大一高等数学总结(共五则)

时间:2019-05-12 07:54:44下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《大一高等数学总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《大一高等数学总结》。

第一篇:大一高等数学总结

第一讲 函数、连续与极限

一、理论要求

1.函数概念与性质

函数的基本性质(单调、有界、奇偶、周期)

几类常见函数(复合、分段、反、隐、初等函数)

2.极限 极限存在性与左右极限之间的关系

夹逼定理和单调有界定理

会用等价无穷小和罗必达法则求极限

3.连续 函数连续(左、右连续)与间断

理解并会应用闭区间上连续函数的性质(最值、有界、介值)

二、题型与解法 A.极限的求法(1)用定义求

(2)代入法(对连续函数,可用因式分解或有理化消除零因子)

(3)变量替换法

(4)两个重要极限法

(5)用夹逼定理和单调有界定理求

(6)等价无穷小量替换法

(7)洛必达法则与Taylor级数法

(8)其他(微积分性质,数列与级数的性质)

1.(等价小量与洛必达)

2.已知

(洛必达)

3.(重要极限)

4.已知a、b为正常数,(变量替换)

5.解:令6.(变量替换)

7.已知在x=0连续,求a

解:令

(连续性的概念)

三、补充习题(作业)

1.(洛必达)

2.(洛必达或Taylor)

第二讲 导数、微分及其应用

一、理论要求 1.导数与微分 导数与微分的概念、几何意义、物理意义

会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)

会求平面曲线的切线与法线方程

2.微分中值定理 理解Roll、Lagrange、Cauchy、Taylor定理

会用定理证明相关问题

3.应用 会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图

会计算曲率(半径)

二、题型与解法

A.导数微分的计基本公式、四则、复合、高阶、隐函数、参数方程求导

1.决定,求

2.决定,求

解:两边微分得x=0时,将

x=0代入等式得y=1

3.决定,则

B.曲线切法线问5.f(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足题

f(1+sinx)-3f(1-sinx)=8x+o(x)。求f(x)在(6,f(6))处的切线方程。

解:需求,等式取

x->0的极限有:f(1)=0

C.导数应用问题

6.已知,求点的性质。

解:令,故为极小值点。

7.,求单调区间与极值、凹凸区间与拐点、渐进线。

解:定义域

8.求函数的单调性与极值、渐进线。

解:,D.幂级数展开问10.求题

解:

=E.不等式的证明

11.设,证:1)令

2)令F.中值定理问题

12.设函数

具有三阶连续导数,且,求证:在(-1,1)上存在一点

证:

其中

将x=1,x=-1代入有

两式相减:

13.,求证:

证:

(关键:构造函数)

三、补充习题(作业)

1.2.曲线

3.4.证明x>0时, 证:令

第二篇:大一高等数学学习心得

大一高等数学学习心得

转眼之间大一已经过去了一半,高数的学习也有了一学期,仔细一想,高数也不是传说中的那么可怕,当然也没有那么容易,前提是的自己真的用心了。

记得刚开学的时候,我对高数还是很害怕的,我虽然上课认真听讲,但我还是不大明白,当然那是由于刚开始的课程确实是很抽象的,很难以高中时的解题思维理解,但后来学的就不是那么的吃力了,再加上我的勤奋看书。

对于高数的学习大多数人都认为应该课前预习、上课认真听讲、课后复习。但那只能是理想的状态下,事实是不允许我们那样做的。由于我的数学还算有点功底,一直以来,我只做到了其中的一点半,而且成绩还算过得去,因此,我认为对于高数的学习,我们应该上课认真听讲,时课后复习。我们主要应该在课堂上认真听讲,理解解题方法,我们现在所需要的是方法,是思维,而不仅仅是例题本身的答案,我们学习高数不是为了将来能计算算术,而是为了获得一种思想,为了提高我们的思维能力,为了能够用于解决现实问题。

在课后复习时,再根据例题好好体会解体的方法,一定要琢磨透。至于您的方法我觉得还不错,容易的快速过,困难的花点时间耐心讲解。只是我们每学期都要放弃后边的一部分内容,是否可以考虑相对放弃一些前面简单的,而加快进度讲完后面的一些内容。

第三篇:大一高等数学竞赛策划

大一高等数学竞赛策划

一、目的及意义

高等数学是理工科基础中的基础,也是学科建设的基础。与物理、物化、工

程力学、传输原理、电工学等几乎所有理工科课程有关。03级实践证明98%的同学由于高等数学底子薄弱听不懂课程,导致最后强烈要求将统计热力学改为考查课。而且在许多理工类论文的研究突破点上,高等数学及其数学思维功不可没。它与考研息息相关,且与英语两门决定考研大局。

