ArcGIS网络分析(最短路径问题分析)

时间:2019-05-12 07:30:24下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《ArcGIS网络分析(最短路径问题分析)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《ArcGIS网络分析(最短路径问题分析)》。

第一篇:ArcGIS网络分析(最短路径问题分析)

网络分析(最短路径问题分析)

一、实验目的:

理解最短路径分析的基本原理,学习利用arcgis软件进行各种类型的最短路径分析的操作。

二、实验准备

1、实验背景:

最短路径分析是空间网络分析中最基本的应用,而交通网络中要素的设置对最短路径的选择有着很大的影响。实验要求根据不同的权重,给出到达指定目的地的路径选择方案,并给出路径长度。

 在网络中指定一个超市,要求分别求出在距离、时间限制上从家到超市的最佳路径。

 给定访问顺序,按要求找出从家经逐个地点达到目的地的最佳路径。

2、实验材料:

软件:ArcGIS Desktop 9.x,实验数据:文件夹ex6中,一个GeoDatabase地理数据库:City.mdb,内含有城市交通网、超市分布图,家庭住址以及网络关系。

三、实验内容及步骤

首先启动ArcMap,选择ex6city.mdb,再双击后选择将整个要素数据集“city”加载进来,然后将“place”点状要素以“HOME”字段属性值进行符号化,1值是家,0值是超市。

第1步 无权重最佳路径的选择  加载 “设施网络分析”工具条(“视图”>>“工具条”,勾选“设施网络分析”),点选旗标和障碍工具板下拉箭头,将旗标放在家和想要去的超市点上。

第2步 加权最佳路径选择

 在设施网络分析工具条上,点选旗标和障碍工具板下拉箭头,将旗标放在家和想去的某个超市点上。

 选择“分析”下拉菜单,选择“选项”按钮,打开“分析选项”对话框,选择“权重”标签页,在“边权重”上,全部选择长度“length”权重属性。 点选“追踪任务”下拉菜单选择“查找路径”。单击“执行”键,则以长度为比重为基础的最短路径将显示出来,这条路径的总成本将显示在状态列。

 上述是通过距离的远近选择而得到的最佳路径,而不同类型的道路由于道路车流量的问题,有时候要选择时间较短的路径,同样可以利用网络分析进行获得最佳路径。

第3步 按要求和顺序逐个对目的点的路径的实现

 在设施网络分析工具条上,点选旗标和障碍工具板下拉箭头,将旗标按照车辆访问的顺序逐个放在点上。

 选择“分析”下拉菜单,选择“选项”按钮,打开“分析选项”对话框,选择“权重”标签页,在“边权重”上,全部选择长度“length”权重属性。 点选“追踪任务”下拉菜单选择“查找路径”。单击“执行”键,则从起点按顺序逐一经过超市最后回到家的最短有效路径将显示出来,这条路径的总成本将显示在状态列。

同样是经过这11个地点,换成权重是时间的,由于道路车流量的不同,如在市中心车流量特别大,车速慢,故而为节约时间,所以使得路径发生很大的改变。

第4步 阻强问题

这里的阻强是指网络中的点状要素或线状要素因为实际中遇到的例如修路,或那个时段车辆饱和,十字路口发生事故等一些缘故而使得要素不可运行,这时原来获得的最短路径就需要进行修正,具体操作如下: 修路的情形出现,即某个路段不可运行,这在网络中的表现是设置阻强,方法有两种,一种是永久性的,直接将网络边要素的属性修改成不可运行。选择要进行设置的边要素,将其属性中的“Enabled”字段改成“False”即可;另一种是暂时性的,设置边要素障碍。即利用边要素障碍添加工具将边设置。

4、心得体会 :

第二篇:ArcGIS空间分析和最短路径分析实习报告

考察报告

实验

一、矢量数据的空间分析

练习1:市区择房分析

操作步骤:

首先打开ArcMap,打开E:Chp7Ex1city.mxd文件将文件加入到窗口中来,这时就将五个文件全部加入其中来了,如下图所示;

