如何培养小学三年级学生的逻辑思维能力

时间:2019-05-14 10:25:00下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《如何培养小学三年级学生的逻辑思维能力》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《如何培养小学三年级学生的逻辑思维能力》。

第一篇:如何培养小学三年级学生的逻辑思维能力

J教学论文

如何培养小学生的逻辑思维能力

———秦睿茗

小学三年级是小学阶段的一个重要转折时期,如何在培养具有创新精神、提高学生整体素质的前提下解决三年级数学成绩下降的教育问题,一直是教育界,特别是我们一线教师特别关注的问题之一。培养学生的思维能力是现代学校教学的一项基本任务。我们要培养社会主义现代化建设所需要的人才,其基本条件之一就是要具有独立思考的能力,勇于创新的精神。小学数学教学从一年级起就担负着培养学生思维能力的重要任务。下面就如何培养学生思维能力谈几点看法。.培养学生的逻辑思维能力是小学数学教学中一项重要任务,思维具有很广泛的内容。根据心理学的研究,有各种各样的思维。在小学数学教学中应该培养什么样的思维能力呢?《小学数学教学大纲》中明确规定,要“使学生具有初步的逻辑思维能力。”这一条规定是很正确的。下面我试着从两方面进行一些分析:

(1)首先从数学的特点看。数学本身是由许多判断组成的确定的体系,这些判断是用数学术语和逻辑术语以及相应的符号所表示的数学语句来表达的。并且借助逻辑推理由一些判断形成一些新的判断。而这些判断的总和就组成了数学这门科学。小学数学虽然内容简单,没有严格的推理论证,但却离不开判断推理,这就为培养学生的逻辑思维能力提供了十分有利的条件。

(2)我们再从小学生的思维特点来看。三年级的学生正处在从具体形象思维向抽象逻辑思维过渡的阶段。这里所说的抽象逻辑思维,主要是指形式逻辑思维。因此可以说,在小学特别是中、高年级,正是发展学生抽象逻辑思维的有利时期。由此可以看出,《小学数学教学大纲》中把培养初步的逻辑思维能力作为一项数学教学目的,既符合数学的学科特点,又符合小学生的思维特点。值得注意的是,《大纲》中的规定还没有得到应有的和足够的重视。一个时期内,大家谈创造思维很多,而谈逻辑思维很少。殊不知在一定意义上说,逻辑思维是创造思维的基础,创造思维往往是逻辑思维的简缩。就多数学生说,如果没有良好的逻辑思维训练,很难发展创造思维。因此如何贯彻《小学数学教学大纲》的目的要求,在教学中有计划有步骤地培养学生逻辑思维能力,还是值得重视和认真研究的问题。《大纲》中强调培养初步的逻辑思维能力,只是表明以它为主,并不意味着排斥其他思维能力的发展。例如,学生虽然在小学阶段正在向抽象逻辑思维过渡,但是形象思维并不因此而消失。在小学高年级,有些数学内容如质数、合数等概念的教学,通过实际操作或教具演示,学生更易于理解和掌握;与此同时学生的形象思维也会继续得到发展。又例如,创造思维能力的培养,虽然不能作为小学数学教学的主要任务,但是在教学与旧知识有密切联系的新知识时,在解一些富有思考性的习题时,如果采用适当的教学方法,可以对激发学生思维的创造性起到促进作用。教学时应该有意识地加以重视。至于辩证思维,从思维科学的理论上说,它属于抽象逻辑思维的高级阶段;从个体的思维发展过程来说,它迟于形式逻辑思维的发展。据初步研究,小学生在十岁左右开始萌发辨证思维。因此在小学不宜过早地把发展辩证思维作为一项教学目的,但是可以结合某些数学内容的教学渗透一些辩证观点的因素,为发展辩证思维积累一些感性材料。例如,通用教材第一册出现,可以使学生初步地直观地知道第2个加数变化了,得数也随着变化了。到中年级课本中还出现一些表格,让学生说一说被乘数(或被除数)变化,积(或商)是怎样跟着变化的。这就为以后认识事物是相互联系、变化的思想积累一些感性材料。

