第一篇:(no.1)2013年高中数学教学论文 复习课上法浅谈 新课标
知识改变命运
百度提升自我
本文为自本人珍藏
版权所有
仅供参考
高中数学复习课上法浅谈
一、在课堂教学结构上,更新教育观念,始终坚持以学生为主体,以教师为主导的教学原则 教育家苏霍姆林斯基曾经告诫我们:“希望你们要警惕,在课堂上不要总是教师在讲,这种做法不好„„让学生通过自己的努力去理解的东西,才能成为自己的东西,才是他真正掌握的东西.”按我们的说法就是:师傅的任务在于度,徒弟的任务在于悟。数学课堂教学必须废除“注入式”“满堂灌”的教法.复习课也不能由教师包讲,更不能成为教师展示自己解题“高难动作”的“绝活表演”,而要让学生成为学习的主人,让他们在主动积极地探索活动中实现创新、突破,展示自己的才华智慧,提高数学素养和悟性.作为教学活动的组织者,教师的任务是点拨、启发、诱导、调控,而这些都应以学生为中心.复习课上有一个突出的矛盾,就是时间太紧,既要处理足量的题目,又要充分展示学生的思维过程,二者似乎是很难兼顾.我们可采用“焦点访谈”法较好地解决这个问题,因大多数题目是“入口宽,上手易”,但在连续探究的过程中,常在某一点或某几点上搁浅受阻,这些点被称为“焦点”,其余的则被称为“外围”.我们大可不必在外围处花精力去进行浅表性的启发诱导,好钢要用在刀刃上,而只要在焦点处发动学生探寻突破口,通过访谈,集中学生的智慧,让学生的思维在关键处闪光,能力在要害处增长,弱点在隐蔽处暴露,意志在细微处磨砺.通过访谈实现学生间、师生间智慧和能力的互补,促进相互的心灵和感情的沟通.二、趣浓情深,提高复习课解题教学的艺术性
在复习时,由于解题的量很大,就更要求我们将解题活动组织得生动活泼、情趣盎然.让学生领略到数学的优美、奇异和魅力,这样才能变苦役为享受,有效地防止智力疲劳,保持解题的“好胃口”.一道好的数学题,即便具有相当的难度,它却像一段引人入胜的故事,又像一部情节曲折的电视剧,那迭起的悬念、丛生的疑窦正是它的诱人之处.“山重水覆”的困惑被“柳暗花明”的喜悦取代之后,学生又怎能不赞叹自己智能的威力?我们要使学生由“要我学”转化为“我要学”,课堂上要想方设法调动学生的学习积极性,创设情境,激发热情,有这样一些比较成功的做法:一是运用情感原理,唤起学生学习数学的热情;二是运用成功原理,用心 爱心 专心
知识改变命运
百度提升自我
变苦学为乐学;三是在学法上教给学生“点金术”等等.三、讲究讲评试卷的方法和技巧.复习阶段总免不了要做一些试卷,但试卷并不是做得越多越好,关键在于做题的质量好坏和收益的多少.怎样才能取得好的讲评效果,要做好以下几点:
①照顾一般,突出重点
在讲评试卷时,不应该也不必要平均使用力量,有些试题只要点到为止,有些试题则需要仔细剖析,对那些涉及重难点知识且能力要求比较高的试题要特别照顾;对于学生错误率较高的试题,则要对症下药.为此教师必须认真批阅试卷,对每道题的得分率应细致地进行统计,对每道题的错误原因准确地分析,对每道题的评讲思路精心设计,只有做到评讲前心中有数,才会做到评讲时有的放矢.②贵在方法,重在思维
方法是关键,思维是核心,渗透科学方法,培养思维能力是贯穿数学教学全过程的首要任务.通过试卷的评讲过程,应该使学生的思维能力得到发展,分析与解决问题的悟性得到提高,对问题的化归意识得到加强.训练“多题一解”和“一题多解”,不在于方法的罗列,而在于思路的分析和解法的对比,从而揭示最简或最佳的解法.③分类化归,集中讲评
涉及相同知识点的题,集中讲评;形异质同的题,集中评讲;形似质异的题,集中评讲.用心 爱心 专心 2
第二篇:(no.1)2013年高中数学教学论文 学科德育实施初探
知识改变命运
百度提升自我
本文为自本人珍藏
版权所有
仅供参考