通过竞赛激发同学学习兴趣,大一时就打好坚实的数学基础,为以后其它知

识学习提供必备的学习工具。03,04级挂科的同学也可以参加,这样可以帮助他们发现学习中的漏洞及时弥补提高整体通过率。还可以为形成考研队伍起到引导、启发作用。而且在教学上起到检验教学的目的,并且通过竞赛活动希望达到教学相长的作用。但最重要的还是希望这次活动为材料系学科建设形成具有特色的模式进行抛砖引玉,为培养具有后劲人才打下基础。

为此学习部组织本次由学习部出题,批卷的高数竞赛活动。并且考完后由学习部组织同学对试题进行详细讲解以及对其它疑问知识的解答。

三、命题及考试方式

① 试题特点:满分为150分,选择题12题,每题5分。填空题4题,每题4分。

解答题6题,分别8、10、10、12、12、14分。基础题共106分,压轴题44分,且采取多题把关的方式。

② 命题小组:组长:阙永生

成员:李娜、高翠萍、靳冰花、刘文杰

③ 监考小组:总监:孙强督察:马建军(辅导员)

成员:阙永生、魏冰、靳冰花、刘文杰

④ 批卷小组:组长:阙永生

成员:李娜、高翠萍、靳冰花、刘文杰

四、考试安排

时间:12月24日上午9:00 ~ 11:00(考生8:40进入考场)

地点:13#129

五、奖励方式

一等奖1 名、二等奖1名、三等奖1名、鼓励奖5名

具体奖励办法:一等奖80元、二等奖50元、三等奖20元、鼓励奖每人钢笔1支、一等奖、二等奖、三等奖荣誉证书各一份

六、经费操作

⑤ 奖品费用总计约为225元。试卷用纸30元。光荣榜用纸3元。命题人员活动经费每人8元(共40元)。总计:298元

材料系学习部

2005年10月10日

第四篇:高等数学总结

FROM BODY TO SOUL

高等数学

第一讲 函数、极限和连续

一、函数 1.函数的概念

几种常见函数 绝对值函数: 符号函数: 取整函数: 分段函数:

最大值最小值函数:

2.函数的特性

有界性: 单调性: 奇偶性: 周期性:

3.反函数与复合函数

反函数:

复合函数:

第五篇:高等数学难点总结

高等数学难点总结 上册:

函数(高等数学的主要研究对象)

极限:数列的极限(特殊)——函数的极限(一般)极限的本质是通过已知某一个量(自变量)的变化趋势,去研究和探索另外一个量(因变量)的变化趋势

由极限可以推得的一些性质:局部有界性、局部保号性……应当注意到,由极限所得到的性质通常都是只在局部范围内成立

在提出极限概念的时候并未涉及到函数在该点的具体情况,所以函数在某点的极限与函数在该点的取值并无必然联系

连续:函数在某点的极限 等于 函数在该点的取值 连续的本质:自变量无限接近,因变量无限接近

导数的概念

本质是函数增量与自变量增量的比值在自变量增量趋近于零时的极限,更简单的说法是变化率

微分的概念:函数增量的线性主要部分,这个说法有两层意思,一、微分是一个线性近似,二、这个线性近似带来的误差是足够小的,实际上任何函数的增量我们都可以线性关系去近似它,但是当误差不够小时,近似的程度就不够好,这时就不能说该函数可微分了

不定积分:导数的逆运算 什么样的函数有不定积分

定积分:由具体例子引出,本质是先分割、再综合,其中分割的作用是把不规则的整体划作规则的许多个小的部分,然后再综合,最后求极限,当极限存在时,近似成为精确 什么样的函数有定积分

求不定积分(定积分)的若干典型方法:换元、分部,分部积分中考虑放到积分号后面的部分,不同类型的函数有不同的优先级别,按反对幂三指的顺序来记忆

定积分的几何应用和物理应用

高等数学里最重要的数学思想方法:微元法

微分和导数的应用:判断函数的单调性和凹凸性

微分中值定理,可从几何意义去加深理解

泰勒定理:本质是用多项式来逼近连续函数。要学好这部分内容,需要考虑两个问题:

一、这些多项式的系数如何求?

二、即使求出了这些多项式的系数,如何去评估这个多项式逼近连续函数的精确程度,即还需要求出误差(余项),当余项随着项数的增多趋向于零时,这种近似的精确度就是足够好的。下册

(一):

多元函数的微积分:将上册的一元函数微积分的概念拓展到多元函数

最典型的是二元函数

极限:二元函数与一元函数要注意的区别,二元函数中两点无限接近的方式有无限多种(一元函数只能沿直线接近),所以二元函数存在的要求更高,即自变量无论以任何方式接近于一定点,函数值都要有确定的变化趋势

连续:二元函数和一元函数一样,同样是考虑在某点的极限和在某点的函数值是否相等

导数:上册中已经说过,导数反映的是函数在某点处的变化率(变化情况),在二元函数中,一点处函数的变化情况与从该点出发所选择的方向有关,有可能沿不同方向会有不同的变化率,这样引出方向导数的概念