2.培养学生思维能力要贯穿在小学数学教学的全过程。现代教学论认为,教学过程不是单纯的传授和学习知识的过程,而是促进学生全面发展(包括思维能力的发展)的过程。从小学数学教学过程来说,数学知识和技能的掌握与思维能力的发展也是密不可分的。一方面,学生在理解和掌握数学知识的过程中,不断地运用着各种思维方法和形式,如比较、分析、综合、抽象、概括、判断、推理;另一方面,在学习数学知识时,为运用思维方法和形式提供了具体的内容和材料。这样说,绝不能认为教学数学知识、技能的同时,会自然而然地培养了学生的思维能力。数学知识和技能的教学只是为培养学生思维能力提供有利的条件,还需要在教学时有意识地充分利用这些条件,并且根据学生年龄特点有计划地加以培养,才能达到预期的目的。如果不注意这一点,教材没有有意识地加以编排,教法违背激发学生思考的原则,不仅不能促进学生思维能力的发展,相反地还有可能逐步养成学生死记硬背的不良习惯。怎样体现培养学生思维能力贯穿在小学数学教学的全过程?是否可以从以下几方面加以考虑。教学论文

(1)培养学生思维能力要贯穿在小学阶段各个年级的数学教学中。要明确各年级都担负着培养学生思维能力的任务。从一年级一开始就要注意有意识地加以培养。例如,开始认识大小、长短、多少,就有初步培养学生比较能力的问题。开始教学10以内的数和加、减计算,就有初步培养学生抽象、概括能力的问题。开始教学数的组成就有初步培养学生分析、综合能力的问题。这就需要教师引导学生通过实际操作、观察,逐步进行比较、分析、综合、抽象、概括,形成10以内数的概念,理解加、减法的含义,学会10以内加、减法的计算方法。如果不注意引导学生去思考,从一开始就有可能不自觉地把学生引向死记数的组成,机械地背诵加、减法得数的道路上去。而在一年级养成了死记硬背的习惯,以后就很难纠正。

(2)培养学生思维能力要贯穿在每一节课的各个环节中。不论是开始的复习,教学新知识,组织学生练习,都要注意结合具体的内容有意识地进行培养。例如复习20以内的进位加法时,有经验的教师给出式题以后,不仅让学生说出得数,还要说一说是怎样想的,特别是当学生出现计算错误时,说一说计算过程有助于加深理解“凑10”的计算方法,学会类推,而且有效地消灭错误。经过一段训练后,引导学生简缩思维过程,想一想怎样能很快地算出得数,培养学生思维的敏捷性和灵活性。在教学新知识时,不是简单地告知结论或计算法则,而是引导学生去分析、推理,最后归纳出正确的结论或计算法则。例如,教学两位数乘法,关键是通过直观引导学生把它分解为用1位数乘和用整10数乘,重点要引导学生弄清整10数乘所得的部分积写在什么位置,最后概括出用两位数乘的步骤。学生懂得算理,自己从直观的例子中抽象、概括出计算方法,不仅印象深刻,同时发展了思维能力。在教学中看到,有的老师也注意发展学生思维能力,但不是贯穿在一节课的始终,而是在一节课最后出一两道稍难的题目来作为训练思维的活动,或者专上一节思维训练课。这种把培养思维能力只局限在某一节课内或者一节课的某个环节内,是值得研究的。当然,在教学全过程始终注意培养思维能力的前提下,为了掌握某一特殊内容或特殊方法进行这种特殊的思维训练是可以的,但是不能以此来代替教学全过程发展思维的任务。

