)aa0,当f(x)为奇函数时f(x)dxa
20f(x)dx,当f(x)为偶函数时(2)当f(x)为周期为T的周期函数时:
aanTf(x)dxn0f(x)dx,nZ
T(3)一定条件下:0xf(sinx)dx0f(sinx)dx
2 10
(n1)!,n是正奇数时(4)02sinnxdx02cosnxdxn!
(n1)!,n是正偶数时!2n!(5)0sinxdx202sinnxdx n
九、反常积分*
1、无穷区间上
a
其他类似 f(x)dxlimaf(t)dtF(x)|aF()F(a)xx2、p积分:ap1时收敛1 dx(a0):pxp1时发散
3、瑕积分:若a为瑕点:
b则af(x)dxlimf(t)dtF(x)|F(b)F(a)
其他类似处理
axaxbb
第六章
定积分应用
一、几何应用
1、面积(1)A(y上-y下)dxaA(x右-x左)dyabb
xx(t),(t),则A|y(t)x(t)|dt(2)C:yy(t)C:(),与,,()围成图形面积(3)12A()d2
2、体积*(1)旋转体体积*Vxay2dx
Vycx2dy
或Vy2axydx(2)截面面积为AA(x)的立体体积为VaA(x)dx
bbdb 11
3、弧长
(1)sa1y2dx(axb)(2)sx2(t)y2(t)dt,(t)(3)s22d,()
二、物理应用
1、变力作功
一般地:先求功元素:再积分waF(x)dx dwF(x)dx,x[a,b],克服重力作功的功元素dw=体积g位移
2、水压力
dP=水深面积g
第七章
微分方程
一、可分离变量的微分方程
dy形式:f(x)g(y)
dxbb二、一阶线性微分方程*
1、线性齐次:yp(x)y0 通解公式*:yCep(x)dx
2、线性非齐次
yp(x)yq(x)通解公式*:ye
p(x)dxp(x)dx[eq(x)dxC)
第二篇:高等数学重要知识点的分布
重要知识点的分布
第一部分:空间解析几何(第二章)
1、直线和平面方程
第二部分:无穷级数(第八章)
1、级数收敛、一致收敛判断
2、正项级数的有关证明
3、幂级数的收敛域以及和函数
4、傅里叶级数在间断点的收敛性 第三部分:多元微分(第九章)
1、二元函数极限、连续性及偏导数的判断与计算
2、梯度的计算
3、Lagrange乘数法计算极值
4、曲线切线与曲面切平面计算
第四部分:多元积分(第十章至第十三章)
1、重积分计算,交换积分顺序
2、曲线积分与曲面积分的计算,积分与路径无关
3、散度、旋度的计算
第五部分:常微分方程(第十四章)
1、一阶微分方程的求解
2、二阶常系数微分方程的求解
第三篇:2012考研数学重要知识点解析之高等数学(一)
在考研数学复习开始之前,万学海文数学考研辅导专家们提醒2012年的考生们要对考研数学的基本命题趋势和试题难度有比较深刻的认识,根据自己对考研数学的定位,要做到有的放矢的复习,才能达到事半功倍的效果。
复习备考的主要策略:紧扣考纲,扎实基础,注重联系,加强训练。
本文万学海文辅导老师们主要阐述如何在复习当中紧扣考纲。考研数学作为标准化考试,其命题范围有明确的规定,2012年考生基础阶段复习主要就是依据考试大纲,详细了解考试的基本要求,类别和难度特点,准确定位。我们以数一中第一章为例:
一、函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限与右极限 无穷小量和无穷大量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的两个准则:单调有界准则和夹逼准则 两个重要极限:
函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质