(1)主干道噪音缓冲区的建立

1)选择交通网络图层(network.shp),打开图层的属性表,在右下角的打开option选项中,在菜单中选择select by attributes,考察报告

考察报告

在select by attributes对话框中,左边选择“TYPE” 双击将其添加到对话框下面SQL算式表中,点中间“=”,再单击Get unique values将TYPE的全部属性值加入上面的列表框中,然后选择“ST”属性值,双击添加到SQL算式表中,单击APPLY按钮,就将市区的主要道路选择出来了

考察报告

考察报告

2)点击缓冲区按钮对选择的主干道进行缓冲区的建立,首先在缓冲区对象图层选择交通网络图层(network),然后将下面的Use Only the Selected Feature(仅对选择的要素进行分析)选中,单击next;

考察报告

考察报告

3)确定尺寸单位,选择第一种缓冲区建立方法(At a specified distance),指定缓冲区半径为200米,单击next;

4)由于不是分别考虑一个图层的各个不同的要素的目的,所以我们在这里选择的是第一种边界设定类型(Dissolve barriers between),然后指定好缓冲区文件的存放路径和文件名后,单击OK,完成主干道噪音污染缓冲区的建立。

考察报告

考察报告

(2)商业中心影响范围建立

1)建立大型商业中心的影响范围。首先点击缓冲区按钮,在缓冲区对象图层选择商业中心分布图层(network),单击next;

2)确定尺寸单位,选择第一种缓冲区建立方法,以其属性字段YUZHI为缓冲区半径,单击next;

考察报告

考察报告

3)选择的是第一种边界设定类型,然后指定好缓冲区文件的存放路径和文件名后,单击OK,完成商业中心影响范围缓冲区的建立。

(3)名牌高中的影响范围建立

1)点击缓冲区按钮,在缓冲区对象图层选择名牌高中分布图层(school),单击next;

2)确定尺寸单位米,选择第一种缓冲区建立方法,指定750米作为半径,设置好后,单击next;

考察报告

考察报告

3)选择的是第一种边界设定类型,然后指定好缓冲区文件的存放路径和文件名后,单机OK,完成名牌高中的覆盖范围缓冲区的建立。

(4).名胜古迹的影响范围建立

1)点击缓冲区按钮,在缓冲区对象图层选择名胜古迹分布图层。

2)单击next,确定尺寸单位,选择第一种缓冲区建立方法,指定500米作为缓冲区半径,设置好后,单击next;

考察报告

考察报告

3)选择的是第一种边界设定类型,然后指定好缓冲区文件的存放路径和文件名后,单击,OK,完成名胜古迹的覆盖范围缓冲区的建立。

(5).进行叠置分析将满足上述四个要求的区域求出

1)将商业中心影响范围、名牌高中的影响范围和名胜古迹的影响范围进行叠置分析的交集操作,可以将同时满足三个条件的区域计算出。打开ArcToolBox,在analyst tools下选择overlay下的Intersect操作,打开交集操作对话框,将商业中心的缓冲区、名牌高中的缓冲区和名胜古迹的缓冲区分别添加进来,设定输出文件名并选择全部字段,输出类型和输入类型一样,单击OK,从而获得同时满足三个条件的交集区域。

考察报告

考察报告

2)利用主干道噪音缓冲区对获得的三个区域的交集进行图层擦除操作,从而获得,同时满足四个条件的区域的获得,打开ArcToolBox,在analyst tools下选择overlay下的Erase操作,打开图层擦除操作对话框,在input features选择三个区域的交集,在erase features选择主干道噪音缓冲区,同时设定输出图层的地址和文件名,单击OK,从而获得同时满足四个条件的交集区域的获得,即购房者的最佳选择区域。考察报告

考察报告

(6).为了便于购房者的选择有更大的余地,更直观地,综合上述四个因子,对整个市区进行分等定级,分级标准是:

满足其中四个条件为第一等级;

满足其中三个条件为第二等级;

满足其中两个条件为第三等级;

满足其中一个条件为第四等级;