(3)培养思维能力要贯穿在各部分内容的教学中。这就是说,在教学数学概念、计算法则、解答应用题或操作技能(如测量、画图等)时,都要注意培养思维能力。任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。因此教学每一个概念时,要注意通过多种实物或事例引导学生分析、比较、找出它们的共同点,揭示其本质特征,做出正确的判断,从而形成正确的概念。例如,教学长方形概念时,不宜直接画一个长方形,告诉学生这就叫做长方形。而应先让学生观察具有长方形的各种实物,引导学生找出它们的边和角各有什么共同特点,然后抽象出图形,并对长方形的特征作出概括。教学计算法则和规律性知识更要注意培养学生判断、推理能力。例如,教学加法结合律,不宜简单地举一个例子,就作出结论。最好举两三个例子,每举一个例子,引导学生作出个别判断〔如(2+3)+5=2+(3+5),先把2和3加在1起再同5相加,与先把3和5加在1起再同2相加,结果相同〕。然后引导学生对几个例子进行分析、比较,找出它们的共同点,即等号左端都是先把前两个数相加,再同第3个数相加,而等号右端都是先把后两个数相加,再同第1个数相加,结果不变。最后作出一般的结论。这样不仅使学生对加法结合律理解得更清楚,而且学到不完全归纳推理的方法。然后再把得到的一般结论应用到具体的计算(如57+28+12)中去并能说出根据什么可以使计算简便。这样又学到演绎的推理方法至于解应用题引导学生分析数量关系,这里不再赘述。设计好练习题对于培养学生思维能力起着重要的促进作用。培养学生的思维能力同学习计算方法、掌握解题方法一样,也必须通过练习。而且思维与解题过程是密切联系着的。培养思维能力的最有效办法是通过解题的练习来实现。因此设计好练习题就成为能否促进学生思维能力发展的重要一环。一般地说,课本中都安排了一定数量的有助于发展学生思维能力的练习题。但是一定都能满足教学的需要,而且由于班级的情况不同,课本中的练习题也很难做到完全适应各种情况的需要。因此教学时往往要根据具体情况一些调整或补充。

综上所述,在小学数学教学中,有目的、有计划地对学生实施思维训练,有利于提高数学教学质量,有利于发展学生思维能力,从而全面提高学生的素质。

第二篇:培养学生的逻辑思维能力

培养学生的逻辑思维能力

(一)概念,法则教学,必须坚持以“理”为主,以“思”为本。教学概念和法则,教师应通过直观和实际操作,让学生从多角度、多方面理解其本质属性。

如教学加法的运算定律,不仅要使学生知道结论“交换加数的位置,它们的和不变”、“三个加数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再和第一个数相加,它们的和不变”,更重要的是引导学生弄清法则的来龙去脉,思考法则的使用条件和范围。这样,才能既教给学生准确知识,又使学生掌握了思维的钥匙。

(二)计算教学,必须常问学生“是怎样想的”,“为什么要这样做”。目前,小学生做的题目固然不少,但教师往往只管“对”或“错”,不管学生的认知过程和思维方法。如一年级学生做:“9+6=15”,有的是数小捧数出的,有的是用凑整十法口算的,也有的是死记硬背得数口歌的。从这里我们可以看到学生的思维水平不一样,认知过程和思维方法也是不同的。教师应借此机会,通过分析、比较,让学生口述想法和做法,从中归纳总结出规律性的东西。这样,不仅有利于提高学生计算能力,也培养发展了学生的逻辑思维能力。

(三)应用题教学,必须坚持启发分析引路,训练思维。目前,部分教师只教给学生算式,不教给算理,把学生的思维束缚在一个固定的模式中,严重阻碍了学生思维能力的发展。对此,教师可采用改变思维方向、思维方法、转换思维形式的方法,引导学生对同一问题用不同的提问,用新的角度、新的观点、新的方法去解决;对同种数量关系的问题用不同的表达形式表示,抓好变式教学,把重点放在思路分析上。让学生机械记忆,模仿做题,结果既阻碍了学生思维能力的发展,又妨碍了学生智力的发展。

实践证明,在数学教学中培养学生的逻辑思维能力,可以使学生开阔思路,活跃思维。所以,我们应不失时机抓好数学教学各个环节中这一能力的培养。

第三篇:浅谈培养学生数学逻辑思维能力

浅谈培养学生数学逻辑思维能力

巧家县新华小学

肖秀元

逻辑思维是借助于概念、判断、推理等思维形式所进行的思考活动,是一种有条件、有步骤、有根据、渐进式的思维方式,是小学生数学能力的核心。因此,在小学数学教学中必须着力培养学生的逻辑思维能力。