学校德育不只是班主任和文科教师的任务,必须各科协作。学科德育是素质教学的重要一环。在数学教学过程中,教师要挖掘教学教材中显性和隐性的德育因素,施德育于数学教学之中。
一、宣讲我国数学家的贡献,对学生进行爱国主义教育
1、开学初集中讲。学生刚入中学,对什么都有新鲜感。教师要抓住第一堂数学课的机会,生动、具体、真实地介绍我国古今数学成就,为学生学习数学营造良好的氛围。中国是世界上最早的文明古国,数学成就显著。计算圆周率,自西汉刘备、东汉张衡,三国时刘徽、直到南北朝祖冲之等多位数学家,为之进行艰苦探索,得出了当时世界上最为准确的圆周率。南宋数学家秦九韶1247年就编著《数学九章》,同代数学家杨辉揭示了二项式展开式系数的规律,比法国数学家早四百多年。
祖冲之的儿子祖恒对求几何体积有独特创见,比意大利数学家早一千多年。比刘,近代的徐光启、李善兰及当代的华罗庚、陈景润,在他们所研究的领域中都对数学做出了独特的贡献。通过宣讲,增强学生的民族自豪感和爱国主义热情。
2、组织讲座专门讲。对初一学生还可借助“华罗庚金杯赛”的机会,进行题为《如何自学成才》的专题讲座,介绍我国著名数学家华罗庚的生平事迹。华罗庚学历是“初中毕业”,可他深钻细研,成为当代国内外闻名的伟大数学家。通过讲座,使学生懂得学习好坏关键在于本人的学习态度和努力,明白“外因是变化的条件,内因是变化的根据,外因要通过内因而起作用”的哲学道理。进而发奋学习,将来为国家做贡献。
二、结合传授数学知识,对学生进行辩证唯物主义教育
1、实践的观点。数学是从现实世界中抽象概括出来的科学,教学中要揭示数学本身的物质基矗如讲直角三角形“勾股定理”时,教师要说明早在公元一世纪,我国古代数学家在多次实践的基础上总结出了“勾广三,股修
四、经偶五”的规律(即勾
三、股
四、弦五),并且借助图形对该定理进行了两种巧妙的证明。让学生明确,任何一个定理、公式的形成均来自实践,“实践、认识、再实践、再认识”是人类掌握自然规律的正确途径。从而培养学生善于从客观事物中发现、规律、掌握规律的能力。
2、辩证的观点。恩格期指出“数学是辩证的辅助工具和表现形式,连初等数学也充满着矛盾。”数学概念正数与负数、常量与变量等,都表现对立的形式,又各以它的对立而存在。在数学中要揭示这一关系。直线与圆的位置关系,当直线与圆心的距离小于圆半径时,直线与圆的位置处于两个交点状态(相交);当距离与半径相等时,发生质变,直线与圆只有一个交点(相切);当距离大于半径时,再次发生质变,直线与圆没有交点(距离)。讲这一关系时,要启发学生认识到“事物发展是一个由量变到质变的过程”。数学中充满着辩证法,教师应不失时机地予以启示,加深学生对数学知识的认识,同时为学生树立辩证唯物主义观点打好基矗3、发展的观点。世上任何事物都不是孤立的、静止的,它是在不断地从低级阶段向高级阶段发展。数学也是这样,整数到分数,有理数到无理数,实数到负数,有限到无限等,都遵循着这一规律。在这个数学过程中,要使学生认识到一切事物都不是断发展变化的,培养学生超越旧事物,创造新颖,独特新事物的能力。[
用心 爱心 专心 1
知识改变命运
百度提升自我
网Z.X.X.K]
三、在数学教学中,培养学生严谨求实的作风[ 1、言位身教,从自己做起。数学是一门严谨的学科,数学教师首先要有严谨、负责的态度。进行概念数学时,要运用数学语言完整、精练地叙述;对公式所起的作用,要讲得确切;在板演过程中要有条有理,推理要步步有根据;书写要规范,避免“圆”和“园”、“连接”和“连结”混用。时时事事给学生做出严谨求实的表率。
2、严格要求,从小事抓起。数学中,教师要有意识地培养学生言必有据、一丝不苟、坚持真理、修正错误的科学态度。不合格的作业,一定要令其重作,哪怕只是一个错字、一个小数点也要强调订正。要严格指出,在实际工作中点滴差错误都有可能给国家造成很大损失。从而一点一滴培养学生精益求精,实事求是,谦虚谨慎的优良作风。