完全不满足条件的为第五等级。

1)分别打开商业中心,名牌高中和名胜古迹影响范围的缓冲区图层的属性列表,添加一个market,school和famous字段,并全部赋值为1。将主干道噪音缓冲区图层的属性列表中添加voice字段,全部赋值为-1,这里取-1的原因是所取的噪音缓冲区之外的才是所要获得的区域。考察报告

考察报告

考察报告

考察报告

2)打开ArcToolBox,在analyst tools 下选择 overlay 下的 Union 操作,打开图层合并操作对话框,在四个缓冲区逐个添加进去,同时设定输出图层的地址和文件名Union,将全部字段连接,单击OK,得到四个区域的叠加合并图。

3)打开生成的Union文件图层属性列表,添加一个短整型字段class,然后保留 FID,Shape*,class,market,voice,school和famous字段,然后在Editor工具栏下来菜单中选择start editing,然后在属性列表中的class字段上单击右键,选考察报告

考察报告

择Calculate values,单击之后,打开Field Calculator对话框,使得class=market+voice+school+famous,即将其进行分等定级。(图10)就将四个因子进行了一个简单的综合,同时也可以根据最后的区域的class的属性值将全部的研究的区域进行了等级的划分:

第一等级:数值为3;

第二等级:数值为2;

第三等级:数值为1;

第四等级:数值为0;

第五等级:数值为-1。

考察报告

考察报告

考察报告

考察报告

练习2:最短路径问题分析与应用

操作步骤:

首先打开ArcMap选择E:Chp7Ex2city.mdb再双击后选择将整个要素数据集 city 加载进来。然后将place点状要素以 HOME 字段属性值进行符号化,1 值是家,0 值是超市,(1)无权重最佳路径的选择

1)在设施网络分析工具条上,点选旗标和障碍工具板下拉箭头,将旗标放在家和想要去的超市点上。

2)确认在Analysis下拉菜单中的Options按钮打开的Analysis Options对话框中weight和weight filter 标签项全部是 none,这样使得进行的最短路径分析是完全按照这个网络自身的长短来确定的

考察报告

考察报告

3)点选追踪工作(Track task)下拉菜单选择寻找路径(find path)。单击solve键,则最短路径将显示出来,这条路径的总成本将显示在状态列。

(2)加权最佳路径选择

1)在设施网络分析工具条上,点选旗标和障碍工具板下拉箭头,将旗标放在家和想去的某个超市点上。

2)选择Analysis下拉菜单,选择Option按钮,打开Analysis Option对话框,选择Weight标签页,在边的权重(edge weight)上,全部选择长度(length)权重属性。

考察报告

考察报告

3)点选追踪工作(Track task)下拉菜单选择寻找路径(find path)。单击solve键,则以长度为比重为基础的最短路径将显示出来,这条路径的总成本将显示在状态列。

4)上述是通过距离的远近选择而得到的最佳路径,而不同类型的道路由于道路车流量的问题,有时候要选择时间较短的路径,同样可以利用网络分析进行获得最佳路径。

这里的时间属性是在建网之前,通过各个道路的类型(主干道,次要道等)来给定速度属性,然后通过距离和速度的商值确定的,并将其作为属性设定于每个道路上,这里没有考虑红灯问题以及其他因素,而是一种理想情况,不过可以将其他的要素可以逐渐加入来完善。

考察报告

考察报告

(3)按要求和顺序逐个对目的点的路径的实现

1)在设施网络分析工具条上,点选旗标和障碍工具板下拉箭头,将旗标按照车辆访问的顺序逐个放在点上。

2)选择Analysis下拉菜单,选择Option按钮,打开Analysis Option对话框,选择Weight标签页,在边的权重(edge weight)上,全部选择长度(length)权重属性。

3)点选追踪工作(Track task)下拉菜单选择寻找路径(find path)。单击solve键,则从起点按顺序逐一经过超市然后最后回到家的最短有效路径将显示出来,这条路径的总成本将显示在状态列。

4)同样是经过这11个地点,换成权重是时间的,由于道路车流量的不同,如在市中心车流量特别大,车速慢,故而为节约时间,所以使得路经发生很大的改变,而从外围的道路行驶了。