一、要重视思维过程的组织

要培养学生的逻辑思维能力,就必须把学生组织到对所学数学内容的分析和综合、比较和对照、抽象和概括、判断和推理等思维的过程中来。教学中要重视下列思维过程的组织。

第一,提供感性材料,组织从感性到理性的抽象概括。从具体的感性表象向抽象的理性思考启动,是小学生逻辑思维的显著特征、随着学生对具体材料感知数量的增多、程度的增强,逻辑思维也渐次开始。因此,教学中教师必须为学生提供充分的感性材料,并组织好他们对感性材料从感知到抽象的活动过程,从而帮助他们建立新的概念。例如教学循环小数时,可先演算小数除法式题,使学生初步感知“除不尽。然后引导学生观察商和余数部分,他们会发现商的小数部分从某一位起,一个数字或几个数字依次不断地重复出现,与此同时使之领会省略号所表示的意义,这样,他们可在有效数字后面想象出若干正确的数字来。这种抽象概括过程的展开,完全依赖于“观察—思考”过程的精密组织。

第二,指导积极迁移,推进旧知向新知转化的过程。数学教学的 过程,是学生在教师的指导下系统地学习前人间接知识的过程,而指导学生知识的积极迁移,推进旧知向新知转化的过程,正是学生继承前人经验的一条捷径。小学数学教材各部分内容之间都潜含着共同因素,因而使它们之间有机地联系着,挖掘这种因素,沟通其联系,指导学生将已知迁移到未知、将新知同化到旧知,让学生用已获得的判断进行推理,再获得新的判断,从而扩展他们的认知结构。为此,一方面在教学新知时,要注意唤起已学过的有关旧知。如教学除数是小数的除法时,要唤起“商不变性质”、“小数点位置移动引起小数大小变化的规律”等有关旧知的重现;另一方面要为类比新知及早铺垫。如帮助学生认识一个数乘分数的意义,要在教学整数、小数时就帮助学生理解一个数乘整数、乘以小数就是„„使学生在此前学习中所掌握的知识,成为“建立新的联系的内部刺激物和推动力。”

第三,强化练习指导,促进从一般到个别的运用。学生学习数学时,了解概念,认识原理,掌握方法,不仅要经历从个别到一般的发展过程,而且要从一般回到个别,即把一般的规律运用于解决个别的问题,这就是伴随思维过程而发生的知识具体化的过程。因此,一要加强基本练习,注重基本原理的理解;二要加强变式练习,使学生在不同的数学意境中实现知识的具体化,进而获得更一般更概括的理解;三要重视练习中的比较,使学生获得更为具体更为精确的认识;四要加强实践操作练习,促进学生“动作思维”。

第四,指导分类、整理,促进思维的系统化。教学中指导学生把所学的知识,按照一定的标准或特点进行梳理、分类、整合,可使学 生的认识组成某种序列,形成一定的结构,结成一个整体,从而促进思维的系统化。例如出示各种类型的循环小数,让学生自定标准进行分类,以达到思维的系统化,获得结构性的认识。

二、要重视寻求正确思维方向的训练

首先,指导学生认识思维的方向问题,逻辑思维具有多向性。1.顺向性。这种思维是以问题的某一条件与某一结果的联系为基础进行的,其方向只集中于某一个方面,对问题只寻求一种正确答案。也就是思维时直接利用已有的条件,通过概括和推理得出正确结论的思维方法。

2.逆向性。与顺向性思维方法相反,逆向性思维是从问题出发,寻求与问题相关联的条件,将只从一个方面起作用的单向联想,变为从两个方面起作用的双向联想的思维方法。

3.横向性。这种思维是以所给的知识为中心,从局部或侧面进行探索,把问题变换成另一种情况,唤起学生对已有知识的回忆,沟通知识的内在联系,从而开阔思路。

其次,指导学生寻求正确思维方向的方法。培养逻辑思维能力,不仅要使学生认识思维的方向性,更要指导学生寻求正确思维方向的科学方法。为使学生善于寻求正确的思维方向,教学中应注意以下几点: 1.精心设计思维感性材料。思维的感性材料,就是指用以实物直观或具体表象进行思维的材料。培养学生思维能力既要求教师为学生提供丰富的感性材料,又要求教师对大量的感性材料进行精心设计和巧妙安排,从而使学生顺利实现由感知向抽象的转化。例如教学质 数、合数概念时,先让学生写出几个大于1的自然数,在寻求其约数个数时,学生通过观察、分析、归纳后,可“发现”约数的个数有两种情况:一种是只有1和本身,另一种是除1和本身外,还有其他约数,从而便引出质数和合数的概念。