考试要求
1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.考试内容中给考生列出了第一章的考试知识点,所以考生在复习过程中首先要弄懂这些知识点。考试要求中标明了对各个知识点的掌握所应该能够达到的程度,一般分为了解、理解、会、掌握,几个层次。
了解:指对该知识点的含义要很清楚,一般在数学中指的是概念、公式、性质、定理及推论等知识内容。比如:了解函数的有界性、单调性、周期性和奇偶性等。
但是并不是说了解的内容就只是了解这些性质,知道这些知识点就行了,有人错误的认为了解的知识一般不会考,这种认识是错误的,只要是在考试大纲中出现的考试内容都有可能考到,甚至对要求了解的知识点考的也比较深入。
理解:指要对知识点懂且认识的很清楚。在考研数学当中主要指对概念、定理、推理的知识点及知识点之间的关系。在这里万学海文辅导老师提醒2012年得考生要注意了解和理解的区别,了解偏重于知道,理解在了解的基础上增加了懂得和能够体会其深层次的意思;理解也就是从表到里深层递进的含义。在考研数学大纲中要求理解的知识点考查的较多,比如:理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系等几乎每年必考.会(求、计算、建立、应用、判断等):其含义为理解、懂得,并根据所学知识能够计算表达式结果、列出方程、画出图形、建立数学模型等。在考研数学大纲中对知识点要求会求、会计算、会建立方程表达式、会描绘等,主要指计算方法、知识点的灵活运用测试的要求;万学海文数学辅导老师提醒大家学习时不仅要记住、理解定理还要会推导,才达到会求解的程度。
掌握:了解、熟知并加以运用。在考研数学大纲中所有知识点的要求中掌握的层次是最高的,要求掌握的知识点往往是考试的重点、热点和难点,比如:掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法等都是每年真题中涉及的内容;万学海文建议2012年得考生在学习时对于大纲要求掌握的知识点不仅要掌握知识点本身还要学习它的推理、证明以及解题时经常用到的结论,同时还要注意与该知识点相关联的知识点及它们之间的关系。
在了解了考研数学大纲内容及要求之后我们就可以有的放矢的进行复习了。古人云:“凡事预则立,不预则废”,这为我们下面能够扎实复习打开了一个美丽的开端。
第四篇:高等数学(上)(工科)
《高等数学》(上)课程教学大纲
一、课程简介
(一)课程代码084020
2(二)课程名称高等数学Higher Mathematics(上)
(三)修读对象信工
(三)总学时与学分90学时5个学分
(四)考核方式
采取平时考核与期末考试相结合的考核方式。平时考核包括作业、提问、上课发言等方面的考核,平时成绩占20%,期末考试成绩占80%,考试要严格要求,实行考教分离,同一教学计划的班级,期末考试要统一命题,统一评分,统一流水阅卷。
(五)相关课程
本课程是工科类专业的重要基础课,课程基础性、理论性强,与后继课程密切相关。
(六)内容提要(不超过200字)
《高等数学》(上)主要内容是一元微积分,包含函数,函数极限与连续,导数与微分,微分中值定理与导数的应用,不定积分,定积分及其应用,向量代数和空间解析几何。
二、教学目的和教学方法