考察报告

考察报告

(4)阻强问题

这里的阻强是指网络中的点状要素或线状要素因为实际中遇到的例如修路,或那个时段车辆饱和,十字路口发生事故等一些缘故而使得要素不可运行,这时原来获得的最短路径就需要进行修正,具体操作如下:

修路的情形出现,即某个路段不可运行,这在网络中的表现是设置阻强,方法有两种,一种是永久性的,直接将网络边要素的属性修改成不可运行。操作是选择要进行设置的边要素,将其属性中的Enabled字段改成False即可;另一种是暂时性的,设置边要素障碍。即利用边要素障碍添加工具将边设置。取同上述距离加权相同的超市为地点,假设其中一条路段正在修路,则产生的新的最佳路径

(图中标注“╳”即为阻强设置边)。可以看出路段的维修状况使得最佳路径产生了改变,同时最近距离也随之发生改变。

2)十字路口发生问题,即网络中的结点不可运行,这时在网络中的表现也是设置阻强,方法和线状要素的一样,改变结点属性或利用点要素阻强添加工具将点设置,取同上述距离加权相同的超市为地点,假设其中某个路口出现阻塞,利用该方法产生的最佳路径。

考察报告

考察报告

以上这个例子——从家到超市的最佳路径选择这个方面简单说明了网络分析中的最短路径问题对于实际之中有什么主要的用途,以及随着实际情况的改变,而对网络中要素的变化对最佳路径的产生什么样的影响,相信随着要素的健全,实际因素的添加等因子的辅助一定会使得网络分析在指导现实生活发挥着越来越大的作用。

考察报告

第三篇:最短路径教案

13.4最短路径问题

一、教学内容:本节课的主要内容是利用轴对称研究某些最短路径问题,最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有连线中,垂线段最短”为知识基础,有时还要借助轴对称、平移、旋转等变换进行研究。

本节课以数学史中的一个经典故事----“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间、线段最短”的问题。

二、教学目标

1、能利用轴对称解决简单的最短路径问题

2、再谈岁最短路径的过程中,体会“轴对称”的桥梁作用,感悟转化的数学思想。

三、教学重难点

重点:利用轴对称将最短路径问题转化为“两点之间、线段最短”问题。难点:如何利用轴对称将最短路径问题转化为线段和最小问题。

四、教学问题诊断

最短路径问题从本质上说是最值问题,作为初中学生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手。

解答“当点AB在直线l的同侧时,如何在l上找到点C,使AC与BC的和最小”,需要将其转化为“直线l异侧的两点,与直线l上的点的线段的和最小”的问题,为什么需要这样转化,怎样通过轴对称实现转化,一些学生会存在理解上和操作上的困难。

在证明“最短”时,需要在直线上任取一点(与所求做的点不重合),证明所连线段和大于所求作的线段和,这种思路和方法,一些学生想不到。

教学时,教师可以让学生首先思考“直线l异侧的两点,与直线l上的点的和最小”为学生搭建“脚手架”,在证明最短时,教师要适时点拨学生,让学生体会任意的作用。

五、教学过程

教师引语:现实生活中经常会有这样的生活经历,比如学校虽然为我们铺设了一些石板甬路,方便同学们的行走,但是很多时候我们却并不在这些小路上行走,这样做的目的是什么呢?(学生一起回答)如果用数学知识来解释这种行为,那就是我们曾经学习的“两点之间、线段最短”或“垂线段最短”,我们称这样的问题为最短路径问题(板书课题)现实生活中经常涉及到最短路径问题,这节课我们学习的主要任务就是最短路径问题,并用所学知识探究数学史上著名的“将军饮马问题”。

1、情境引入

相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦,有一天,有一位将军专门拜访海伦,求教一个百思不得其解的问题:从图中的A地出发,到一条笔直的河边饮马,然后到B地,到河边什么地方饮马,可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题。这个问题后来被称为“将军饮马问题”。

2、探究解决问题的方法

问题一:这是一个实际问题,我们首先把它抽象为数学问题,请同学们用自己的语言说明这个问题的意思。

师生活动:学生独立思考后小组交换意见,然后尝试回答,相互补充,最后达成共识,教师根据学生的回答写出问题的板书:如图,已知点A和点B在直线L的同侧,在直线L上找一点C,使AC与BC的和最小。

设计意图:让学生将实际问题抽象为数学问题,即将最短路径问题抽象为“线段和最小问题”。

问题二:由上面的问题我们可以联想到下面的问题:A、B分别是直线L异侧的两点,如何在直线L上找到一点C,使AC与BC的和最小?