2.依据基础知识进行思维活动。小学数学基础知识包括概念、公式、定义、法则等。学生依据上述知识思考问题,便可以寻求到正确的思维方向。例如有些学生不知道如何作三角形的高,怎样寻求正确的思维方向呢?很简单,就是先弄准什么是三角形的高,“高的概念”明确了,作起来也就不难了。

3.联系旧知,进行联想和类比。旧知是思维的基础,思维是通向新知的桥梁。由旧知进行联想和类比,也是寻求正确思维方向的有效途径。联想和类比,就是把两种相近或相似的知识或问题进行比较,找到彼此的联系和区别,进而对所探索的问题找到正确的答案。

4.反复训练,培养思维的多向性。学生思维能力培养,不是靠一两次的练习、训练所能奏效的,需要反复训练,多次实践才能完成。由于学生思维方向常是单一的,存在某种思维定势,所以不仅需要反复训练,而且注意引导学生从不同的方向去思考问题,培养思维的多向性。

三、要重视对良好思维品质的培养

思维品质如何将直接影响着思维能力的强弱,因此培养学生逻辑思维能力必须重视良好思维品质的培养。

1.培养思维敏捷性和灵活性。教学中要充分重视教材中例题和 练习中“也可这样算”、“看谁算得快”、“怎样算简单就怎样算”等提示,指导学生通过联想和类比,拓宽思路,选择最佳思路,从而培养学生思维的敏捷性和灵活性。

2.培养思维的广阔性和深刻性。教学中注意沟通知识之间的联系,可以培养思维的广阔性和深刻性。例如教学分数应用题时启发学生联想起倍数应用题,教学百分数应用题时启发学生联想起分数应用题,这样可以调整和完善学生头脑中的认知结构,从几倍的“几”到几分之几的“几”,到百分之几的“几”,从而使之连成一个整体,不仅培养了学生思维广阔性,也培养了思维的深刻性。

3.培养思维的独立性和创造性。教学中要创造性地使用教材和借助形象思维的参与,培养学生思维的独立性和创造性。例如教材例题中前面的多是为学习新知起指导、铺垫作用的,后面的则是为已获得的知识起巩固、加深作用的。因此,对前面例题教学的重点是使学生对原理理解清楚,对后面例题教学则应侧重于实践,即采劝放手让学生自己去思考、去做的方法,以培养他们思维的独立性。

教学中要重视从直观形象入手,充分调动他们的各种感官,获取多方面感性认识,并借助于形象思维的参与,加强对知识的理解和思维的发展,培养学生逻辑思维能力的创造性。

第四篇:培养学生初步的逻辑思维能力[范文模版]

培养学生初步的逻辑思维能力”是九年义务教育小学数学教学大纲规定的教学任务和教育目标。而指导 学生学习和掌握常用的逻辑思维方法,是培养和提高学生的逻辑思维能力,使学生乐于思考并善于思考的关键。在小学数学教学中要启发学生掌握如下一些常用的逻辑思维方法。

1.分析与综合的方法。所谓分析的方法,就是把研究的对象分解成它的各个组成部分,然后分别研究每一 个组成部分,从而获得对研究对象的本质认识的思维方法。综合的方法是把认识对象的各个部分联系起来加以 研究,从整体上认识它的本质。例如学生认识5,教师要求学生把5个苹果放在两个盘子里,从而得到四种分法 :1和4;2和3;3和2;4和1。由此学生认识到5可以分成1和4,也可以分成2和3等。这就是分析法。反过来,教师又引导学生在分析的基础上认识:1和4可以组成5,2和3也可以组成5。这就是综合法。在此基础上,教师 还可以再一次运用分析、综合方法,指导学生认识5还可以分成5个1,从而知道5里面有5个1;反过来,5个1能 组成5。分析、综合法广泛应用于整数的认识、分数、小数、四则混合运算、复合应用题、组合图形的计算等教 学中。