用心 爱心 专心 2
第三篇:(no.1)2013年高中数学教学论文 课堂中引入艺术初探资料新课标 新人教版
知识改变命运
百度提升自我
本文为自本人珍藏
版权所有
仅供参考
数学课堂中问题引入艺术初探
“良好的开端等于成功的一半。”我们知道,一堂生动活泼的、具有教学艺术魅力的好课犹如一支宛转悠扬的乐曲,“起调”扣人心弦,“主旋律”引人入胜,“终曲”余音绕梁。其中“起调”,也就是课堂教学中的引入问题,起着关键性的作用。生动形象、立意巧妙的引入设计能拨动学生的心弦,立疑激趣,促使学生的学习情绪高涨,自觉主动地步入智力振奋状态,充分调动探求新知的积极性和自觉性。
经过反复实践、多方借鉴、不断总结,发现高中数学课堂的引入设计也是有多种模式可循的。在设计引入问题时,不管这样的设计都必须考虑到以下四个环节:①“描述”:“我是怎样设计的”;②“领悟”:“我这样设计意味着什么”,寻找隐藏在设计背后的假说、观念等;③“正视”:“我怎么会这样设计”,以了解自己的假说、观念或设计活动中的其他因素;④“改造”:“我怎样才能更加有效地进行问题设计”,寻求完善创造性设计的方法和途径。
一、类比法
案例:第六章《不等式》中,“绝对值不等式”第一课时的课堂引入可以这样设计:我们已经知道,对于任意两个实数a,b,有abab,abab(b0),那么abab,abab成立吗?学生很快可以通过举反例发现,这两个式子并不成立,那么必须进一步思考:ab、ab与a、b之间有没有联系呢?进而引出本课研究的绝对值不等式: ababab。
类比思维的认识依据是事物间具有相似性.类比也是发现真理的主要工具。从数学问题的发现或提出新命题的过程来看,大量也是从具体问题或素材出发,经过类比——联想等途径,形成命题(猜想)再加以确认的。教材中属性相似的内容占有较大比例,如指数函数与对数函数;四种三角函数及反三角函数;等差数列与等比数列;四种二次曲线(圆、椭圆、抛物线、双曲线);空间几何性质与平面几何性质;三种多面体及四种旋转体等。在教学时,可抓住其发生过程、内涵、结构、性质以及解决问题的数学思想方法等方面的相似性来设计问题的引入,由此及彼,触类旁通。
二、归纳法
用心 爱心 专心
知识改变命运
百度提升自我
案例:在“等差数列”第一课时的教学中,我这样设计的: 观察下列各数列,你能发现它们有什么共同的特点?具有什么性质? ①1,2,3,4,5,6,7,8,„ ②3,6,9,12,15,18,21,24,„
③-1,-3,-5,-7,-9,-11,-13,-15,„ ④2,2,2,2,2,2,2,2,2,„
这样设计可以培养学生观察能力、抽象概括能力。它具有启发性、开放性,有能力发展点,个性和创新精神培养点。学生已具备一定的观察能力和抽象概括能力,完全有条件、有可能发现它们的共同特点和性质。
从个别的或特殊的经验事实出发而概括得出一般原理的思维方法即归纳法在数学思想方法是比较常用的一种,是发现真理的主要工具。从数学问题的发现或提出新命题的过程看,大量是从具体问题或素材出发,经过归纳、观察、实验等不同的途径,形成命题(猜想)再加以确认.教材中大量的概念及部分公式、定理都是使用归纳法来验证与推导的。按照“观察—猜想—证明”的思维模式设计问题,符合学生的认知规律,更培养学生完整地认识数学体系。
三、实验法
案例:《椭圆及其标准方程》第一课时的设计如下:课前,将事先准备好的圆形纸片给每位同学发一张,让大家按这样的步骤进行,①在圆内部任意找一个不同于圆心的点A;②在圆周上30个等分点,分别记为B1、B2、„、B30;③折叠圆纸片,使圆周上的点B1与点A重合,展开纸片后得到一条折痕;④重复上一步骤,使圆周上其余各点与A点重合,得到30条对应的折痕;⑤最后展开纸片,可以发现未被折痕覆盖到的区域正是一个椭圆的形状。