沿坐标轴方向的导数若存在,称之为偏导数

通过研究发现,方向导数与偏导数存在一定关系,可用偏导数和所选定的方向来表示,即二元函数的两个偏导数已经足够表示清楚该函数在一点沿任意方向的变化情况

高阶偏导数若连续,则求导次序可交换

微分:微分是函数增量的线性主要部分,这一本质对一元函数或多元函数来说都一样。只不过若是二元函数,所选取的线性近似部分应该是两个方向自变量增量的线性组合,然后再考虑误差是否是自变量增量的高阶无穷小,若是,则微分存在

仅仅有偏导数存在,不能推出用线性关系近似表示函数增量后带来的误差足够小,即偏导数存在不一定有微分存在

若偏导数存在,且连续,则微分一定存在

极限、连续、偏导数和可微的关系在多元函数情形里比一元函数更为复杂

极值:若函数在一点取极值,且在该点导数(偏导数)存在,则此导数(偏导数)必为零

所以,函数在某点的极值情况,即函数在该点附近的函数增量的符号,由二阶微分的符号判断。对一元函数来说,二阶微分的符号就是二阶导数的符号,对二元函数来说,二阶微分的符号可由相应的二次型的正定或负定性判断。

级数敛散性的判别思路:首先看通项是否趋于零,若不趋于零则发散。若通项趋于零,看是否正项级数。若是正项级数,首先看能否利用比较判别法,注意等比级数和调和级数是常用来作比较的级数,若通项是连乘形式,考虑用比值判别法,若通项是乘方形式,考虑用根值判别法。若不是正项级数,取绝对值,考虑其是否绝对收敛,绝对收敛则必收敛。若绝对值不收敛,考察一般项,看是否交错级数,用莱布尼兹准则判断。若不是交错级数,只能通过最根本的方法判断,即看其前n项和是否有极限,具体问题具体分析。

比较判别法是充分必要条件,比值和根值法只是充分条件,不是必要条件。

函数项级数情况复杂,一般只研究幂级数。阿贝尔定理揭示了幂级数的重要性质:收敛区域存在一个收敛半径。所以对幂级数,关键在于求出收敛半径,而这可利用根值判别法解决。

逐项求导和逐项积分不改变幂级数除端点外的区域的敛散性,端点情况复杂,需具体分析。

一个函数能展开成幂级数的条件是:存在任意阶导数。展开后的幂级数能收敛于原来函数的条件是:余项(误差)要随着项数的增加趋于零。这与泰勒展开中的结论一致。

微分方程:不同种类的方程有不同的常见解法,但理解上并无难处。

下载大一高等数学总结(共五则)word格式文档
下载大一高等数学总结(共五则).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高等数学难点总结

    高等数学难点总结 函数(高等数学的主要研究对象) 极限:数列的极限(特殊)——函数的极限(一般) 极限的本质是通过已知某一个量(自变量)的变化趋势,去研究和探索另外一个量(因变量)的变化......

    高等数学积分总结[推荐]

    问题引例:曲边梯形的面积、变速直线运动的路程n积分定义:bfxdxlimfxiia0i1b计算方法:fxdxFbFaa一元定积分几何意义:连续曲线与x轴所围曲边梯形面积的代数和物理意义:变力沿直线......

    高等数学极限总结

    我的高等数学 学我所学,想我所想 【摘要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学......

    高等数学极限总结[最终定稿]

    【摘 要】《高等数学》教学中对于极限部分的要求很高,这主要是因为其特殊的地位决定的。然而极限部分绝大部分的运算令很多从中学进入高校的学生感到困窘。本文立足教材的基......

    高等数学教学总结

    高等数学教学工作总结 本学期我担任本科金融专业的高等数学教学工作,一学期来,我自始至终以认真、严谨的治学态度,勤恳、坚持不懈的精神从事教学工作。作为任课教师,我能认真制......

    高等数学上册总结

    《工程应用数学A》课程总结 无论我们做什么事都要不断地思考,不断地总结,学习也是这样,所以这次就借此机会对于这一学期所学内容进行一次总结,也算是对自我的一次思考。 一、课......

    高等数学难点总结函数

    函数(高等数学的主要研究对象) 极限:数列的极限(特殊)——函数的极限(一般) 极限的本质是通过已知某一个量(自变量)的变化趋势,去研究和探索另外一个量(因变量)的变化趋势 由极限可以推......

    《高等数学》课程建设总结

    《高等数学》课程建设总结 作为工科本科院校,高等数学课程是我校长期扶持的重点建设课程,其教学质量的好坏直接影响到我校本科教学质量能否稳步提高。为了适应大众化教育阶段......