2.比较与分类的方法。比较是用以确定研究对象和现象的共同点和不同点的方法。有比较才有鉴别,它是 人们思维的基础。分类是整理加工科学事实的基本方法。比较与分类贯穿于整个小学数学教学的全过程之中。比如学生开始学习数学,他就会比较长短,比较大小,进而学会比较多少。然后就会把同样大小的放在一起,相同形状的归为一类。或者把相同属性的数学归并在一起(整数、小数、分数)。前者反映的是比较方法,后 者例举的是分类方法。分类常常是通过比较得到的。比较和分类方法是小学数学教学中经常用到的最基本的思 维方法。

3.抽象与概括的方法。抽象就是从许多客观事物中舍弃个别的、非本质的属性,抽出共同的、本质的属性 的思维方法,概括就是把同类事物的共同本质属性综合起来成为一个整体。例如,10以内加法题一共有45道,学生初学时都是靠记住数的组成进行计算的。但是如果教师帮助学生逐步抽象概括出如下的规律,学生的计算 就灵活多了:①一个数加上1,其结果就是这个数的后继数。②应用加法的交换性质。③一个数加上2,共13道 题,可运用规律①推得。④5+5=10。掌握了这些规律,学生就可以减轻记忆负担,其认识水平也可以大大提 高。又如,在计算得数是11的加法时,学生通过摆小棒计算出2+9、3+8、7+4、6+5等几道题之后,从中抽 象出“凑十法”:看大数,拆小数,先凑十,再加几。这样,在学习后面的所有20以内进位加法时就可以直接 运用“凑十法”进行计算了。事实表明,学生一旦掌握了抽象与概括的学习方法,机械记忆就将被意义理解所 代替,认知能力和思维能力就会产生新的飞跃。

第五篇:怎样培养学生几何逻辑思维能力

怎样培养学生几何逻辑思维能力

数学思维能力是数学素质的重要表现,如何在几何课中培养学生的逻辑思维能力是需要认真探索的。几何的学习和研究时时刻刻在概念、判断、推理过程中运动着,而概念、判断、推理是逻辑思维的基本形式,其它知识内容,如性质、定理、公式等无非是一种判断。培养学生逻辑思维能力有利于学生自觉、深刻而牢固地理解和掌握几何知识。然而培养学生逻辑思维能力又是初中几何课教学的一个难点,所以在几何入门阶段,教师应该首先激发学生的学习兴趣,然后从概念、作图、推理这三个环节中着手,重视逻辑思维能力的启蒙,帮助学生打好学习几何的基础。

1、创设情境,激发学生学习几何的兴趣

兴趣是最好的老师,没有学生的学习兴趣,任何教学改革都是搞不好的。于是在学习正课之前,首先上两节预备课,主要谈几何的作用,从古希腊的测地术到今日的高楼大厦,从工农业生产到日常生活,到处都可以看到几何踪影,到处都可以看到数学家的功绩,几何是学习其它学科的工具,更是开发智力,培养逻辑思维能力的新起点,然后介绍几何的发展史,提出一些有趣的几何问题,为学生创设情境,启动思维,从而大大激发了学生学习几何的兴趣。

2、分成三个阶段,逐步培养学生的逻辑思维能力

第一阶段,培养学生的判断能力。这一阶段主要是通过直线、射线、线段、角几部分的教学来培养。要求学生在搞清概念的基础上,通过图形直观能有根据地作出判断,如“对顶角是相等的角”、“两点确定一条直线”、“两直线相交,只有一个交点”,等等。这个阶段,应该看到学生从“数”的学习转入对“形”的研究是很大的变化,而对形的学习开始又接触较多的概念,所以使学生理解所学的概念是一个难点,学生难以适应,不少小学时的优等生适应不了这一转变,以致学习掉队了。解决的办法,主要是注意从感性认识到理性认识,即从感性认识出发,充分利用几何的直观性,再提高到理性认识,从特殊的具体的直观图形抽象出一 1 般的本质属性。并注意用生动形象的语言讲清基本概念。例如讲直线这一概念时,问:你能画一条完整的直线吗?学生感到问题提的新鲜,谁不会画直线呢!有些莫明其妙,我指出:一个人从出生记事之日起,一直到老为止也画不了一条完整的直线,因为直线是无限长的,正因为画不了一条完整的直线,才用画直线的上的一段来表示直线,但决不止这么长!这样学生在开头对直线就建立了向两方无限延伸的印象。又如在学过“角的概念”后,可让学生回答:直线是平角吗?射线是周角吗?在学习“互为余角、互为补角”的概念后,可以问:∠α与90º-∠α互为余角吗?∠β与180º-∠β互为补角吗?并要求用“因为……,所以……,根据……”的模式回答,这能使掌握线与角、角与角的联系和区别的同时,熟悉推理谁论证的日常用语,逐步养成科学判断的习惯。

