《分数与除法的关系》教学设计
教学目标
1、知识与技能
使学生理解分数与除法的关系,会用分数表示两个数相除的商。
2、问题解决与数学思考
经历探索分数与除法关系过程,进一步培养学生观察、比较、分析、推理等思维能力。
3、情感态度与价值观
创设探究活动情境,促进学生在自主探究、合作交流的学习过程中,获得研究下学习的经验,获得成功的体验。
教学重点、难点
重点:会用分数表示除法的商
难点:理解分数与除法的内在联系与区别
教具与学具:多媒体课件、圆片、剪刀
教学过程
一、铺垫复习,导入新知
同学们,上节课我们了解了分数的意义,今天老师也带来了一个分数(出示)
同学们能结合生活实例说说 表示什么意义吗?
【设计意图】唤醒学生对分数意义的理解,为下面学习分数与除法做铺垫。
二、探究新知
(一)唤起生成1、提出问题
(1)6块月饼平均分给3人,每人分几块?怎样列式计算?6÷3=2(块)。6在除法里叫什么,3叫什么,2叫什么?强调除数不能为0,同时板书除数和被除数。
(2)1块月饼平均分给2人,每人分几块?怎样列式计算?1÷2= 1/2(块)
(3)1块月饼平均分给3个人,每人分几块?怎样列式计算?1÷3=(块)(板书,同时课件演示)
【设计意图】唤醒学生平均分除法的意义与分数的意义,为下面的学习做铺垫。
(4)观察三个算式,两个数相除,商有时是整数,当得不到整数时可以用小数表示,当除不尽是可以写成分数,是不是任意两个数相除都可以用分数表示呢?这节课就让我们共同来研究分数与除法。(板书课题)
(二)尝试探究
探究一;体会分数与除法的关系
1、提出问题
3块月饼平均分给4人,每人分几块?引导列出算式:3÷4这里把谁看做单位“1“?(板书)
2、尝试合作探究
尝试操作:拿三个同样的圆片看做3张饼,折一折,分一分,用剪刀剪下来,想一想3块饼平均分给4个人,每人分几块?互相说一说你是怎样分的。(小组合作)
教师巡视,参与指导
(1)交流汇报,同时上台展示,并用多媒体展示
交流时让学生说一说是怎么分的,每一种方法都让学生多说。
使学生明确3张的1/4等于1张的3/4,所以,3÷4=3/4(张)
分法一:先把每个圆平均分成4份,每个有4个,一共12个,再把12个 分给4个人,得到每人3个,把3个拼到一块就是3/4张。
分法二:把3个圆摞在一起,平均分成4份剪开,再把3个拼在一块,每人得3/4张。(也许学生还有不同的分法)
多媒体课件展示这两种分法,使学生更直观清晰。
这些除法能用分数表示,其他的除法能用分数表示吗?下面我们继续分。
【设计意图】通过操作不仅加深学生对计算结果的理解,同时培养了解决实际问题的能力。
(2)补充事实,举一反三
3÷4的问题的解决了,你们还想分月饼吗?
你想把()块月饼平均分给()人,每人分得()块
【设计意图】学生随意把几块月饼平均分给几人,如果出现5÷4这样的情况,为学习假分数作准备。
刚才我们分饼,现在不分了,7÷8= 并板书,请学生讲清楚怎么想的,得数怎么来的?
探究二;概括分数与除法的关系
1、观察以上几个算式想一想;分数与除法有什么关系?(小组里互相说一说)
汇报交流得出:被除数÷除数= 谁是分子,谁是分母?(同时板书)
用字母表示:,a÷b=
(b≠0)(强调分母不能为0)(同时板书)
使学生明确:
2、除法用分数表示时,被除数是分子,除数是分母,除号相当于分数线,反过来,一个分数也可以看做两个数相除。
【设计意图】通过观察,学生自主探究出分数与除法的关系。
三、巩固练习
1、你能行:
24÷25= 14÷29
= 9÷5=
÷6=
=()÷()=()÷()
2、练习十二第1题(数学与生活相联系)
3、拓展提高
喜羊羊和懒羊羊分别要用一根彩带包装礼品盒
懒羊羊:我用一根长3米的彩带,平均分成5段,拿出1段来包装
喜羊羊:我用一根长1米的彩带,平均分成5段,取其中的3段来包装
谁用的彩带长?
4、总结提升
同学们,现在再来看 这个分数,你怎样理解它?
四、回顾总结
通过今天的学习你有什么收获?
板书设计:
分数与除法的关系
6÷3=2(块)
1÷2=1/2(块
被除数÷除数=(除数不为0)
1÷3=1/3(块)
a÷b=(b≠0)