这样的引入方法比之常规引入法更新颖、更具吸引力,使学生感性地认识椭圆这一几何图形,尤其是通过操作实验,营造了“做”数学的氛围,为学生创造了良好的智力环境,促使学生积极主动地参与进来。
四、整合法
案例:在直线的四种特殊方程的教学过程中,由于学生初中时就已经很熟悉的直线方程ykxb出发,给出名称“斜截式”,再由此方程求已知斜率k、过点P(x0,y0)直线方程,得by1kx1ykxy1kx1,代入ykxb得,整理后即为“点斜式”方由程y1kx1byy1k(xx1)。
这样的处理与教材中先介绍“点斜式”再得出“斜截式”的顺序不同,但这样的顺序却更符合用心 爱心 专心
知识改变命运
百度提升自我
学生认知规律,由旧知得出新知,循序渐进,体现了初高中数学的巧妙衔接。整合就是“打乱”教科书上线性排列的知识,注重不同领域内容的整合、数学与其他学科知识的整合、知识与情境的整合、知识与方法的整合、知识与价值的整合,有助于学生领悟数学不是一堆孤立技巧和任意法则的集合,有利于学生对数学内在本质的认识,这是将形式化数学的学术形态转化为易于学生接受的教育形态的艺术之一。
五、实例法
案例:在一次调研活动中,上课的老师居然迟到了,让调研员和学生们在“他为什么迟到了?”的疑惑中等待了两分钟,任课的老师匆忙进教室后的开场白是这样的:对不起,我迟到了,大家一定想知道我迟到的原因吧,那是因为从家里来学校的途中,发现所骑的摩托车没有汽油了,于是就到路边的电脑加油站加油了,在加油过程中我发现显示器上一些数量很有趣(边讲边画显示器的草图),如3.18元/升一动不动,而两个小窗格的数字却不停地跳动着,这两个数表示什么呢?(生答:一个是油量,一个是金额),为什么这两个量要一起跳动呢?(生答:因为进油时,油量会发生变化,油量变化了,金额就跟着改变了),这就是我们今天要学习的内容“第17章的17.1变量与函数”,单价3.18元/升在加油过程中始终保持不变,我们把它叫做“常量”,油量和金额会发生变化,所以把它们叫做“变量”,又因为油量先发生变化,金额才跟着变化,所以油量叫做“自变量”,金额叫做“因变量”,“因变量”也叫做“自变量的函数”,所以,金额就是油量的函数。如果所加的油量设为x升,要付的金额为y元,那么y与x的关系如何表示?(生答:y=3.18x)这个式子叫做函数关系式,其中x是自变量,y是因变量,y是x的函数。我的摩托车油箱最多能装10升汽油,那么自变量x的取值范围是什么?(生答:0≤x≤10)„„
“函数”这个抽象的数学概念如何引入、如何讲解历来困扰着我们数学老师,而这样的一节课所创设的引入问题给予我们太多的启示和感悟。在传统教学中,对“函数”概念的引入都是采用“直接告诉式”的,让学生死记硬背函数的定义:“一般地,设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数”,这个定义冗长、抽象,学生难于理解。而这节课教师充分利用学生已有的生活经验,巧妙设置“迟到”——“加油”——“函数”的导入过程,引人入胜。
数学知识与现实生活的结合,可以有效地设置互动情境,有控制地再现数学思维过程(包括问题的抽象过程、规律的猜想过程、推理中的分析与综合过程、推导中的演算过程等),从生活中来,再回到生活中去,充分体现了学以致用的最高、最终目标。
其实,对于同一教学内容,由于教师的认识程度、思考角度与经验背景不同,可能会出现各种
用心 爱心 专心
知识改变命运
百度提升自我