第二阶段,培养学生进行简单推理论证的能力。这一阶段主要是通过定义、定理、平行线、全等三角形几部分的教学来培养,要求学生能正确地辨别条件和结论,掌握证明的步骤和书写格式。做法是:(1)分步写好证明过程,让学生的括号内注明每一步的理由;“加注理由”的练习题,主要在第二章,这无疑把学生引入逻辑推理的王国,教师在教学中应十分重视它的作用,指导学生认真阅读教材中每个例题,认真完成教材中每一个练习,并强调推理论证中的每一步都有根据,每一对“∵∴”都言必有据,都是有定义、定理、公理做保证的。此外,还要学生象学写作文一样背记一些证明的“范句”,熟悉一些“范例”,做到既掌握证明方法步骤和书写格式,也努力弄清证题的来龙去脉和编写意图。(2)让学生论证一些写好了已知、求证并附有图形的证明题,先是一两步推理,然后逐渐增加推理的步数,主要是模仿证明;(3)让学生自己写出已知、求证、并自己画出图形来证明,每一步都得注明理由。另一方面通过例题、练习向学生总结出推理的规律,简单概括为“从题设出发,根据已学过的定义、定理用分析的方法寻求推理的途径,用综合的方法写出证明过程。

第三阶段,培养学生对较复杂证明题的分析能力。这一阶段主要通过全等三角形以后的教学来培养。要求学生对题中的每个条件,包括求证的内容,要一个 2 一个地思考,按照定义、公理或定理把已知条件一步步推理,得出新的条件,延伸出尽可能多的条件,避免忽视有些较难找的条件,同时不要忽视题中的隐含条件,比如图形中的“对顶角”、“三角形内角和”、“三角形外角”等等。

实践证明,培养学生逻辑思维能力,要有一个较长的过程,初二仅仅是一个开始,不能操之过急,必须有意识、有计划的从简单到复杂循序渐进,使学生逐步学会推理论证的方法。

3、狠抓几何语言训练

“语言是思想的直接现实”候选任何一门学科都有自己待有的语言,数学等别要通过一些符号和字母来表达,它抽象精确、简便,这是数学语言的特点,也是它的优点,要跨入几何的大门,首先就要过好“语言关”,为此,我作了如下训练:(1)要求学生理解和熟记几何常用语。几何教材开始就明确地给了一些常用语,如“直线AB与CD相交于点A”、“直线AB经过点C”,经过即通过,对某些字“咬文嚼字”,加强学生的理解,为了让学生熟记“几何常用语”,经常组织学生在课堂上朗读和学说,以提高他们的口头表达能力。(2)由基本语句画出图形,给出基本语句,要求学生画出图形,把语句和图形结合起来,训练学生熟记语句,如延长线段AB到D使BD=AB,在线段AB的反向延长线上取一点C,使AC=AD,等等。(3)将定义、定理等翻译成符号语言,并画出图形,符号语言能将文字语言与图形结合起来,有利于学生理解几何概念的本质属性,也为文字证明打下基础,如点M是线段AB的中点,翻译成符号语言:AM=BM或BM=1/2AB或AB=2AM=2BM等。(4)编写范句,形成规范的书写:如延长_____到点____,使_____=____。此外,我讲课时,努力做到语言规范化。对几何语言的教学,我是随着几何知识的教学逐步进行,通过培养和训练学生的几何语言,使学生的思维能力在探讨中进一步得以发展。