教学目的高等数学是国家教委指定的工科类各专业核心课程之一,是最重要的一门基础理论课。《高等数学》(指微积分)为研究事物的变化发展规律提供了基本的数学基础和框架,在各种实际问题中有着广泛的应用;它具有丰富的内容和深刻的思想,是进入科学领域的大门,是高校数学教学的核心课程,也是学习后继课程和科学技术知识的基础,尤其是工程技术和计算科学等专业,通过数学学习,使学生掌握该课程的基本思想和方法,使学生能用所学的知识分析、解决实际问题,能对这些问题进行定性和定量的分析研究。训练学生的数学推理的严密性,使学生有一定的数学修养,能用数学的语言描写各种概念和现象,能理解其它学科中所用的数学理论与方法。培养学生具有良好的数学基础和数学思维能力,掌握信息与计算科学的基础理论、方法与技巧和技能。使学生具有使用当代的科技成果能力和习惯.培养学生学习数学的兴趣,帮助学生形成良好自学的习惯,给学生以后从事科学研究和工程技术工作打好基
1础。通过本课程的学习,要使学生掌握高等数学的基本概念、基本理论和基本方法,为学习后继课程和进一步获得数学知识奠定必要的数学基础。
教学方法 本课程的特点是理论性强,思想性强,与相关基础课及专业课关系密切,以课堂讲授为主,讨论法、读书指导法和练习法为辅。教学中应注重启发引导学生掌握重要概念的思想背景,理解概念的本质,避免学生死记硬背。要善于将有关学科或生活中常遇到的名词概念与微积分学的概念结合起来,使学生体会到学习微积分的必要性。注重各教学环节(理论教学、习题课、作业、辅导)的有机联系, 特别是强化作业与辅导环节,使学生加深对课堂教学内容的理解,提高分析解决问题的能力和运算能力。教学中有计划有目的地向学生介绍学习数学与专业课学习之间的关系,充分调动学生的学习兴趣。
三、理论与实验教学学时分配90个理论学时
四、选用教材和主要教学参考书
教材
同济大学应用数学系,高等数学(上、下)第五版[M].北京:高等教育出版社2007
主要教学参考书
1、《数学分析》上下册,华东师范大学数学系编(第三版),高等教育出版社出版。
2、《微积分》上下册,同济大学应用数学系编(21世纪教材),高等教育出版社出版。
3.《工科数学分析基础》上下册,马知恩、王绵森主编(21世纪教材),高等教育出版。
4.《高等数学例题与习题》 同济大学高等数学教研室编,同济大学出版社。
五、理论教学内容(分章节编写,包括主要讲授内容、学时分配、教学重点与难点、练习等)
第一章函数与极限16学时
1.教学内容:集合、常量与变量,一元函数的概念(单值、多值),函数的属性(有界性、单调性、奇偶性、周期性),反函数,基本初等函数的概念、性质及其图形,复合函数,初等函数,数列极限,函数极限,无穷小与无穷大,无穷小与极限之间的关系,无穷小与无穷大之间的关系,极限的运算法则,极限存在的判别法则,两个重要
极限,无穷小阶的比较,函数的连续性,函数的间断点及其类型,连续函数的运算定理,初等函数的连续性,闭区间上连续函数的基本性质。
2.教学要求:理解函数的概念。了解函数的有界性、单调性、周期性和奇偶性。了解函数和复合函数的概念。熟悉基本初等函数的性质及其图形。能列出简单实际问题中的函数关系。了解极限的N,定义(对于给出求N或,不作过高要求),并能学习过程中逐步加深对极限思想的理解。掌握极限四则运算法则。了解两个极限存在准则(夹逼准则和单调有界准则),会用两个重要极限求极限。了解无穷小,无穷大的概念,掌握无穷小的比较。理解函数在一点连续的概念,会判断间断点的类型。了解初等函数的连续性,知道在闭区间上连续函数的性质(介值定理和最大值、最小值定理)。
3.重点、难点:
重点:函数的概念、极限概念、无穷小、极限的四则运算,函数的连续性。
难点:复合函数,极限的N、定义,函数在一点处连续的定义。
4.思考题或练习题:
(1)求函数的反函数;
(2)求函数的定义域、值域,建立函数关系实例;
(3)指出复合函数的组成;
(4)证明数列极限(用极限定义);
(5)求函数的极限;
(6)讨论函数的连续性;
(7)指出分段函数的间断点及类型。