各样的引入设计,有的引入设计所反映的教学观念陈旧不可取,有的引入设计尽管体现了新课程的基本理念,但不符合学生实际,也是不可行的。总而言之,一个引入设计,必须因人而异、因材施教,不必苛求人人相同、堂堂相近,但仍应具备以下一些基本要求:紧扣教学目标,渗透学习主题;促使学生自觉学习;激活学生原有的情感结构(学生在长期生活和学习中的情感体验的沉积)和认知结构(学生在长期学习实践中的知识积累);联系学生已有的知识和经验,使学生有条件、有可能去思考和探究(问题的背景学生是熟悉的,解决问题的策略学生是学过的);提出新的要求,使学生必须在原有知识经验的基础之上更进一步,达到新课的目标要求。
教学实践表明,课堂教学中一个精彩的、匠心独具的引入设计是教学设计的关键,它是支撑和激励学生学习的源泉,能促使学生“自主”学习,是实现教学过程中数学交流的起因,是学生实现创新的基础和动力。引入问题是实施创新教学的条件,是改变学生学习方式的切入点。引入问题必须着眼于应用和创新,必须巧妙精当、真切感人、能够触到学生的内心深处。这样设计引入问题,就能充分发挥学生们的想象力,让问题处于学生思维水平的最近发展区。当然,这更需要教师具备“编剧的本领”、“导演的才能”和“演员的素质”,才能成功地引导学生入境受情。因此,教师只有解放思想,更新观念,完整、准确地把握教学内容,具有教育学、心理学等各种理论,掌握各种现代教学技术手段,在工作中不断反思总结,才能真正“将知识的学术形态转化为教育形态”。
用心 爱心 专心 4
第四篇:(no.1)2013年高中数学教学论文 谈构造函数法证明不等式 新人教版
知识改变命运
百度提升自我
本文为自本人珍藏
版权所有
仅供参考
谈构造函数法证明不等式(无版本)
本文首先介绍如何构造函数证明两个简单的不等式,在介绍如何构造函数证明复杂的不等式,以及在构造函数时如何如何整体把握。如:exx1,xR ; lnxx1,x0 例1:(07辽宁理工)已知f(x)e2x2t(exx)x22t21求证:fx 2例2: 已知f(x)x22xalnx,t1,f(2t1)2f(t)3 求:a的取值范围。不等式exx1,xR 与 lnxx1,x0
这两个不等式不难从图像上看出,注意ylnx 与 yx1分别是yex 与 yx1的反函数,关于yx对称.
用导数证明如下: 构造函数
f(x)exx1,f(x)ex1,x,0减,x0,增, f(x)f(0)0
既ex1构造函数
xf(x)lnxx1,f(x)既: lnxx1推论:e x111x1,x0,1增,x1,减f(x)f(0)0 xx
x,xRlnx1x,x1这两个不等式在证明不等式与求字母范围时用处极其广泛,下面举例给以说明 例1:(07辽宁理工)已知f(x)e求证:fx2x2t(exx)x22t21 22x22x分析:根据函数特征,考虑关于x的函数较为复杂,注意主次元的交换与整体把握, 解法一:设f(x)gt2t2(ex)txe1
gtmin8xe14(ex)22xx28(exx)22
2exx1exx1
∴gtmin33,既: fx 22用心 爱心 专心
知识改变命运
百度提升自我
解法二::设gt2t22(exx)tx2e2x1,112t22(exx)tx2e2x022214(exx)224(e2xx2)0(exx)21,由exx1exx1
2gtx2解法三:f(x)(et)xt1
2x设点A、B的坐标分别为x,e,t,t,易知点B在直线y=x上,令点A到直线yx的221xxx距离为d,则f(x)AB1d1ex1,又ex1ex1
222既:fx3 2例2: 已知f(x)x22xalnx,t1,f(2t1)2f(t)3 求:a的取值范围。
解法一:由f(x)x22xalnx及f(2t1)2f(t)3得到: 2t12t1aln2t12t22tlnt3 22t2alnt222t1aln2t1
t2化简为:2t1aln ………①