师生活动:学生独立思考,画图分析并尝试回答,教师补充。

问题三:对于第一个问题,如何将点B移到L的另一侧,B′处,满足直线L上的任一点C,都保持CB与CB′的长度相等? 问题四:你能利用轴对称的知识找到符合条件的点B′吗?

师生活动:学生独立考,尝试画图,然后小组交流,学生代表汇报交流成果,师生共同补充:只要作出点B关于直线L的对称点B′,就可以满足CB=CB′,再利用问题二中的方法,连接AB′,则AB′与直线L的交点即为所求。

学生叙述,教师板书并画图,同时学生在练习本上画图。

设计意图:通过搭建台阶,为学生探究问题提供“脚手架”将同侧难以解决的问题提转化为异侧容易解决的问题,渗透转化思想。

3、推理证明“最短”

问题五:你能用所学的知识证明AC+BC最短吗?

师生活动:师生共同分析,然后学生说证明过程,教师板书。

证明:在直线L上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质可知,BC=B′C,BC′=B′C′.∴AC+BC=AC+ B′C=AB′, AC′+ BC′= AC′+ B′C′

在△AB′C′中,AB′<AC′+ B′C′

∴AC+BC< AC′+ BC′ 即AC+BC最短。

问题六:这里任取一点C′的作用是什么?

师生活动:学生相互交流,教师适时点拨,最后达成共识:若直线L上任取一点C′与A、B两点的距离之和都大于AC+BC,则说明AC+BC最短。

设计意图:让学生进一步体会做法的正确性,提高逻辑思维能力。

问题七:回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?

师生共同总结:首先作其中一点关于直线的对称点,然后连接另一点与对称点之间的线段,通过轴对称将两条线段和转化到同一条线段上去,这条线段与直线的交点即为所求,整个过程利用了“轴对称”和“两点之间、线段最短“的知识。

设计意图:让学生在反思的过程中,体会轴对称的“桥梁”作用,感悟转化思想,丰富数学活动经验。

4、巩固练习

(1)如图,一艘旅游船从大桥AB的P处前往山脚下的Q处接游客,然后将游客送往河岸BC上,再回到P处,请画出旅游船的最短路径。

师生活动:学生分析解题思路,并相互补充,然后独立完成画图,学生代表上台讲解。基本思路分析:此题中轮船的行走路线共有三段,其中PQ是必经路段,由“两点之间,线段最短”需首先连接PQ,再将河岸BC看成一条直线,这样问题就转化为“点P、Q在直线BC同侧,如何在BC上找一点R,使PR+QR最小”。

设计意图:让学生进一步巩固解决最短路径问题的基本策略和基本方法。

(2)如图,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP最短.

分析:此题的出题背景就是角。本题主要利用了两点之间线段最短的性质通过轴对称图形的性质确定三角形的另两点.

分别以直线OX、OY为对称轴,作点P的对应点P1与P2,连接P1P2交OX于M,交OY于N,则PM+MN+NP最短.

5、课堂小结:教师与学生一起回顾本节课所学主要内容,并请学生回答:(1)本节课研究问题的基本过程是什么?(2)轴对称在所研究的问题中起到什么作用?

6、布置作业:《课时练》第49页1、2、3、4、5、7、8、9

第四篇:13.4 课题学习最短路径问题

13.4

课题学习

最短路径问题

能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.

利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.

探索发现“最短路径”的方案,确定最短路径的作图及说理.

一师一优课 一课一名师(设计者:)

一、创设情景,明确目标

如图所示,从A地到B地有三条路可供选择,走哪条路最近?你的理由是什么?

