有理数的混合运算习题
一.选择题
1.计算()
A.1000
B.-1000
C.30
D.-30
2.计算()
A.0
B.-54
C.-72
D.-18
3.计算
A.1
B.25
C.-5
D.35
4.下列式子中正确的是()
A.B.C.D.5.的结果是()
A.4
B.-4
C.2
D.-2
6.如果,那么的值是()
A.-2
B.-3
C.-4
D.4
二.填空题
1.有理数的运算顺序是先算,再算,最算
;如果有括号,那么先算。
2.一个数的101次幂是负数,则这个数是。
3.。
4.。
5.。
6.。
7.。
8.。
三.计算题、;
四、1、已知求的值。
2、若a,b互为相反数,c,d互为倒数,m的绝对值是1,求的值。
有理数加、减、乘、除、乘方测试
一、选择
1、已知两个有理数的和为负数,则这两个有理数()
A、均为负数
B、均不为零
C、至少有一正数
D、至少有一负数
2、计算的结果是()
A、—21 B、35 C、—35 D、—293、下列各数对中,数值相等的是()
A、+32与+23
B、—23与(—2)3
C、—32与(—3)2
D、3×22与(3×2)24、某地今年1月1日至4日每天的最高气温与最低气温如下表:
日
期
1月1日
1月2日
1月3日
1月4日
最高气温
5℃
4℃
0℃
4℃
最低气温
0℃
℃
℃
℃
其中温差最大的是()
A、1月1日
B、1月2日
C、1月3日
D、1月4日
5、已知有理数a、b在数轴上的位置如图所示,下列结论正确的是()
A、a>b
B、ab<0
C、b—a>0
D、a+b>06、下列等式成立的是()
A、100÷×(—7)=100÷
B、100÷×(—7)=100×7×(—7)
C、100÷×(—7)=100××7
D、100÷×(—7)=100×7×77、表示的意义是()
A、6个—5相乘的积
B、-5乘以6的积
C、5个—6相乘的积
D、6个—5相加的和
8、现规定一种新运算“*”:a*b=,如3*2==9,则()*3=()
A、B、8
C、D、二、填空
9、吐鲁番盆地低于海平面155米,记作—155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高
m10、比—1大1的数为
11、—9、6、—3三个数的和比它们绝对值的和小
12、两个有理数之积是1,已知一个数是—,则另一个数是
13、计算(-2.5)×0.37×1.25×(—4)×(—8)的值为
14、一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑
台
15、小刚学学习了有理数运算法则后,编了一个计算程序,当他输入任意一个有理数时,显示屏上出现的结果总等于所输入的有理数的平方与1的和,当他第一次输入2,然后又将所得的结果再次输入后,显示屏上出现的结果应是
16、若│a—4│+│b+5│=0,则a—b=
;
若,则=_____
____。
三、解答
17、计算:
8+(―)―5―(―0.25)
7×1÷(-9+19)
25×+(―25)×+25×(-)
(-79)÷2+×(-29)
(-1)3-(1-)÷3×[3―(―3)2]
18、(1)已知|a|=7,|b|=3,求a+b的值。
(2)已知a、b互为相反数,m、n互为倒数,x
绝对值为2,求的值
四、综合题
19、小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):
+5,-3,+10,-8,-6,+12,-10
问:(1)小虫是否回到原点O?
(2)小虫离开出发点O最远是多少厘米?
(3)、在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?
答案
一、选择
1、D2、D3、B4、D5、A6、B7、A8、C
二、填空9、205510、011、2412、13、—3714、5015、2616、9
三、解答17、18、19、—13
拓广探究题
20、∵a、b互为相反数,∴a+b=0;∵m、n互为倒数,∴mn=1;∵x的绝对值为2,∴x=±2,当x=2时,原式=—2+0—2=—4;当x=—2时,原式=—2+0+2=021、(1)、(10—4)-3×(-6)=24
(2)、4—(—6)÷3×10=24
(3)、3×
综合题
22、(1)、∵5-3+10-8-6+12-10=0
∴
小虫最后回到原点O,(2)、12㎝
(3)、++++++=54,∴小虫可得到54粒芝麻