2t122t1t22t10.a当时,有t2t1,则ln …………②。
t22t1ln2t1构造函数m(x)=ln(1+x)-x(x>-1), ln(1+x)≤x(x=0时取等号)在x>-1上恒成立.2t1)t1t12……………… ③ t2lnln(12t12t12t1t22t1…………………………………………④ ∴ln2t1因此由②④可知实数a取值范围: a≤2.22用心 爱心 专心
知识改变命运
百度提升自我
当t1时,由①知aR 综合知:a取值范围: a≤2.评注:本解法主要是构造函数m(x)=ln(1+x)-x(x>-1), ln(1+x)≤x(x=0时取等号)在x>-1上恒成立.解法二:以上与解法一同,也可构造函数(x)lnxx1,lnxx1,x0(x=1时取等号)上恒成立.t1t2t22当t1时,ln1t1
2t12t12t1以下通解法一。
评注:本解法主要是构造函数(x)lnxx1,lnxx1,x0(x=1时取等号)上恒成立.解法三:由解法一得2talnt22t1aln2t1
222构造函数(x)2xalnx,有t1,t2t11,22t2alnt222t1aln2t1(t2)(2t1)(x)2xalnx在x1,递增,(x)2xalnx,(x)2a2xa0,a2xa2 xx评注:整体把握,构造函数(x)2xalnx,简化解题过程,此法要有引起我们的高度重视。
用心 爱心 专心
第五篇:(no.1)2013年高中数学教学论文 《对一道数学题的展开》
知识改变命运
百度提升自我
本文为自本人珍藏
版权所有
仅供参考
对一道数学题的展开
在数学复习教学中,选好一道例题。通过一题多思,一题多解,一题多讲。可以巩固学生知识,训练学生思维,开拓学生视野。例题:已知x,y∈R且法一:均值不等式法
x,yR11x+
1x9y1,求x+y的最小值。
9y1x6xy9y⑴(当且仅当xy6即y9x时取等号)
xy⑵又xy2(当且仅当xy时取等号)⑶12xy12xy的最小值是此题答案有误。因为⑴,⑵式的等号不能同时成立,所以⑶式等号不能取。但事实上推导过程无误,只不过扩大了x+y的范围。此种推导在选择题时,其选择项若是6,8,12,16,当可排除6,8,12得16。此法作为例子强调使用重要不等式时等号成立条件的必不可少。法2,1的妙用
1x9y11x9yyx9xyxy(xy)(当且仅当yx)10161b
9xy时即x4,y12时取等号1a又如a,b,cR,abc1,求证(1)(1)(1c1)8
用心 爱心 专心 1 知识改变命运
百度提升自我
再如a,b,c是不等正数且abc1,求证abc11ab1c
法3,构造x+y不等式法
由1x9y1得(x1)(y9)9(xy102
2)可得变式:已知x+xy+4y=5(x,y∈R+)求xy取值范围 法4,换元后构造均值不等式法
由1x9y1得y99x1(x1)所以xyx99x110x19
x116(当且仅当x19即x1x4时取等号)法5,用判别式法
由1x9y1得y9xx1(x1)令xyz,则zx9xx1x28xx1得关于x的二次方程x2(8z)xz0
20且z8(8z)2可由△(8z)4z4z20解得z的范围从而得到xy的最小值。注意实根分布情况讨论。类似地,如2x+y=6,求11xy的范围也可用判别式法。
法6,三角代换法
用心 爱心 专心 2 知识改变命运
百度提升自我
令1x(cos),29y2(sin),22
10(tan)9(cot)22则xy(sec)+(9csc)16变:0
zx99x1a2xb21x的最小值
(x1),z0中,x4,此极值必为最值)
(在区间内有一个极值点以上所涉及到的方法都是学生应掌握的。通过一道例题讲解即可复习多种方法。
用心 爱心 专心 3