前面我们研究过一些关于“两点的所有连线中,线段最短”、“连接直线外一点与直线上各点的所有线段中,垂线段最短”等的问题,我们称它们为最短路径问题.现实生活中经常涉及到选择最短路径的问题,本节将利用数学知识探究数学史中著名的“将军饮马问题”.

二、自主学习,指向目标

自学教材第85

页至87

页,思考下列问题:

1.求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求,其依据是两点的所有连线中,线段最短.

2.求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.

3.在解决最短路径问题时,我们通常利用轴对称、平移等变化把已知问题转化为容易解决的问题,从而作出最短路径的选择.

三、合作探究,达成目标

探索最短路径问题

活动一:相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:

从图中的A地出发,到一条笔直的河边l

饮马,然后到B地.到河边什么地方饮马可使他所走的路线全程最短?

精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能将这个问题抽象为数学问题吗?

追问1 这是一个实际问题,你打算首先做什么?答:将A,B

两地抽象为两个点,将河l

抽象为一条直线.

追问2 你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?

答:(1)从A

地出发,到河边l

饮马,然后到B

地;

(2)在河边饮马的地点有无穷多处,把这些地点与A,B

连接起来的两条线段的长度之和,就是从A

地到饮马地,再回到B

地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C

为直线上的一个动点,上面的问题就转化为:当点C

在l的什么位置时,AC

与CB的和最小(如图).问题2:如图,点A,B

在直线l的同侧,点C

是直线上的一个动点,当点C

在l的什么位置时,AC与CB的和最小?

追问1:对于问题2,如何将点B“移”到l的另一侧B′处,满足直线l

上的任意一点C,都保持CB

与CB′的长度相等?

追问2:你能利用轴对称的有关知识,找到上问中符合条件的点B′吗?

展示点评:作法:

(1)作点B

关于直线l的对称点B′;

(2)连接AB′,与直线l

交于点C.则点C

即为所求.

问题3 你能用所学的知识证明AC

+BC最短吗?

证明:如图,在直线l上任取一点C′(与点C

不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC

=B′C,BC′=B′C′.∴

AC

+BC=

AC

+B′C

AB′,AC′+BC′=

AC′+B′C′.在△AB′C′中,AB′<AC′+B′C′,∴

AC

+BC<AC′+BC′.即

AC

+BC

最短.小组讨论:证明AC

+BC

最短时,为什么要在直线l

上任取一点C′(与点C

不重合),证明AC

+BC

<AC′+BC′?这里的“C′”的作用是什么?

反思小结:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.利用三角形的三边关系,若直线l上任意一点(与点C

不重合)与A,B

两点的距离和都大于AC

+BC,就说明AC

+BC

最小.C′的代表的是除点C以外直线l上的任意一点.

针对训练:

1.如图,A、B是河流

同侧的两个村庄,现要在河边修一个抽水站向两村供水,问抽水站修在什么地方才能使所需的管道最短?请在图中表示出来.

答:如下图,作点B关于l的对称点B′,连接AB′交l于点P,点P即为所求.

2.如图,一个旅游船从大桥AB的P处前往山脚下的Q处接游客,然后将游客送往河岸BC

上,再返回P处,请画出旅游船的最短路径.

答:作Q关于直线BC的对称点Q′,连接PQ′交BC于R,∴旅游船线路:P—Q—R—P.选址造桥问题

活动二:(造桥选址问题)如图,A和B两地在一条河的两岸,现要在河上造一座桥MN,桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)

展示点评:从A到B要走的路线是A→M→N→B,如图所示,而MN是定值,于是要使路程最短,只要AM+BN最短即可.

第五篇:八年级数学最短路径问题

八年级数学最短路径问题

一、两点在一条直线异侧

例:已知:如图,A,B在直线L的两侧,在L上求一点P,使得PA+PB最小。

练习、如图,A.B两地在一条河的两岸,现要在河上建一座桥MN,桥造在何处才能使从A到B的路径AMNB最短?(假设河的两岸是平行的直线,桥要与河垂直)

二、两点在一条直线同侧

例:图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短.