第二章导数与微分14学时
1.教学内容:导数的概念、几何意义,函数可导与连续的关系,基本初等函数的导数,函数的和,差、积、商的导数,反函数的导数,复合函数的导数,初等函数的求导问题,双曲函数与反双曲函数的导数,高阶导数,隐函数的导数,参数方程的导数,微分的概念及运算法则,微分形式不变性、微分在近似计算与误差估计中的应用。
2.教学要求:理解导数和微分的概念。了解导数的几何意义及函数的可导性与连续之间的关系。能用导数描述一些物理量。熟悉导数和微分的运算法则(包括微分形式不变性)和导数的基本公式。了解高阶导数概念。能熟练地初等函数的一阶、二阶导数。掌握隐函数和参数式所确定的函数的一阶、二阶导数的求法。
3.重点、难点:
重点:导数的概念,导数的几何意义,初等函数的导数求法。微分的概念。
难点:复合函数的微分法,隐函数和参数式所确定的函数的二阶导数的求法。
4.思考题或练习题:
(1)导数几何意义及应用;
(2)求函数的导数,高阶导数;
(3)求函数的微分;
(4)微分在近似计算中的应用。
第三章中值定理与导数的应用16学时
1.教学内容:微分中值定理(罗尔定理、拉格朗日中值定理、柯西中值定理),罗必塔法则,函数单调性的判别、函数的凸凹性及拐点的判别、函数的极值概念及求法,最大值与最小值及其应用,函数图形的水平渐近线与铅直渐近线,函数作图,泰勒公式及其应用,弧微分、曲率和曲率半径及计算、方程近解的二分法和切线法。
2.教学要求:理解罗尔(Rolle)定理、拉格朗日(Lagrange)定理。了解柯西(Cauchy)定理和泰勒(Taylor)定理。会应用拉格朗日定理。理解函数的极值概念。掌握求函数的极值,判断函数的增减性与函数图形的凸凹性,求函数图形的拐点等方法。能描绘函数的图形(包括水平和铅直渐近线)。会解较简单的最大值和最小值的应用题。掌握罗必塔法则。知道曲率半径的概念,并会计算曲率和曲率半径。知道求方程近似解的二分法和切线法。
3.重点、难点:
重点:拉格朗日定理,罗比塔法则、单调性的判别、极值的求法。
难点:拉格朗日定理的证明和应用。
4.思考题或练习题:
(1)中值定理的运用;
(2)利用罗必塔法则求极限;
(3)利用导数判断函数的单调性、利用函数的单调性证明不等式;
(4)求函数的极值和最值;
(5)作函数的曲线图形;
第四章不定积分14学时
.教学内容:原函数与不定积分的概念,不定积分的基本性质,积分基本公式,换元积分法,分部积分法,有理函数的积分,三角函数有理式的积分,简单无理函数的积分,积分表的使用。
2.教学要求: 理解不定积分的概念及性质。熟悉不定积分的基本公式,熟练掌握
不定积分的换元积分和分部积分法。掌握较简单的有理函数的积分。
3.重点、难点:
重点:原函数与不定积分概念。不积分的性质,基本积分公式。换元积分法和分部积分法。
难点:不定积分的换元积分法。
4.思考题或练习题:
(1)有关不定积分的概念题;
(2)利用不定积分的性质和基本积分公式求不定积分;
(3)用换元法求函数的不定积分;
(4)用分部积分法求函数的不定积分;
(5)求有理函数,三角函数,无理函数的不定积分;
(6)用积分表求函数的不定积分。
第五章 定积分13学时
1.教学内容:定积分的概念,定积分的基本性质、中值定理、微积分基本定理,定积分的换元积分及分部积分法,定积分的近似计算(矩形法、梯形法、抛物线法),无穷区间上的广义积分,被积函数有无穷间断点的广义积分。
2.教学要求:理解定积分的概念及性质。熟练掌握定积分的换元积分法和分部积分法。理解变上限的定积分作为其上限的函数及其求导定理。熟悉牛顿-莱布尼兹公式。了解广义积分的概念。知道定积分的近似计算(矩形法、梯形法、抛物线法)。
3.重点、难点:
重点:定积分的概念,定积分的中值定理,定积分作为可变上限的函数及其求定理,牛顿-莱布尼兹公式。
难点:定积分的构造型定义。
4.思考题或练习题:
(1)用定积分的定义计算定积分及定积分的几何意义;
(2)利用牛顿-莱布尼茨公式求定积分;
(3)利用换元积分法和分部积分法求定积分;
(4)广义积分的计算;
第六章定积分的应用10学时
1.教学内容:定积分的元素法,平面图形的面积(直角坐标情形、极坐标情形),体积(旋转体的体积、平行截面面积为已知的立体的体积),平面曲线的弧长、功、水压力、和引力,函数的平均值、均方根。
2.教学要求:熟练掌握用元素法建立积分表达式的方法。掌握面积、体积的计算方法。会求平面曲线的弧长、功、水压力和引力。
3.重点、难点:
重点:微元法、定积分的几何、物理应用。
难点:微元法。
4.思考题或练习题:
用定积分的微元法计算定积分几何、物理方面的应用题。
第七章 空间解析几何与向量代数17学时
1.教学内容:空间直角坐标系,两点间距离公式,向量的概念,向量的加减法,向量与数的乘积,向量的分解与向量的坐标,两向量之间的关系(平行、垂直),向量的坐标运算(加、减、数乘、数量积、向量积),平面方程及其求法,直线方程及其求法,曲线与曲面的概念,球面、柱面、投影、柱面、旋转曲面、椭球面、抛物面、双曲面的方程及图形、空间曲线的参数方程及一般方程。
3.教学要求:
理解向量的概念。掌握向量的运算(线性运算、点乘法、叉乘法)。掌握两个向量夹角的求法与垂直、平行的条件。熟悉单位向量、方向余弦及向量的传票坐标的表达式。熟练掌握用坐标表达式进行向量运算。熟悉平面的方程和直线的方程及其教学法求法。理解曲面方程的概念。掌握常用二次曲面的方程及其其图形、掌握以坐标为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。知道空间曲线的参数方程和一般方程。
3.重点、难点:
重点:向量的概念,向量的坐标,向量的数量积和矢量积,平面方程(点法式、一般式、截距式),直线方程(参数式、对称式、一般式),标准二次曲面方程,投影柱面。
难点:矢量积,投影柱面的概念,标准二次曲面的图形。
4.思考题或练习题:
(1)进行向量的运算;
(2)求平面的方程和直线的方程;
(3)求旋转曲面的方程。
第五篇:高等数学上教案
第一章 函数 1.1集合,1.2函数,1.3函数的集中特性,1.4复合函数,1.5参数方程、极坐标与复数
第二章极限与连续 2.1数列的极限,2.2函数的极限,2.3两个重要的极限,2.4无穷
小量与无穷大量,2.5函数的连续性,2.6闭区间上的连续函数的性质
第三章 导数的微分 3.1导数的概念,3.2 导数的运算法则,3.3 初等函数的求导问题,3.4 高阶导数,3.5函数的微分,3.6高阶微分
第四章 微分中值定理及其应用 4.1微分中值定理,4.2 L’Hspital法则,4.3 Taylor公式,4.4函数的单调性和极值,4.5函数的凸性和曲线的拐点、渐近线,4.6平面曲线的曲率
第五章 不定积分 5.1不定积分的概念和性质,5.2换元积分法,5.3分部积分法,5.4
几种特殊类型函数的不定积分
第六章 定积分 6.1定积分的概念,6.2定积分的性质与中值定理,6.3微积分基本公式,6.4 定积分的换元法与分部积分法 6.5 定积分的近似计算6.6广义积分
第七章 定积分的应用 7.1微元法的基本思想,7.2定积分在几何上的应用,7.3 定积分
在物理上的应用
第八章 微分方程 8.1 微分方程的基本概念,8.2 几类简单的微分方程,8.3一阶微分方
程8.4全微分方程与积分因子8.5二阶常系数线性微分方程,8.6常系数线性微分方程