4、教学中时刻注意几何的学习方法和严格要求

学生初接触几何,不知道应怎样学习,于是在教学中注意教学生怎样学概念、怎样学定理、怎样分析问题、怎样总结几何知识。

几何概念往往是很抽象的,因此引入概念或定理教学时,尽可能从实际事例、模型或学生已有的知识引入,结合分析图形的特征得出几何概念和图形性质,并用文字定义把概念表述出来,这样,使学生对几何图形的认识有实际模型作基础,对概念的理解有几何图形作依据,也就是使学生能够真正抓信几何概念所反映的几何图形的本质属性,在他们使用定义时,即运用概念进行思维或者在口头上或书面中表述的时候,在头脑中能呈现出相应的图形,以及这个图形的基本特征,而不是机械模仿,硬背概念的字句。

几何定理是解答和论证几何问题的重要依据之一,一个定理掌握得好坏,对提高学生解决问题的能力起着重要的作用,在教学中,除了重视定理的引入和证明外,还特别着重讲清怎么样应用定理。一个定理研究完毕之后,除正面给学生举一些满足定理的例子外,同时也给出那些因不具备条件而有适合定理的反例,使学生懂得定理在各方面的应用信息,使其心中有数才能对定理运用自如。在讲课时按逻辑程序,层层深入,不断地提出问题,使学生不断产生“是什么”、“为什么”的定向反射,注意精心创设思维情境和加强对学生的思维训练。总之讲几何概念或定理时,让学生多观察、多思考、多动手,千方百计培养学生分析问题的能力。

几何是一门逻辑性比较严谨的学科,因此要求学生养成良好的学风与科学态度,培养学生课前预习,上课认真听讲,独立思考的习惯;培养学生先复习,后作业,先审题,找思路,后解题,认真完成作业的良好习惯。

实践证明,思维能力的培养并不是完全不可捉摸的,培养学生逻辑思维能力,要有一个较长的过程,不能操之过急,必须有意识、有计划的从简单到复杂循序渐进,使学生逐步学会推理论证的方法。

下载如何培养小学三年级学生的逻辑思维能力word格式文档
下载如何培养小学三年级学生的逻辑思维能力.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    逻辑思维能力的培养

    思维是人脑的机能、特性和产物,是人脑对于客观事物的间接地、概括地反映。逻辑思维也称抽象思维,它如形象(直感)思维一样是一种思维现象。它是在感性认识形式(感觉、知觉、表象)所......

    逻辑思维能力的培养

    论如何在初中数学教学中培养学生的逻辑思维能力 一、引言 数学在科学和文化的发展中具有无可比拟的作用。不仅如此,它既是高度抽象的理论性学科,又是一门应用广泛的工具性学......

    低年级应用题教学如何培养学生逻辑思维能力

    低年级应用题教学如何培养学生逻辑思维能力 低年级应用题教学如何培养学生逻辑思维能力 鞍山市台安县高力房镇中心小学 杨秀琳 《九年义务教育全日制教学大纲》明确指出:“......

    高中语文教学应培养学生逻辑思维能力

    高中语文教学应培养学生逻辑思维能力 在语文学习中,高中学生因逻辑思维能力的欠缺,已影响到阅读与表达的质量,逻辑思维的强弱与语言理解、语言表达的好差呈一种正相关系。也许......

    教学逻辑思维能力的培养

    教学逻辑思维能力的培养 周新梅 (贵州大学人民武装学院信息工程系统 贵州 贵阳 550025) 摘要:逻辑思维能力是数学能力中的一个重要内容,它主要有:判断能力、逻辑推理能力、发现和......

    如何培养小学生的逻辑思维能力

    如何培养小学生的逻辑思维能力 涟水县高沟镇中心小学刘祝洪 作为小学老师,我们知道,一方面,小学数学的内容虽然较中学简单,没有严格的推理论证,但却有不少的判断、推理,这就为培养......

    如何培养中学生的逻辑思维能力

    如何培养中学生的逻辑思维能力 逻辑思维能力是指根据正确思维规律和形式对数学对象的属性进行分析综合、抽象概括、推理证明的能力。因此它不仅要求学生能熟练地进行证明,还......

    如何培养初中学生的逻辑思维能力(优秀范文五篇)

    如何培养初中学生的逻辑思维能力 数学中的逻辑思维能力是指根据正确思维规律和形式对数学对象的属性进行分析综合、抽象概括、推理论证的能力。 在初中数学教学中,要提高学生......