练习:如图,A、B是两个蓄水池,都在河流a的同侧,为了方便灌溉作物,•要在河边建一个抽水站,将河水送到A、B两地,问该站建在河边什么地方,•可使所修的渠道最短,试在图中确定该点。三、一点在两相交直线内部

例:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC,使三角形周长最小.练习1:已知:如图A是锐角∠MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形ABC周长最小值为OA.求∠MON的度数。

练习2:某班举行晚会,桌子摆成两直条(如图中的AO,BO),AO桌面上摆满了桔子,OB桌面上摆满了糖果,坐在C处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?

提高训练

一、题中出现一个动点。

1.当题中只出现一个动点时,可作定点关于动点所在直线的对称点,利用两点之间线段最短,或三角形两边之和小于第三边求出最值.例:如图,在正方形ABCD中,点E为AB上一定点,且BE=10,CE=14,P为BD上一动点,求PE+PC最小值。

二、题中出现两个动点。当题中出现两个定点和两个动点时,应作两次定点关于动点所在直线的对称点.利用两点之间线段最短求出最值。

例:如图,在直角坐标系中有四个点, A(-8,3),B(-4,5)C(0,n),D(m,0),当四边形ABCD周长最短时,求 C、D的坐标。

练习1如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=1,ON=3,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是

三、题中出现三个动点时。

在求解时应注意两点:(1)作定点关于动点所在直线的对称点,(2)同时要考虑点点,点线,线线之间的最短问题.例:如图,在菱形ABCD中,AB=2,∠BAD=60°,E,F,P分别为AB,BC,AC上动点, 求PE+PF最小值 例:如图,∠AOB=45°,角内有一动点P,PO=10,在AO,BO上有两动点Q,R,求△PQR周长的最小值。

练习1如图,∠AOB=30°,角内有一定点P,PO=20cm,在AO,BO上有两动点C、D,求△PCD周长的最小值。

下载ArcGIS网络分析(最短路径问题分析)word格式文档
下载ArcGIS网络分析(最短路径问题分析).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    最短路径教案[大全五篇]

    最短路径问题 教学目标:1.理解并掌握平面内一条直线同侧两个点到直线上的某一点距离之和为最小值时点的位置的确定。2.能利用轴对称平移解决实际问题中路径最短的问题。3.通......

    《最短路径》教学反思

    11月23号下午第三节,我讲了公开课《最短路径》第一课时,学校领导及没课的老师来到报告厅听课,听课后田校长对我讲的这一节课经行了点评,我受益匪浅,所以把感悟以及所学到的总结如......

    迷宫最短路径问题的计算机解法

    文章编号:10060042 (14)111 ;/ / 假设迷宫入口的出发点存于seat [thepath (int m ,int n) / / 0 < m ≤M2{/ / 变量声明部分———对所用其它变量完成变量声明i = 0 ;/ / 此......

    最短路径问题(将军饮马问题)教学设计

    最短路径问题——将军饮马问题及延伸最短路径问题教学内容解析:本节课的主要内容是利用轴对称研究某些最短路径问题,最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之......

    13.4 将军饮马——最短路径问题教学设计(范文)

    13.4 将军饮马——最短路径问题教学设计 一、教学内容解析 为了解决生产,经营中省时省力省钱而希望寻求最佳的解决方案而产生了最短路径问题. 初中阶段,主要以“两点之间,线段......

    最短路径_数据结构课程设计报告

    数据结构课程设计 《数据结构》课程设计报告 设计题目:____医院选址____________ 姓名:__________________ 学号:________________ 专业:___________ 院系:____________ 班级:__......

    最短路径教学设计(上交)(推荐)

    13.4《课题学习——最短路径问题》教学设计 玉泉二中 王卫杰 一.内容和内容解析 最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”、“连接直线外一点与......

    13.4 课题学习最短路径问题 教学设计 教案

    教学准备 1. 教学目标 1.理解并掌握平面内一条直线同侧两个点到直线上的某一点距离之和为最小值时点的位置的确定; 2.能利用轴对称平移解决实际问题中路径最短的问题; 3.通......